1
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
2
|
Fischbeck AJ, Ruehland S, Ettinger A, Paetzold K, Masouris I, Noessner E, Mendler AN. Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Front Oncol 2020; 10:589434. [PMID: 33364193 PMCID: PMC7753121 DOI: 10.3389/fonc.2020.589434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive T cell therapy (ACT) is highly effective in the treatment of hematologic malignancies, but shows limited success in solid tumors. Inactivation of T cells in the tumor milieu is a major hurdle to a wider application of ACT. Cytotoxicity is the most relevant activity for tumor eradication. Here, we document that cytotoxic T cells (CTL) in lactic acidosis exhibited strongly reduced tumor cell killing, which could be compensated partly by increasing the CTL to tumor cell ratio. Lactic acid intervened at multiple steps of the killing process. Lactic acid repressed the number of CTL that performed lytic granule exocytosis (degranulation) in tumor cell co-culture, and, additionally impaired the quality of the response, as judged by the reduced intensity of degranulation and lower secretion of cytotoxins (perforin, granzyme B, granzyme A). CTL in lactic acid switched to a low bioenergetic profile with an inability to metabolize glucose efficiently. They responded to anti-CD3 stimulation poorly with less extracellular acidification rate (ECAR). This might explain their repressed granule exocytosis activity. Using live cell imaging, we show that CTL in lactic acid have reduced motility, resulting in lower field coverage. Many CTL in lactic acidosis did not make contact with tumor cells; however, those which made contact, adhered to the tumor cell much longer than a CTL in normal medium. Reduced motility together with prolonged contact duration hinders serial killing, a defining feature of killing potency, but also locally confines cytotoxic activity, which helps to reduce the risk of collateral organ damage. These activities define lactic acid as a major signaling molecule able to orchestrate the spatial distribution of CTL inside inflamed tissue, such as cancer, as well as moderating their functional response. Lactic acid intervention and strategies to improve T cell metabolic fitness hold promise to improve the clinical efficacy of T cell–based cancer immunotherapy.
Collapse
Affiliation(s)
| | - Svenja Ruehland
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | - Ilias Masouris
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| | | | - Anna N Mendler
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
3
|
Frenkel D, Zhang F, Guirnalda P, Haynes C, Bockstal V, Radwanska M, Magez S, Black SJ. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathog 2016; 12:e1005733. [PMID: 27403737 PMCID: PMC4942092 DOI: 10.1371/journal.ppat.1005733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.
Collapse
Affiliation(s)
- Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Fengqiu Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Carole Haynes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
A Novel Method for Assessment of Natural Killer Cell Cytotoxicity Using Image Cytometry. PLoS One 2015; 10:e0141074. [PMID: 26492577 PMCID: PMC4619620 DOI: 10.1371/journal.pone.0141074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/04/2015] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells belong to the innate arm of the immune system and though activated NK cells can modulate immune responses through the secretion of cytokines, their primary effector function is through target cell lysis. Accordingly, cytotoxicity assays are central to studying NK cell function. The 51Chromium release assay, is the “gold standard” for cytotoxicity assay, however, due to concerns over toxicity associated with the use and disposal of radioactive compounds there is a significant interest in non-radioactive methods. We have previously used the calcein release assay as a non-radioactive alternative for studying NK cell cytotoxicity. In this study, we show that the calcein release assay varies in its dynamic range for different tumor targets, and that the entrapped calcein could remain unreleased within apoptotic bodies of lysed tumor targets or incompletely released resulting in underestimation of percent specific lysis. To overcome these limitations, we developed a novel cytotoxicity assay using the Cellometer Vision Image Cytometer and compared this method to standard calcein release assay for measuring NK cell cytotoxicity. Using tumor lines K562, 721.221, and Jurkat, we demonstrate here that image cytometry shows significantly higher percent specific lysis of the target cells compared to the standard calcein release assay within the same experimental setup. Image cytometry is able to accurately analyze live target cells by excluding dimmer cells and smaller apoptotic bodies from viable target cell counts. The image cytometry-based cytotoxicity assay is a simple, direct and sensitive method and is an appealing option for routine cytotoxicity assay.
