1
|
Valério-Bolas A, Meunier M, Palma-Marques J, Rodrigues A, Santos AM, Nunes T, Ferreira R, Armada A, Alves JC, Antunes W, Cardoso I, Mesquita-Gabriel S, Lobo L, Alexandre-Pires G, Marques L, Pereira da Fonseca I, Santos-Gomes G. Exploiting Leishmania-Primed Dendritic Cells as Potential Immunomodulators of Canine Immune Response. Cells 2024; 13:445. [PMID: 38474410 PMCID: PMC10931270 DOI: 10.3390/cells13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dendritic cells (DCs) capture pathogens and process antigens, playing a crucial role in activating naïve T cells, bridging the gap between innate and acquired immunity. However, little is known about DC activation when facing Leishmania parasites. Thus, this study investigates in vitro activity of canine peripheral blood-derived DCs (moDCs) exposed to L. infantum and L. amazonensis parasites and their extracellular vesicles (EVs). L. infantum increased toll-like receptor 4 gene expression in synergy with nuclear factor κB activation and the generation of pro-inflammatory cytokines. This parasite also induced the expression of class II molecules of major histocompatibility complex (MHC) and upregulated co-stimulatory molecule CD86, which, together with the release of chemokine CXCL16, can attract and help in T lymphocyte activation. In contrast, L. amazonensis induced moDCs to generate a mix of pro- and anti-inflammatory cytokines, indicating that this parasite can establish a different immune relationship with DCs. EVs promoted moDCs to express class I MHC associated with the upregulation of co-stimulatory molecules and the release of CXCL16, suggesting that EVs can modulate moDCs to attract cytotoxic CD8+ T cells. Thus, these parasites and their EVs can shape DC activation. A detailed understanding of DC activation may open new avenues for the development of advanced leishmaniasis control strategies.
Collapse
Affiliation(s)
- Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Mafalda Meunier
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Ana Margarida Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal (J.C.A.)
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Rui Ferreira
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Ana Armada
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - João Carlos Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal (J.C.A.)
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), 1849-012 Lisbon, Portugal;
| | - Inês Cardoso
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Sofia Mesquita-Gabriel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Lis Lobo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| | - Graça Alexandre-Pires
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Luís Marques
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon-FCUL-BioISI Ce3CE, 1749-016 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal; (A.V.-B.); (M.M.); (J.P.-M.); (A.R.); (A.A.); (S.M.-G.); (L.L.)
| |
Collapse
|
2
|
Stranahan LW, Chaki SP, Garcia-Gonzalez DG, Khalaf OH, Arenas-Gamboa AM. Evaluation of the Efficacy of the Brucella canis RM6/66 Δ vjbR Vaccine Candidate for Protection against B. canis Infection in Mice. mSphere 2020; 5:e00172-20. [PMID: 32434839 PMCID: PMC7380573 DOI: 10.1128/msphere.00172-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Brucella canis is a Gram-negative, facultative intracellular bacterium and the causative agent of canine brucellosis, a highly contagious disease of dogs that can be transmitted to humans. Unfortunately, no vaccine is available to prevent infection. We recently characterized the kinetics of B. canis infection in the mouse model, establishing the required dose necessary to achieve systemic infection. The objective of this study was to investigate the utility of the mouse model in assessing canine brucellosis vaccine candidates and to subsequently investigate the safety and efficacy of a live attenuated vaccine, the B. canis RM6/66 ΔvjbR strain. Mice vaccinated with a dose of 109 CFU of the vaccine strain by both intraperitoneal and subcutaneous routes were afforded significant protection against organ colonization and development of histopathologic lesions following intraperitoneal challenge. Addition of an adjuvant or a booster dose 2 weeks following initial vaccination did not alter protection levels. Vaccination also resulted in a robust humoral immune response in mice, and B. canis RM6/66 ΔvjbR was capable of activating canine dendritic cells in vitro These data demonstrate that the B. canis RM6/66 ΔvjbR strain shows promise as a vaccine for canine brucellosis and validates the mouse model for future vaccine