1
|
Gao Y, Liu FF, Wang H, Xu K, Chen R, Zhang W, Shi Y. Comparative study on the reaction mechanism of 5-hydroxymethyl furfural on Pd(111) and Cu(111). J Mol Model 2025; 31:34. [PMID: 39760759 DOI: 10.1007/s00894-024-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
CONTEXT In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (Ea) and reaction energy (Er), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CH2OH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CH2OH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CH2O + H → F-CH2OH. On Cu(111), the formation of F-CH2OH from F-CH2O hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant. The comparison of HMF hydrogenation on Pd(111) and Cu(111) reveals their inherent differences in selectivity, mainly due to the different adsorption configurations of HMF and BHMF, and it was concluded that the nonprecious Cu(111) is a promising hydrogenation catalyst for the production of BHMF from the hydrogenation of HMF. METHODS All plane-wave DFT calculations were performed via the Vienna ab initio simulation package (VASP). The exchange and correlation energies were computed via the generalized gradient approximation (GGA) of the Perdew, Burke, and Ernzerhof (PBE) functional with the projector augmented wave (PAW) method.
Collapse
Affiliation(s)
- Yuzeng Gao
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Fang Feixue Liu
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Haolan Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Kainan Xu
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Rongxin Chen
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Wenxin Zhang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Yun Shi
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
| |
Collapse
|
2
|
Nuzhdin AL, Bukhtiyarova MV, Bukhtiyarova GA. Organic synthesis in flow mode by selective liquid-phase hydrogenation over heterogeneous non-noble metal catalysts. Org Biomol Chem 2024; 22:7936-7950. [PMID: 39254682 DOI: 10.1039/d4ob00873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Flow hydrogenation performed over heterogeneous catalysts makes organic synthesis more economical, safe and environmentally friendly. Over the past two decades, a significant amount of research with a major focus on noble metal catalysts has been carried out in this area. However, catalysts based on non-noble metals (Ni, Cu, Co, etc.) are more promising for practical use due to their low cost and high availability. This review article discusses the use of supported and bulk non-noble metal catalysts for the liquid-phase hydrogenation of bi- and polyfunctional organic compounds in flow mode. The main attention is paid to the selective reduction of one functional group (NO2, CC, CN, CO, and CN) in the presence of other substituents. In addition, cascade synthetic protocols involving hydrogenation are presented.
Collapse
Affiliation(s)
- Alexey L Nuzhdin
- Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia.
| | | | | |
Collapse
|
3
|
Arias KS, Hurtado B, Climent MJ, Iborra S, Corma A. Noble-Metal-Free Carbon Encapsulated CoNi Alloy Catalyst for the Hydrogenation of 5-(Hydroxymethyl) Furfural to Tetrahydrofurandiol in Aqueous Media. Chempluschem 2024; 89:e202300643. [PMID: 38230921 DOI: 10.1002/cplu.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
The selective hydrogenation of 5-(hydroxymethyl)furfural (HMF) into 2,5-bis-(hydroxymethyl)tetrahydrofuran (BHMTHF) in flow reactor using water as a green solvent, has been achieved on a non-noble metal catalyst based on monodispersed CoNi alloy nanoparticles covered by a thin carbon layer. The alloyed catalyst containing CoNi (molar ratio 1 : 1) was prepared in a one-step synthesis following a hydrothermal method. Total conversion of HMF with 91 % selectivity to BHMTHF was achieved. The reaction network has been stablished, in which the carbonyl group of HMF is first reduced to alcohol giving the 2,5-bis-(hydroxymethyl)furan (BHMF) with an apparent activation energy of 25 KJ/mol, and then the double bonds of the furan ring are hydrogenated (apparent Ea=31 KJ/mol). Formation of byproducts, mainly proceed from furan ring opening and ring rearrangement processes of BHMF, promoted by water. BHMTHF resulted a compound highly stable under reaction conditions. The fixed bed flow reactor was maintained operational for 65 h without observing any loss of catalytic activity and selectivity.