Collapse
|
5
|
Abstract
Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.
Collapse
|
6
|
Mbitikon-Kobo FM, Bonneville M, Sekaly RP, Trautmann L. Ex vivo measurement of the cytotoxic capacity of human primary antigen-specific CD8 T cells. J Immunol Methods 2011; 375:252-7. [PMID: 21996428 DOI: 10.1016/j.jim.2011.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/02/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The major function of CD8 T cells is to kill specifically target cells. Moreover in certain incurable diseases, antigen-specific human CD8 T cells are impaired, and assessment of their cytolytic activity could bring insights into their physiopathological role and ways to restore immune dysfunctions for immunotherapeutic purposes. Despite this, T cell cytolytic function has been seldom analyzed thoroughly in humans, due to the lack of approaches well suited for ex vivo assessment of T cell cytotoxicity. Current techniques require prior in vitro expansion of antigen-specific CD8 T cell populations and the use of immortalized cells as targets to measure the cell-mediated killing. Furthermore, bulk cytotoxic activity is frequently measured using percentage of specific lysis calculations that do not quantify actual target cell death and effector numbers at the single cell level. Here we established a new flow cytometry-based assay that allows accurate single-cell analysis of cytotoxic capacity of primary antigen-specific CD8 T cells generated in vivo in humans after antigenic exposure without in vitro amplification that can be used for specificities restricted by different HLAs as target cells are autologous cells. We show that this assay is robust, highly sensitive irrespective of the frequency of antigen-specific CD8 T cells, and allows accurate calculation of the index of cytotoxic capacity in lytic units. This new assay provides a sensitive method to measure the intrinsic cytotoxic activity of antigen-specific CD8 T cells directly ex vivo on human primary cells.
Collapse
|
7
|
Nunes CT, Miners KL, Dolton G, Pepper C, Fegan C, Mason MD, Man S. A novel tumor antigen derived from enhanced degradation of bax protein in human cancers. Cancer Res 2011; 71:5435-44. [PMID: 21697278 DOI: 10.1158/0008-5472.can-11-0393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells frequently exhibit defects in apoptosis, which contribute to increased survival and chemotherapeutic resistance. For example, genetic mutations or abnormal proteasomal degradation can reduce expression of Bax which limits apoptosis. In cancers where abnormal proteasomal degradation of Bax occurs, we hypothesized that Bax peptides that bind to human leukocyte antigen (HLA) class I molecules would be generated for presentation to CD8(+) T cells. To test this hypothesis, we generated T cells against pooled Bax peptides, using the blood of healthy human donors. Although T-cell responses were of low frequency (0.15%), a CD8(+) T-cell clone (KSIVB17) was isolated that optimally recognized Bax(136-144) peptide (IMGWTLDFL) presented by HLA-A*0201. KSIVB17 was able to recognize and kill a variety of HLA-matched cancer cells including primary tumor cells from chronic lymphocytic leukemia (CLL). No reactivity was seen against HLA-matched, nontransformed cells such as PHA blasts and skin fibroblasts. Furthermore, KSIVB17 reactivity corresponded with the proteasomal degradation patterns of Bax protein observed in cancer cells. Taken together, our findings suggest a new concept for tumor antigens based on regulatory proteins that are ubiquitously expressed in normal cells, but that have abnormally enhanced degradation in cancer cells. Bax degradation products offer candidate immune antigens in cancers such as CLL in which increased Bax degradation correlates with poor clinical prognosis.