efficacy studies.IMPORTANCE Canine brucellosis, caused by Brucella canis, is the primary cause of reproductive failure in dogs and represents a public health concern due to its zoonotic nature. Cases in dogs in the United States have been increasing due to the persistent nature of the bacterium, deficiencies in current diagnostic testing, and, most importantly, the lack of a protective vaccine. Current estimates place the seroprevalence of B. canis in the southern United States at 7% to 8%, but with the unprecedented rates of animals moving across state and international borders and the lack of federal regulations in regard to testing, the true seroprevalence of B. canis in the United States may very well be higher. Vaccination represents the most effective method of brucellosis control and, in response to the demand for a vaccine against B. canis, we have developed the live attenuated B. canis RM6/66 ΔvjbR vaccine strain capable of protecting mice against challenge.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Daniel G Garcia-Gonzalez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Omar H Khalaf
- Department of Veterinary Pathology & Poultry Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Milhau N, Almouazen E, Bouteille S, Hellel-Bourtal I, Azzouz-Maache S, Benavides U, Petavy AF, Marchal T. In vitro evaluations on canine monocyte-derived dendritic cells of a nanoparticles delivery system for vaccine antigen against Echinococcus granulosus. PLoS One 2020; 15:e0229121. [PMID: 32101539 PMCID: PMC7043750 DOI: 10.1371/journal.pone.0229121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Since dogs play a central role in the contamination of humans and livestock with Echinococcus granulosus, the development of an effective vaccine for dogs is essential to control the disease caused by this parasite. For this purpose, a formulation based on biodegradable polymeric nanoparticles (NPs) as delivery system of recombinant Echinococcus granulosus antigen (tropomyosin EgTrp) adjuved with monophosphoryl lipid A (MPLA) has been developed. The obtained nanoparticles had a size of approximately 200 nm in diameter into which the antigen was correctly preserved and encapsulated. The efficiency of this system to deliver the antigen was evaluated in vitro on canine monocyte-derived dendritic cells (cMoDCs) generated from peripheral blood monocytes. After 48 h of contact between the formulations and cMoDCs, we observed no toxic effect on the cells but a strong internalization of the NPs, probably through different pathways depending on the presence or not of MPLA. An evaluation of cMoDCs activation by flow cytometry showed a stronger expression of CD80, CD86, CD40 and MHCII by cells treated with any of the tested formulations or with LPS (positive control) in comparison to cells treated with PBS (negative control). A higher activation was observed for cells challenged with EgTrp-NPs-MPLA compared to EgTrp alone. Formulations with MPLA, even at low ratio of MPLA, give better results than formulations without MPLA, proving the importance of the adjuvant in the nanoparticles structure. Moreover, autologous T CD4+ cell proliferation observed in presence of cMoDCs challenged with EgTrp-NPs-MPLA was higher than those observed after challenged with EgTrp alone (p<0.05). These first results suggest that our formulation could be used as an antigen delivery system to targeting canine dendritic cells in the course of Echinococcus granulosus vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dogs/blood
- Dogs/immunology
- Dogs/parasitology
- Drug Carriers/chemistry
- Drug Carriers/toxicity
- Echinococcosis/immunology
- Echinococcosis/parasitology
- Echinococcosis/prevention & control
- Echinococcosis/veterinary
- Echinococcus granulosus/genetics
- Echinococcus granulosus/immunology
- Immunogenicity, Vaccine
- Lipid A/analogs & derivatives
- Lipid A/chemistry
- Lipid A/toxicity
- Lymphocyte Activation/immunology
- Monocytes/physiology
- Nanoparticles/chemistry
- Nanoparticles/toxicity
- Polyesters/chemistry
- Polyesters/toxicity
- Primary Cell Culture
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Toxicity Tests, Acute
- Tropomyosin/administration & dosage
- Tropomyosin/genetics
- Tropomyosin/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nadège Milhau
- Université de Lyon, VetAgro Sup, UPSP ICE 2011.03.101, Marcy L’Etoile, France
| | - Eyad Almouazen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
| | - Sylvie Bouteille
- Université de Lyon, VetAgro Sup, Laboratoire d’Histopathologie, Marcy L’Etoile, France
| | - Imène Hellel-Bourtal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Samira Azzouz-Maache