Collapse
Affiliation(s)
- Karen S Arias
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Beatriz Hurtado
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Maria J Climent
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Bukhtiyarova MV, Nuzhdin AL, Bukhtiyarova GA. Comparative Study of Batch and Continuous Flow Reactors in Selective Hydrogenation of Functional Groups in Organic Compounds: What Is More Effective? Int J Mol Sci 2023; 24:14136. [PMID: 37762440 PMCID: PMC10531935 DOI: 10.3390/ijms241814136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Many research papers describe selective hydrogenation of functional groups, such as nitro groups, carbonyl groups, or unsaturated carbon bonds to obtain fine chemicals or precursors of pharmaceuticals. Quite often, the catalyst performance is investigated in batch or continuous flow reactors without finding advantages and disadvantages of this or that regime. At the same time, the transition from batch processes to continuous flow occurs on the industrial scale. However, the batch process can be preferable for some reactions, in spite of its drawbacks. This review article aims to identify all publications that consider selective hydrogenation of functional groups in organic compounds, both in batch and continuous flow reactors, at the same reaction conditions that allow making conclusions about the benefits of one of the regimes in a particular case.
Collapse
|
5
|
Sun R, Tian Y, Xiao L, Bukhtiyarova GA, Wu W. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni 3P in Furfural Hydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Ruyu Sun
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Ye Tian
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | | | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
6
|
Park D, Lee S, Kim J, Yeong Ryu G, Suh YW. 5-(Chloromethyl)Furfural as a Potential Source for Continuous Hydrogenation of 5-(Hydroxymethyl)Furfural to 2,5-Bis(Hydroxymethyl)Furan. Chempluschem 2022; 87:e202200166. [PMID: 35790089 DOI: 10.1002/cplu.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Indexed: 01/31/2023]
Abstract
5-(Chloromethyl)furfural (CMF) is cheaper than sugars, because it can be obtained from biomass waste. Herein, the stepwise conversion of CMF to 2,5-bis(hydroxymethyl)furan (BHMF) via 5-(hydroxymethyl)furfural (HMF) was demonstrated for the first time. The purified CMF was hydrolyzed in continuous mode followed by extraction with ethyl acetate (EA), resulting in a HMF yield of 70 mol%. The following factors were assessed during continuous hydrogenation of the produced HMF: the presence of EA in the reaction solvent, HMF concentrations of up to 10 wt% in the feed, the mass production of mesoporous Cu-Al2 O3 (meso-CuA-kg), the shaping of meso-CuA-kg into cylindrical pellets, and the setup of the catalytic reactor. Through these efforts, the hydrogenation of HMF over meso-CuA-kg could be sustained for 100 h under the above optimized conditions, affording BHMF in 98 % yield. The approach described in this study can greatly contribute to the value-added transformation of CMF into HMF and BHMF.
Collapse
Affiliation(s)
- Dongwoon Park
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Soohyeon Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jinsung Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ga Yeong Ryu
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Young-Woong Suh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea.,Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
7
|
Zhang C, Lv X, Zhang X, Huo S, Song H, Guan Y, Gao X. Progress in Selective Conversion of 5‐Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect 2022. [DOI: 10.1002/slct.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaofan Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Olefin Factory of Fushun Petrochemical Company Petrochina, Fushun 113001, Liaoning China
| | - Sihan Huo
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hanlin Song
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Yining Guan
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
8
|
Selective Hydrogenation of 5-Acetoxymethylfurfural over Cu-Based Catalysts in a Flow Reactor: Effect of Cu-Al Layered Double Hydroxides Synthesis Conditions on Catalytic Properties. Catalysts 2022. [DOI: 10.3390/catal12080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cu-containing layered double hydroxides (LDHs) were synthesized by a co-precipitation method at different reaction conditions, such as aging time, pH, precipitation rate and synthesis temperature. The effect of these parameters on the structure and chemical composition of the catalysts were investigated using a set of physical methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), H2-TPR and in situ X-ray photoelectron spectroscopy (XPS). It allowed for checking of the reducibility of the samples. 5-Acetoxymethylfurfural was catalytically hydrogenated to 5-(acetoxymethyl)-2-furanmethanol (AMFM) over Cu-containing catalysts synthesized from layered double hydroxides so as to investigate its catalytic properties in flow reaction. It was shown that synthesis pH decreasing from 10 to 8 resulted in rise of AMF conversion that coincided with the higher surface Cu/Al ratio obtained by XPS. Preferable aging time of LDH materials for obtaining the most active catalyst was 2 h, an amount of time that favored the production of the catalyst with high surface Cu/Al ratio up to 0.38. Under optimized reaction conditions, the AMFM yield was 98%. Finally, a synthesis strategy for the preparation of highly efficient Cu-based hydrogenation catalyst with optimized characteristics is suggested.