Collapse
Affiliation(s)
- Cláudia Trindade Nunes
- Departments of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Håkansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML. Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res 2011; 17:3064-76. [PMID: 21558394 DOI: 10.1158/1078-0432.ccr-10-2234] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To facilitate development of innovative immunotherapy approaches, especially for treatment concepts exploiting the potential benefits of personalized therapy, there is a need to develop and validate tools to identify patients who can benefit from immunotherapy. Despite substantial effort, we do not yet know which parameters of antitumor immunity to measure and which assays are optimal for those measurements. EXPERIMENTAL DESIGN The iSBTc-SITC (International Society for Biological Therapy of Cancer-Society for Immunotherapy of Cancer), FDA (Food and Drug Administration), and NCI (National Cancer Institute) partnered to address these issues for immunotherapy of cancer. Here, we review the major challenges, give examples of approaches and solutions, and present our recommendations. RESULTS AND CONCLUSIONS Although specific immune parameters and assays are not yet validated, we recommend following standardized (accurate, precise, and reproducible) protocols and use of functional assays for the primary immunologic readouts of a trial; consideration of central laboratories for immune monitoring of large, multi-institutional trials; and standardized testing of several phenotypic and functional potential potency assays specific to any cellular product. When reporting results, the full QA (quality assessment)/QC (quality control) should be conducted and selected examples of truly representative raw data and assay performance characteristics should be included. Finally, to promote broader analysis of multiple aspects of immunity, and gather data on variability, we recommend that in addition to cells and serum, RNA and DNA samples be banked (under standardized conditions) for later testing. We also recommend that sufficient blood be drawn to allow for planned testing of the primary hypothesis being addressed in the trial, and that additional baseline and posttreatment blood is banked for testing novel hypotheses (or generating new hypotheses) that arise in the field.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination. J Biomed Biotechnol 2010; 2011:452606. [PMID: 21113290 PMCID: PMC2989374 DOI: 10.1155/2011/452606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Collapse
|
10
|
Wu S, Jin L, Vence L, Radvanyi LG. Development and application of 'phosphoflow' as a tool for immunomonitoring. Expert Rev Vaccines 2010; 9:631-43. [PMID: 20518718 DOI: 10.1586/erv.10.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has revolutionized our ability to monitor immune responses by allowing us to simultaneously track a variety of cell surface and intracellular markers in discrete cell subsets in a highly sensitive and reproducible manner. This is especially critical in this new era of vaccinology trying to tackle the growing problems of chronic viral infections and cancer that not only evade host immune responses, but can negatively manipulate vaccine-induced immune responses. Thus, understanding how lymphocyte signaling is altered under normal and pathological conditions has become more critical. Over the last decade, a new flow cytometry technology called 'phosphoflow' (also sometimes called 'phosflow'), is rapidly developing for tracking multiple intracellular signaling molecules in the immune system at a single-cell level. Antibodies and reagents for tracking both tyrosine-phosphorylated and serine/threonine-phosphorylated signaling intermediaries in key immune signaling pathways have been developed, and phosphoflow is now starting to be applied to a wide variety of both preclinical and clinical studies on lymphocyte responses, as well as the functioning of cancer cells and virally infected cells. Here, we review the development of phosphoflow technology, its modern applications in the field of immunomonitoring and its current limitations. We then provide a perspective on the future of phosphoflow and a vision of how it can be applied to emerging critical questions in human vaccinology and public health.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
11
|
Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 2010; 59:1685-96. [PMID: 20652244 DOI: 10.1007/s00262-010-0895-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.
Collapse
|
12
|
Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines 2010; 9:601-16. [PMID: 20518716 PMCID: PMC2911950 DOI: 10.1586/erv.10.49] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The exact immunologic responses after vaccination that result in effective antitumor immunity have not yet been fully elucidated and the data from ex vivo T-cell assays have not yet defined adequate surrogate markers for clinical efficacy. A more detailed knowledge of the specific immune responses that correlate with positive clinical outcomes should help to develop better or novel strategies to effectively activate the immune system against tumors. Furthermore, clinically relevant material is often limited and, thus, precludes the ability to perform multiple assays. The two main assays currently used to monitor lymphocyte-mediated cytoxicity in cancer patients are the (51)Cr-release assay and IFN-gamma ELISpot assay. The former has a number of disadvantages, including low sensitivity, poor labeling and high spontaneous release of isotope from some tumor target cells. Additional problems with the (51)Cr-release assay include difficulty in obtaining autologous tumor targets, and biohazard and disposal problems for the isotope. The ELISpot assays do not directly measure cytotoxic activity and are, therefore, a surrogate marker of cyotoxic capacity of effector T cells. Furthermore, they do not assess cytotoxicity mediated by the production of the TNF family of death ligands by the cytotoxic cells. Therefore, assays that allow for the simultaneous measurement of several parameters may be more advantageous for clinical monitoring. In this respect, multifactor flow cytometry-based assays are a valid addition to the currently available immunologic monitoring assays. Use of these assays will enable detection and enumeration of tumor-specific cytotoxic T lymphocytes and their specific effector functions and any correlations with clinical responses. Comprehensive, multifactor analysis of effector cell responses after vaccination may help to detect factors that determine the success or failure of a vaccine and its immunological potency.