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
| | - Uruguaysito Benavides
- Immunology Department, Faculty of Veterinary, Universidad de la República, Montevideo, Uruguay
| | - Anne-Françoise Petavy
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
| | - Thierry Marchal
- Université de Lyon, VetAgro Sup, UPSP ICE 2011.03.101, Marcy L’Etoile, France
- Université de Lyon, VetAgro Sup, Laboratoire d’Histopathologie, Marcy L’Etoile, France
- * E-mail:
| |
Collapse
|
4
|
Nemec PS, Kapatos A, Holmes JC, Stowe DM, Hess PR. Cancer-testis antigens in canine histiocytic sarcoma and other malignancies. Vet Comp Oncol 2019; 17:317-328. [PMID: 30854786 DOI: 10.1111/vco.12475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Cancer-testis antigens (CTAs) are a category of self proteins aberrantly expressed in diverse malignancies, mostly solid tumours, due to epigenetic de-repression. Normally expressed only in fetal or gametogenic tissues, CTAs are tantalizing immunotherapy targets, since autoimmunity risks appear minimal. Few prevalent CTAs have been identified in human hematologic cancers, and just two in their veterinary counterparts. We sought to discover new CTAs in canine hematologic cancers such as histiocytic sarcoma (HS) and lymphoma to foster immunotherapy development. To accomplish this, the ligandome binding the dog leukocyte antigen (DLA)-88*508:01 class I allele overexpressed in an HS line was searched by mass spectrometry to identify possible CTA-derived peptides, which could serve as CD8+ T-cell epitopes. Twenty-two peptides mapped to 5 human CTAs and 12 additional proteins with CTA characteristics. Expression of five promising candidates was then evaluated in tumour and normal tissue by quantitative and end-point RT-PCR. The ortholog of an established CTA, IGF2BP3, had unexpectedly high expression in peripheral blood mononuclear cells (PBMCs). Four other testis-enhanced proteins were also assessed. AKR1E2, SPECC1 and TPX2 were expressed variably in HS and T-cell lymphoma biopsies, but also at high levels in critical tissues, including kidney, brain and marrow, diminishing their utility. A more tissue-restricted candidate, NT5C1B, was detected in T-cell lymphomas, but also at low levels in some normal dog tissues. These results illustrate the feasibility of discovering canine CTAs by a reverse approach, proceeding from identification of MHC class I-presented peptides to a comparative RNA expression survey of tumours and normal tissues.
Collapse
Affiliation(s)
- Paige S Nemec
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Alexander Kapatos
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Devorah M Stowe
- Department of Population, Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| |
Collapse
|
5
|
Wheat WH, Chow L, Kurihara JN, Regan DP, Coy JW, Webb TL, Dow SW. Suppression of Canine Dendritic Cell Activation/Maturation and Inflammatory Cytokine Release by Mesenchymal Stem Cells Occurs Through Multiple Distinct Biochemical Pathways. Stem Cells Dev 2016; 26:249-262. [PMID: 27842458 DOI: 10.1089/scd.2016.0199] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC. This study evaluated the effects of canine MSC on the activation and maturation of canine monocyte-derived DC, as well as mechanisms underlying these effects. Adipose-derived canine MSC were cocultured with canine DC, and the MSC effects on DC maturation and activation were assessed by flow cytometry, cytokine ELISA, and confocal microscopy. We found that canine MSC significantly suppressed lipopolysaccharide (LPS)-stimulated upregulation of DC activation markers such as major histocompatibility class II (MHCII), CD86, and CD40. Furthermore, pretreatment of MSC with interferon gamma (IFNγ) augmented this suppressive activity. IFNγ-activated MSC also significantly reduced LPS-elicited DC secretion of tumor necrosis factor alpha without reducing secretion of interleukin-10. The suppressive effect of IFNγ-treated MSC on LPS-induced DC activation was mediated by soluble factors secreted by both MSC and DC. Pathways of DC functional suppression included programmed death ligand-1 expression and secretion of nitrous oxide, prostaglandin E2, and adenosine by activated MSC. Coculture of DC with IFNγ-treated MSC maintained DC in an immature state and prolonged DC antigen uptake during LPS maturation stimulus. Taken together, canine MSC are capable of potently suppressing DC function in a potentially inflammatory microenvironment through several separate immunological pathways and confirm the potential for immune therapy with MSC in canine immune-mediated disease models.