Collapse
|
9
|
Turkin AA, Makshina EV, Sels BF. Catalytic Hydroconversion of 5-HMF to Value-Added Chemicals: Insights into the Role of Catalyst Properties and Feedstock Purity. CHEMSUSCHEM 2022; 15:e202200412. [PMID: 35348300 DOI: 10.1002/cssc.202200412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is an important bio-derived platform molecule that is generally obtained from hexoses via acid-catalyzed dehydration. It can be effectively transformed into a variety of value-added derivatives, thus being an ideal candidate for fossil replacement. Both HMF oxidation and hydrogenation processes enable the synthesis of numerous chemicals, monomers for polymerization, and biofuel precursors. This Review summarizes the most recent advances in heterogeneous catalytic hydroconversion of HMF into valuable chemicals with strong focus on 2,5-bishydroxymethyl furan (BHMF), 2,5-bishydroxymethyltetrahydrofuran (BHMTHF), and 2,5-dimethyltetrahydrofuran (DMTHF). In addition, multifunctional catalytic systems that enable a tunable production of various HMF derived intermediates are discussed. Within this chemistry, the surprising impact of HMF purity on the catalytic performance, such as selectivity and activity, during its upgrading is highlighted. Lastly, the remaining challenges in the field of HMF hydroconversion to the mentioned chemicals are summarized and discussed, taking into account the knowledge gain of catalyst properties and feedstock purity.
Collapse
Affiliation(s)
- Aleksei A Turkin
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ekaterina V Makshina
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
10
|
Fulignati S, Antonetti C, Tabanelli T, Cavani F, Raspolli Galletti AM. Integrated Cascade Process for the Catalytic Conversion of 5-Hydroxymethylfurfural to Furanic and TetrahydrofuranicDiethers as Potential Biofuels. CHEMSUSCHEM 2022; 15:e202200241. [PMID: 35384331 PMCID: PMC9401012 DOI: 10.1002/cssc.202200241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The depletion of fossil resources is driving the research towards alternative renewable ones. Under this perspective, 5-hydroxymethylfurfural (HMF) represents a key molecule deriving from biomass characterized by remarkable potential as platform chemical. In this work, for the first time, the hydrogenation of HMF in ethanol was selectively addressed towards 2,5-bis(hydroxymethyl)furan (BHMF) or 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) by properly tuning the reaction conditions in the presence of the same commercial catalyst (Ru/C), reaching the highest yields of 80 and 93 mol%, respectively. These diols represent not only interesting monomers but strategic precursors for two scarcely investigated ethoxylated biofuels, 2,5-bis(ethoxymethyl)furan (BEMF) and 2,5-bis(ethoxymethyl)tetrahydrofuran (BEMTHF). Therefore, the etherification with ethanol of pure BHMF and BHMTHF and of crude BHMF, as obtained from hydrogenation step, substrates scarcely investigated in the literature, was performed with several commercial heterogeneous acid catalysts. Among them, the zeolite HZSM-5 (Si/Al=25) was the most promising system, achieving the highest BEMF yield of 74 mol%. In particular, for the first time, the synthesis of the fully hydrogenated diether BEMTHF was thoroughly studied, and a novel cascade process for the tailored conversion of HMF to the diethyl ethers BEMF and BEMTHF was proposed.