Collapse
Affiliation(s)
- Liubov Zaritskaya
- Applied and Developmental Research Support Program, SAIC-Frederick,
Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh
Medical Center, Pittsburgh, PA, USA
| | - Thomas J Sayers
- Cancer and Inflammation Program, SAIC-Frederick, Inc., National
Cancer Institute at Frederick, Frederick, MD, USA
| | - Anatoli M Malyguine
- Applied and Developmental Research Support Program, SAIC-Frederick,
Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
13
|
Abstract
Flow cytometry has become an essential research tool because of the increase in the number of its {applications.} The development of an increasing number of monoclonal antibodies (mAbs) and fluorochromes, and of instruments capable of multicolor detection, allows the acquisition of a large amount of phenotypic and functional information in a single assay. In addition, flow-cytometry techniques have overcome critical problems of conventional assays, such as the use of radioactive reagents to assess proliferation and cytotoxicity of virus-specific T cells. Here, we provide both an overview of available techniques as well as standard protocols that have proven valuable in the assessment of HCV-specific T-cell responses.
Collapse
|
14
|
Lochmatter P, Zawodniak A, Pichler WJ. In Vitro Tests in Drug Hypersensitivity Diagnosis. Immunol Allergy Clin North Am 2009; 29:537-54. [DOI: 10.1016/j.iac.2009.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Touvrey C, Derré L, Devevre E, Corthesy P, Romero P, Rufer N, Speiser DE. Dominant human CD8 T cell clonotypes persist simultaneously as memory and effector cells in memory phase. THE JOURNAL OF IMMUNOLOGY 2009; 182:6718-26. [PMID: 19454666 DOI: 10.4049/jimmunol.0803095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptive immune system plays a critical role in protection at the time of secondary infection. It does so through the rapid and robust reactivation of memory T cells which are maintained long-term, in a phenotypically heterogeneous state, following their primary encounter with Ag. Although most HLA-A*0201/influenza matrix protein(58-66)-specific CD8 T cells from healthy donors display characteristics typical of memory T cells, through our extensive phenotypic analysis we have further shown that up to 20% of these cells express neither the IL-7 receptor CD127 nor the costimulatory molecule CD28. In contrast to the majority of CD28(pos) cells, granzyme B and perforin were frequently expressed by the CD28(neg) cells, suggesting that they are effector cells. Indeed, these cells were able to kill target cells, in an Ag-specific manner, directly ex vivo. Thus, our findings demonstrate the remarkable long-term persistence in healthy humans of not only influenza-specific memory cells, but also of effector T cells. We further observed that granzyme B expression in influenza-specific CD8 T cells paralleled levels in the total CD8 T cell population, suggestive of Ag-nonspecific bystander activation. Sequencing of TCR alpha- and beta-chains showed that the TCR repertoire specific for this epitope was dominated by one, or a few, T cell clonotype per healthy donor. Moreover, our sequencing analysis revealed, for the first time in humans, that identical clonotypes can coexist as both memory and effector T cells, thereby supporting the principle of multipotent clonotypic differentiation.