Collapse
Affiliation(s)
- William H Wheat
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Jade N Kurihara
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Daniel P Regan
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Jonathan W Coy
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Tracy L Webb
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Steven W Dow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
6
|
Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell Tissue Res 2015; 363:461-78. [DOI: 10.1007/s00441-015-2253-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/03/2015] [Indexed: 12/13/2022]
|
7
|
Bruet V, Lieubeau B, Herve J, Roussel A, Imparato L, Desfontis JC, Bourdeau P. Increased numbers of peripheral blood CD34+ cells in dogs with canine atopic dermatitis. Vet Dermatol 2014; 26:160-4, e33. [PMID: 25537867 DOI: 10.1111/vde.12191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The bone marrow may be involved in human atopic diseases, as shown by the release of CD34+ cells into the peripheral blood. HYPOTHESIS/OBJECTIVES The aim was to determine the numbers of CD34+ cells in atopic dogs. ANIMALS The following three groups of dogs were studied: 27 dogs with nonfood-induced atopic dermatitis (NFICAD); 16 dogs with nonallergic inflammatory diseases; and 13 healthy control dogs. METHODS Dogs with NFICAD were selected after fulfilment of Favrot's criteria and exclusion of other pruritic dermatoses, including flea infestation and adverse reaction to foods. The Canine Atopic Dermatitis Extent and Severity Index (CADESI)-03 and a Visual Analog Scale (VAS) score for pruritus were used to quantify clinical signs. A phycoerythrin-conjugated anticanine CD34 antibody was used to stain peripheral blood CD34+ cells, and these were enumerated using a flow cytometer. The CD34+ cell counts were compared between groups and tested (in the NFICAD group) for correlation with the severity of clinical signs. RESULTS The numbers of peripheral CD34+ cells in dogs with NFICAD (median 1.7) were statistically higher than in dogs with other nonallergic inflammatory diseases (median 1.0; P = 0.01) and healthy control dogs (median 0.9; P = 0.009). In dogs with NFICAD, there was no correlation between CD34+ cell numbers and CADESI-03 scores or owner-assessed pruritus (VAS score). CONCLUSIONS AND CLINICAL IMPORTANCE The results of this study suggest the possible involvement of CD34+ cells in dogs with NFICAD. The role of CD34+ cells in the aetiopathogenesis of canine atopic dermatitis remains to be determined.
Collapse
Affiliation(s)
- Vincent Bruet
- Unité Dermatologie, Parasitologie, Mycologie, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France.,Unité de Pharmacologie Fonctionnelle et de Pathophysiologie Animale, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Blandine Lieubeau
- Unité d'Immuno-Endocrinologie Cellulaire et Moléculaire, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Julie Herve
- Unité d'Immuno-Endocrinologie Cellulaire et Moléculaire, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Anne Roussel
- Unité Dermatologie, Parasitologie, Mycologie, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Laëtitia Imparato
- Unité Dermatologie, Parasitologie, Mycologie, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Jean-Claude Desfontis
- Unité de Pharmacologie Fonctionnelle et de Pathophysiologie Animale, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| | - Patrick Bourdeau
- Unité Dermatologie, Parasitologie, Mycologie, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France.,Unité de Pharmacologie Fonctionnelle et de Pathophysiologie Animale, LUNAM, ONIRIS - Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, NANTES, Loire Atlantique, France
| |
Collapse
|
8
|
Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9:e96121. [PMID: 24769532 PMCID: PMC4000198 DOI: 10.1371/journal.pone.0096121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Collapse
Affiliation(s)
- Visar Qeska
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carola Urhausen
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
9
|
Qeska V, Baumgärtner W, Beineke A. Species-specific properties and translational aspects of canine dendritic cells. Vet Immunol Immunopathol 2013; 151:181-92. [DOI: 10.1016/j.vetimm.2012.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022]
|
10
|
Effect of IL-12 on canine dendritic cell maturation following differentiation induced by granulocyte-macrophage CSF and IL-4. Vet Immunol Immunopathol 2010; 137:322-6. [DOI: 10.1016/j.vetimm.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 12/21/2022]
|
11
|
Xiong W, Candolfi M, Liu C, Muhammad AKMG, Yagiz K, Puntel M, Moore PF, Avalos J, Young JD, Khan D, Donelson R, Pluhar GE, Ohlfest JR, Wawrowsky K, Lowenstein PR, Castro MG. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial. PLoS One 2010; 5:e11074. [PMID: 20552015 PMCID: PMC2884015 DOI: 10.1371/journal.pone.0011074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. METHODOLOGY/PRINCIPAL FINDINGS Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. CONCLUSIONS/SIGNIFICANCE These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.