Collapse
Affiliation(s)
- Sara Fulignati
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
| | - Claudia Antonetti
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
- Interuniversity Consortium for Chemical Reactivity and Catalysis (CIRCC)Via CelsoUlpiani 2770126BariItaly
| | - Tommaso Tabanelli
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | - Fabrizio Cavani
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | | |
Collapse
|
11
|
Wan Y, Lee JM. Recent Advances in Reductive Upgrading of 5-Hydroxymethylfurfural via Heterogeneous Thermocatalysis. CHEMSUSCHEM 2022; 15:e202102041. [PMID: 34786865 DOI: 10.1002/cssc.202102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The catalytic conversion of 5-hydroxymethylfufural (HMF), one of the vital platform chemicals in biomass upgrading, holds great promise for producing highly valuable chemicals through sustainable routes, thereby alleviating the dependence on fossil feedstocks and reducing CO2 emissions. The reductive upgrading (hydrogenation, hydrogenolysis, ring-opening, ring-rearrangement, amination, etc.) of HMF has exhibited great potential to produce monomers, liquid fuel additives, and other valuable chemicals. Thermocatalytic conversion has a significant advantage over photocatalysis and electrocatalysis in productivity. In this Review, the recent achievements of thermo-reductive transformation of HMF to various chemicals using heterogeneous catalytic systems are presented, including the catalytic systems (catalyst and solvent), reaction conditions, (reaction temperature, pressure, etc.), and reaction mechanisms. The current challenges and future opportunities are discussed as well, aiming at guiding the catalyst design and practical scalable productions.
Collapse
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
12
|
Huang Z, Wang J, Lei J, Zhao W, Chen H, Yang Y, Xu Q, Liu X. Recent Advances in the Catalytic Hydroconversion of 5-Hydroxymethylfurfural to Valuable Diols. Front Chem 2022; 10:925603. [PMID: 35720994 PMCID: PMC9204135 DOI: 10.3389/fchem.2022.925603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Biomass, a globally available resource, is a promising alternative feedstock for fossil fuels, especially considering the current energy crisis and pollution. Biomass-derived diols, such as 2,5-bis(hydroxymethyl)furan, 2,5-bis(hydroxymethyl)-tetrahydrofuran, and 1,6-hexanediol, are a significant class of monomers in the polyester industry. Therefore, the catalytic conversion of biomass to valuable diols has received extensive research attention in the field of biomass conversion and is a crucial factor in determining the development of the polyester industry. 5-Hydroxymethylfurfural (HMF) is an important biomass-derived compound with a C6-furanic framework. The hydroconversion of HMF into diols has the advantages of being simple to operate, inexpensive, environmentally friendly, safe, and reliable. Therefore, in the field of diol synthesis, this method is regarded as a promising approach with significant industrialization potential. This review summarizes recent advances in diol formation, discusses the roles of catalysts in the hydroconversion process, highlights the reaction mechanisms associated with the specificities of each active center, and provides an outlook on the challenges and opportunities associated with the research on biomass-derived diol synthesis.
Collapse
Affiliation(s)
- Zexing Huang
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Jianhua Wang
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Jing Lei
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
| | - Wenguang Zhao
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Hao Chen
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
| | - Yongjun Yang
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
- *Correspondence: Yongjun Yang, ; Xianxiang Liu,
| | - Qiong Xu
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Xianxiang Liu
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
- *Correspondence: Yongjun Yang, ; Xianxiang Liu,
| |
Collapse
|
13
|
Fan M, Zhang X, Shao Y, Sun K, Zhang S, Zhang L, Li Q, Hu X. Influence of solvent on aggregation of metallic Cu in Cu/MgO during hydrogenation in liquid phase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|