Collapse
Affiliation(s)
- Cédric Touvrey
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Britten CM, Gouttefangeas C, Welters MJP, Pawelec G, Koch S, Ottensmeier C, Mander A, Walter S, Paschen A, Müller-Berghaus J, Haas I, Mackensen A, Køllgaard T, thor Straten P, Schmitt M, Giannopoulos K, Maier R, Veelken H, Bertinetti C, Konur A, Huber C, Stevanović S, Wölfel T, van der Burg SH. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 2008; 57:289-302. [PMID: 17721783 PMCID: PMC2150627 DOI: 10.1007/s00262-007-0378-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/17/2007] [Indexed: 01/08/2023]
Abstract
The interpretation of the results obtained from immunomonitoring of clinical trials is a difficult task due to the variety of methods and protocols available to detect vaccine-specific T-cell responses. This heterogeneity as well as the lack of standards has led to significant scepticism towards published results. In February 2005, a working group was therefore founded under the aegis of the Association for Immunotherapy of Cancer ("CIMT") in order to compare techniques and protocols applied for the enumeration of antigen-specific T-cell responses. Here we present the results from two consecutive phases of an international inter-laboratory testing project referred to as the "CIMT monitoring panel". A total of 13 centers from six European countries participated in the study in which pre-tested PBMC samples, synthetic peptides and PE-conjugated HLA-tetramers were prepared centrally and distributed to participants. All were asked to determine the number of antigen-specific T-cells in each sample using tetramer staining and one functional assay. The results of the first testing round revealed that the total number of cells analyzed was the most important determinant for the sensitive detection of antigen-specific CD8(+) T-cells by tetramer staining. Analysis by ELISPOT was influenced by a combination of cell number and a resting phase after thawing of peripheral blood mononuclear cells. Therefore, the experiments were repeated in a second phase but now the participants were asked to change their protocols according to the new guidelines distilled from the results of the first phase. The recommendations improved the number of antigen-specific T-cell responses that were detected and decreased the variability between the laboratories. We conclude that a two-step approach in inter-laboratory testing allows the identification of distinct variables that influence the sensitivity of different T-cell assays and to formally show that a defined correction to the protocols successfully increases the sensitivity and reduces the inter-center variability. Such "two-step" inter-laboratory projects could define rational bases for accepted international guidelines and thereby lead to the harmonization of the techniques used for immune monitoring.
Collapse
Affiliation(s)
- C. M. Britten
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - C. Gouttefangeas
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - M. J. P. Welters
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - G. Pawelec
- Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - S. Koch
- Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - C. Ottensmeier
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - A. Mander
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - S. Walter
- Immatics Biotechnologies, Tuebingen, Germany
| | - A. Paschen
- Skin Cancer Unit of the German Cancer Research Centre, University Clinics of Mannheim, Mannheim, Germany
| | | | - I. Haas
- Department of Haematology and Oncology, University of Regensburg, Regensburg, Germany
| | - A. Mackensen
- Department of Haematology and Oncology, University of Regensburg, Regensburg, Germany
| | - T. Køllgaard
- Department of Haematology, Centre for Cancer Immune Therapy, Herlev, Denmark
| | - P. thor Straten
- Department of Haematology, Centre for Cancer Immune Therapy, Herlev, Denmark
| | - M. Schmitt
- Third Department of Internal Medicine, University of Ulm, Ulm, Germany
| | - K. Giannopoulos
- Clinical Immunology Department, Medical University of Lublin, Lublin, Poland
| | - R. Maier
- Research Department, Kantonal Hospital St Gallen, St Gallen, Switzerland
| | - H. Veelken
- Department of Haematology and Oncology, Freiburg University Medical Centre, Freiburg, Germany