Collapse
Affiliation(s)
- Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - A. K. M. Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter F. Moore
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Julie Avalos
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - John D. Young
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Dorothy Khan
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Randy Donelson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - G. Elizabeth Pluhar
- Department of Small Animal Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - John R. Ohlfest
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kolja Wawrowsky
- Department of Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ricklin Gutzwiller ME, Moulin HR, Zurbriggen A, Roosje P, Summerfield A. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells. Vet Res 2010; 41:40. [PMID: 20167201 PMCID: PMC2839791 DOI: 10.1051/vetres/2010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MΦ and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MΦ showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.
Collapse
|
13
|
Schütze N, Raue R, Büttner M, Alber G. Inactivated parapoxvirus ovis activates canine blood phagocytes and T lymphocytes. Vet Microbiol 2009; 137:260-7. [PMID: 19251383 DOI: 10.1016/j.vetmic.2009.01.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 12/24/2022]
Abstract
Inactivated parapoxvirus ovis (iPPVO) shows strong immunomodulatory activities in several species and is used in veterinary medicine as an immunostimulatory biological for the prevention and/or treatment of infectious diseases. In this study the immunostimulatory capacity of iPPVO on the innate immune system was investigated in vitro by the evaluation of induction of the oxidative burst and modulation of phagocytosis by canine blood leukocytes (polymorphonuclear cells and monocytes) of dogs. In addition, the activation of canine T lymphocytes was also studied. After stimulation with iPPVO the phagocytosis of FITC-labeled Listeria monocytogenes was increased in canine blood monocytes and neutrophils. Enhanced burst rates by canine monocytes stimulated with iPPVO were observed and the MHC-II expression on canine CD14+ monocytes was elevated following stimulation with iPPVO compared to the stabiliser control. Canine CD4+ T cells were activated for oligoclonal proliferation in response to iPPVO. This study shows that iPPVO is able to stimulate both phagocytotic and T-cell-dependent immune mechanisms in canine blood leukocytes.
Collapse
Affiliation(s)
- Nicole Schütze
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
14
|
Grandi G, Genchi C, Bazzocchi C, Mortarino M, Borghetti P, De Angelis E, Kramer LH. Generation and infection of bovine PBMC-derived dendritic cells with Neospora caninum. Vet Res Commun 2008; 32 Suppl 1:S207-9. [PMID: 18683066 DOI: 10.1007/s11259-008-9159-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- G Grandi
- Dipartimento di Produzioni Animali, Biotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti, Via del Taglio 8, Parma 43100, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mielcarek M, Kucera KA, Nash R, Torok-Storb B, McKenna HJ. Identification and characterization of canine dendritic cells generated in vivo. Biol Blood Marrow Transplant 2007; 13:1286-93. [PMID: 17950915 PMCID: PMC2185715 DOI: 10.1016/j.bbmt.2007.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
Abstract
Emerging evidence suggests that host dendritic cells (DC) initiate and regulate graft-versus-host and graft-versus-tumor reactions after allogeneic hematopoietic cell transplantation (HCT). Even though decades of experimentation in the preclinical canine HCT model have substantially improved our understanding of the biology and safety of HCT in human patients, the in vivo phenotype of potent antigen-presenting cells in dogs is poorly defined. Therefore, peripheral blood leukocytes were obtained from dogs treated with recombinant human Flt3-ligand and phenotypically distinct cell populations, including putative DC, were purified by 4-color flow-cytometry and tested for their stimulatory potential in allogeneic mixed lymphocyte cultures (MLC). Cells characterized by surface expression of CD11c and HLA-DR, and absence of expression of CD14 and DM5, a marker of mature granulocytes, were found to be highly potent stimulators in allogeneic MLC. In contrast, all other immunophenotypically different cell populations tested had either weak or absent allostimulatory potential. Transmission electron microscopy of CD11c+/HLA-DR+/CD14-/DM5- cells revealed the morphology similar to that described for DC in humans and ex vivo-generated canine DC, including long cytoplasmic extensions, discrete lysosomes, and an abundant Golgi apparatus and endoplasmatic reticulum. In summary, CD11c+/HLA-DR+/CD14-/DM5- cells obtained from canine peripheral blood have functional and morphologic characteristics similar to those of human myeloid DC.
Collapse
Affiliation(s)
- Marco Mielcarek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | |
Collapse
|
16
|
Wang YS, Chi KH, Chu RM. Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide- or tumor necrosis factor-alpha-induced maturation. Vet Immunol Immunopathol 2007; 118:186-98. [PMID: 17617471 DOI: 10.1016/j.vetimm.2007.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 12/13/2022]
Abstract
In response to exogenous as well as endogenous signals, dendritic cells (DC) undergo programmed maturation to become efficient, antigen-presenting cells and mediate innate and adaptive immune responses. Very little is known, however, about the differential maturation responses of canine DC to endogenous and exogenous stimuli, especially the concomitant events related to the specific expression of cytokine genes. Canine monocyte-derived immature DC (iDC) were treated with an exogenous signal, bacterial lipopolysaccharide (LPS), or an endogenous signal, tumor necrosis factor-alpha (TNF-alpha), to generate mature DC (mDC). The mDC generated from either stimuli were characterized by significant increases in the expression of surface molecules, including CD11c, MHC class II, CD80, CD83, and CD86. Using real-time reverse transcriptase polymerase chain reactions, the cytokine expression profiles generated by these two stimuli were studied. Compared with the iDC, the LPS-stimulated mDC exhibited a significantly increased expression of IL-1 beta, IL-10, IL-12p40, IL-13, and TNF-alpha. Using the mixed lymphocyte reaction and cytokine intracellular staining, it was shown that the array of cytokines from LPS-generated mDC contributed to T cell priming and T helper cell type 1 (Th1) polarization. TNF-alpha-generated mDC increased the expression of a distinctly different panel of cytokines, namely IL-2, IL-4, IL-12p40, IL-13, TNF-alpha, TGF-beta, IFN-gamma, and MCP-2, and shifted naïve T cell differentiation to T helper cell type 2 (Th2) polarization. IL-13 expression was dramatically increased in canine TNF-alpha-generated mDC, which does not occur in other mammalian species, including humans. Because IL-13 is functionally similar to IL-4, IL-13 may contribute to the observed Th2 polarization. Thus, canine DC maturing from different stimuli release different cytokine profiles that in turn promote different immune responses and activate innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu-Shan Wang
- Animal Cancer Research Center, Department of Veterinary Medicine, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC
| | | | | |
Collapse
|
17
|
van der Meer FJUM, Schuurman NMP, Egberink HF. Feline immunodeficiency virus infection is enhanced by feline bone marrow-derived dendritic cells. J Gen Virol 2007; 88:251-258. [PMID: 17170458 DOI: 10.1099/vir.0.82450-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the pathogenesis of feline immunodeficiency virus (FIV) infection, feline dendritic cells (feDCs) are thought to play an important role. As with DCs in other species, feDCs are believed to transport virus particles to lymph nodes and transfer them to lymphocytes. Our investigation has focused on the ability of feDCs to influence the infection of syngeneic peripheral blood mononuclear cells (PBMCs) and allogeneic thymocytes. feDCs were derived from bone marrow mononuclear cells that were cultured under the influence of feline interleukin-4 and feline granulocyte–macrophage colony-stimulating factor. By using these feDCs in co-culture with resting PBMCs, an upregulation of FIV replication was shown. An enhancement of FIV infection was also detected when co-cultures of feDCs/feline thymocytes were infected. To obtain this enhancement, direct contact of the cells in the co-culture was necessary; transwell cultures showed that the involvement of only soluble factors produced by feDCs in this process is not likely. These feDCs were also able to induce the proliferation of resting thymocytes, which might explain the enhanced FIV replication observed. Together, these data suggest that feDCs have abilities similar to those shown for simian and human DCs in the interaction with leukocytes. This system is suitable for further investigations of the interplay of DC and T cells during FIV infection in vitro.