| | - C. Bertinetti
- Department of Haematology and Oncology, Freiburg University Medical Centre, Freiburg, Germany
| | - A. Konur
- Third Medical Department, University Mainz, Mainz, Germany
| | - C. Huber
- Third Medical Department, University Mainz, Mainz, Germany
| | - S. Stevanović
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - T. Wölfel
- Third Medical Department, University Mainz, Mainz, Germany
| | - S. H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Derré L, Bruyninx M, Baumgaertner P, Devevre E, Corthesy P, Touvrey C, Mahnke YD, Pircher H, Voelter V, Romero P, Speiser DE, Rufer N. In Vivo Persistence of Codominant Human CD8+ T Cell Clonotypes Is Not Limited by Replicative Senescence or Functional Alteration. THE JOURNAL OF IMMUNOLOGY 2007; 179:2368-79. [PMID: 17675498 DOI: 10.4049/jimmunol.179.4.2368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T cell responses to viral epitopes are often composed of a small number of codominant clonotypes. In this study, we show that tumor Ag-specific T cells can behave similarly. In a melanoma patient with a long lasting HLA-A2/NY-ESO-1-specific T cell response, reaching 10% of circulating CD8 T cells, we identified nine codominant clonotypes characterized by individual TCRs. These clonotypes made up almost the entire pool of highly differentiated effector cells, but only a fraction of the small pool of less differentiated "memory" cells, suggesting that the latter serve to maintain effector cells. The different clonotypes displayed full effector function and expressed TCRs with similar functional avidity. Nevertheless, some clonotypes increased, whereas others declined in numbers over the observation period of 6 years. One clonotype disappeared from circulating blood, but without preceding critical telomere shortening. In turn, clonotypes with increasing frequency had accelerated telomere shortening, correlating with strong in vivo proliferation. Interestingly, the final prevalence of the different T cell clonotypes in circulation was anticipated in a metastatic lymph node withdrawn 2 years earlier, suggesting in vivo clonotype selection driven by metastases. Together, these data provide novel insight in long term in vivo persistence of T cell clonotypes associated with continued cell turnover but not replicative senescence or functional alteration.
Collapse
Affiliation(s)
- Laurent Derré
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barbey C, Baumgaertner P, Devevre E, Rubio-Godoy V, Derre L, Bricard G, Guillaume P, Luescher IF, Liénard D, Cerottini JC, Romero P, Rufer N, Speiser DE. IL-12 controls cytotoxicity of a novel subset of self-antigen-specific human CD28+ cytolytic T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:3566-74. [PMID: 17339453 DOI: 10.4049/jimmunol.178.6.3566] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activated CD8 T cells develop cytotoxicity against autologous cells bearing foreign Ags and self/tumor Ags. However, self-specific cytolysis needs to be kept under control to avoid overwhelming immunopathology. After peptide vaccination of melanoma patients, we studied molecular and functional properties of T cell subsets specific for the self/tumor Ag Melan-A/MART-1. Ex vivo analysis revealed three Ag-specific effector memory (EM) populations, as follows: CD28-negative EM (EM28(-)) T cells strongly expressing granzyme/perforin, and two EM28(+) subsets, one with high and the other with low level expression of these cytotoxic proteins. For further functional characterization, we generated 117 stable CD8 T cell clones by ex vivo flow cytometry-based sorting of these subsets. All EM28(-)-derived clones lysed target cells with high efficacy. In contrast, EM28(+)-derived clones were heterogenous, and could be classified in two groups, one with high and the other with low killing capacity, correlating with granzyme/perforin expression. High and low killer phenotypes remained surprisingly stable for several months. However, strongly increased granzyme expression and cytotoxicity were observed after exposure to IL-12. Thus, the data reveal a newly identified subset of CD28(+) conditional killer T cells. Because CD28 can mediate strong costimulatory signals, tight cytotoxicity control, as shown in this study through IL-12, may be particularly important for subsets of T cells expressing CD28.