Collapse
Affiliation(s)
- F J U M van der Meer
- Department of Immunology and Infectious Diseases, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - N M P Schuurman
- Department of Immunology and Infectious Diseases, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - H F Egberink
- Department of Immunology and Infectious Diseases, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
18
|
Wijewardana V, Sugiura K, Oichi T, Fujimoto M, Akazawa T, Hatoya S, Inaba M, Ikehara S, Jayaweera TSP, Inaba T. Generation of canine dendritic cells from peripheral blood monocytes without using purified cytokines. Vet Immunol Immunopathol 2006; 114:37-48. [PMID: 16904755 DOI: 10.1016/j.vetimm.2006.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/29/2006] [Accepted: 07/05/2006] [Indexed: 01/06/2023]
Abstract
Dendritic cells (DCs), which differentiate in vitro from peripheral blood monocytes (PBMOs) or bone marrow precursors, are a promising candidate for immunotherapy against cancer. The dog, which suffers common types of cancers along with humans, make an ideal large animal model for cancer studies. Monocyte-derived DCs in the dog have not been well characterized, however, since the appropriate condition for in vitro differentiation has not been established. To tackle this problem, we have developed a conditioned media by culturing T cells with immobilized anti-canine CD3 antibody, and sought to induce differentiation of DCs from PBMOs. When purified CD14+ PBMOs were cultured in the presence of 25% T cell conditioned medium (TCCM), the PBMOs increased size and had extended dendritic processes by day 12 of the culture. The cultured PBMOs were found to increase the expression of MHC class II and CD1a molecules, and significantly increased stimulatory activity for allogeneic T cells in the mixed leukocyte reaction. Moreover, the cells significantly increased their expression of IL-18 and IFN-gamma when stimulated with polyinosinic-polycytidylic acid (Poly (I:C)). The cells have a reduced phagocytic activity, which is a common defect in mature DCs. It follows from these results that TCCM does induce the differentiation of DCs from PBMOs.
Collapse
Affiliation(s)
- Viskam Wijewardana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai City, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sacchi L, Calvi LE, Kramer LH, Ferroglio E, Grandi G, Clementi E, Corona S. The Intradermal Leishmanin Reaction Induces Antigen-specific Maturation of Canine Dendritic Cells with Up-regulation of MHCII Synthesis and Expression. J Comp Pathol 2006; 135:17-24. [PMID: 16814802 DOI: 10.1016/j.jcpa.2006.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 02/21/2006] [Indexed: 11/29/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that reside in many tissues, including the skin. This study showed that intradermal injection of leishmanin in Leishmania infantum-infected dogs induced the "up-regulation" of surface MHCII expression, associated with progressive ultrastrucutural changes characteristic of DC maturation, including the formation of multilaminar MHC class II-containing compartments and arrays of tubulo-vesicular structures. These changes were not observed in control dogs from L. infantum non-endemic areas. The results indicated that canine DCs were effector cells in delayed-type hypersensitivity, that the leishmanin reaction was specific for a cell-mediated reaction to L. infantum in infected dogs, and that canine DCs possessed ultrastructural organelles reminiscent of those in activated human DCs.
Collapse
Affiliation(s)
- L Sacchi
- Department of Animal Biology, University of Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Isotani M, Katsuma K, Tamura K, Yamada M, Yagihara H, Azakami D, Ono K, Washizu T, Bonkobara M. Efficient Generation of Canine Bone Marrow-Derived Dendritic Cells. J Vet Med Sci 2006; 68:809-14. [PMID: 16953080 DOI: 10.1292/jvms.68.809] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.
Collapse
Affiliation(s)
- Mayu Isotani
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bonnefont-Rebeix C, de Carvalho CM, Bernaud J, Chabanne L, Marchal T, Rigal D. CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol 2005; 109:167-76. [PMID: 16202456 DOI: 10.1016/j.vetimm.2005.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 07/25/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
In this study, canine monocyte-derived dendritic cells (cMo-DC) were produced in presence of canine GM-CSF (cGM-CSF) and canine IL-4 (cIL-4), and they were characterized by their dendritic morphology, MLR functionality and phenotype. We noticed that cMo-DC were labelled with three anti-human CD86 (FUN-1, BU63 and IT2.2 clones), whereas resting and activated lymphocytes or monocytes were not stained. CD86 expression was induced by cIL-4 and was up-regulated during the differentiation of the cMo-DC, with a maximum at day 7. Furthermore, cMo-DC were very potent even in low numbers as stimulator cells in allogeneic MLR, and BU63 mAb was able to completely block the cMo-DC-induced proliferation in MLR. We also observed that cMo-DC highly expressed MHC Class II and CD32, but we failed to determine their maturation state since the lack of commercially available canine markers. Moreover, cMo-DC contained cytoplasmic periodic microstructures, potentially new ultrastructural markers of canine DC recently described. In conclusion, this work demonstrates that the CD86 costimulatory marker is now usable for a better characterization of in vitro canine DC.
Collapse
|