Collapse
Affiliation(s)
- Catherine Barbey
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Centre Hospitalier Universitaire Vaudois, Avenue Pierre-Decker 4, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu J, Roederer M. Differential susceptibility of leukocyte subsets to cytotoxic T cell killing: Implications for HIV immunopathogenesis. Cytometry A 2007; 71:94-104. [PMID: 17200952 DOI: 10.1002/cyto.a.20363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cytotoxic T lymphocytes (CTL) are crucial for the host defense against viral infection. In many cases, this anti-viral immune response contributes to host pathogenesis, through inflammation and tissue destruction. Few studies have explored the relative susceptibility of infected cells to CTL killing, and the range of cell types that may be effectively killed by CTLs in vivo, both of which are key to understanding both immune control of infection and immune-related pathogenesis. METHODS We developed and optimized a highly sensitive method to quantify the relative susceptibility of leukocyte subsets to CTL-mediated killing. Maximal sensitivity was achieved by uniquely measuring cell death occurring during the assay culture. RESULTS We found that leukocyte subsets have a wide range of susceptibility to antigen-specific CTL-mediated lysis. Generally, T cells were more susceptible than B or NK cells, with CD4 T cells being more susceptible than CD8 T cells. In all lymphocyte lineages, susceptibility was greater for more differentiated subsets compared with their naïve counterparts; however, for dendritic cells, immature cells are more susceptible than mature cells. We focused on the susceptibility of T cell subsets, and found that naïve cells are far more resistant than memory cells, and in particular, CCR5+ or HLA-DR+ memory cells are highly susceptible to CTL-mediated killing. CONCLUSIONS These results provide an explanation for the observation that certain subsets of CD4 T cells are ablated during chronic HIV infection, and indicate which subsets are most likely to contain the persistent viral reservoir.
Collapse
Affiliation(s)
- Jie Liu
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20895, USA
| | | |
Collapse
|
20
|
Karbach J, Gnjatic S, Pauligk C, Bender A, Maeurer M, Schultze JL, Nadler K, Wahle C, Knuth A, Old LJ, Jäger E. Tumor-reactive CD8+ T-cell clones in patients after NY-ESO-1 peptide vaccination. Int J Cancer 2007; 121:2042-2048. [PMID: 17640060 DOI: 10.1002/ijc.22957] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major objective of peptide vaccination is the induction of tumor-reactive CD8+ T-cells. We have shown that HLA-A2 positive cancer patients frequently develop an antigen-specific CD8+ T-cell response after vaccination with NY-ESO-1 peptides p157-165/p157-167. These T-cells are highly reactive with the peptides used for vaccination, but only rarely recognize HLA-matched, NY-ESO-1 expressing tumor cell lines. To address the apparent lack of tumor recognition of vaccine-induced CD8+ T-cell responses, we used autologous tumor cells for in vitro stimulation and expansion of pre- and postvaccine CD8+ T-cells. In contrast to standard presensitization methods with peptide-pulsed antigen-presenting cells, mixed lymphocyte tumor culture favored the selective expansion of low-frequency tumor-reactive T-cells. In four patients, we were able to demonstrate that antigen-specific and tumor-reactive T-cells are detectable and are indeed elicited as a result of NY-ESO-1 peptide vaccination. Further analyses of postvaccine antigen-specific T-cells at a clonal level show that vaccine-induced antigen-specific T-cells are heterogeneous in functional activity. These results suggest that the methods of immunomonitoring are critical to identify the proportion of tumor-reactive T-cells within the population of vaccine-induced antigen-specific effector cells. Our results show that immunization with NY-ESO-1 peptides leads to strong tumor-reactive CD8+ T-cell responses. Our findings suggest that approaches to peptide vaccination may be improved to induce higher numbers of antigen-specific T-cells and to selectively increase the proportion of CD8+ T-cells that have the capacity to recognize and eliminate tumor cells.
Collapse
Affiliation(s)
- Julia Karbach
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, NY
| | - Claudia Pauligk
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Armin Bender
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Markus Maeurer
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Solna, Sweden
| | - Joachim L Schultze
- Molekulare Tumorbiologie und Tumorimmunologie, Klinik I für Innere Medizin, Klinikum der Universität zu Köln, Germany
| | - Kerstin Nadler
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Wahle
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alexander Knuth
- Klinik und Poliklinik für Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Lloyd J Old
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, NY
| | - Elke Jäger
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
21
|
Abstract
The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.
Collapse
Affiliation(s)
- Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Lausanne, Switzerland
| | | | | |
Collapse
|