1
|
Taciak B, Grochowska A, Górczak M, Górka E, Skorzynski M, Białasek M, Rygiel TP, Król M. Unveiling the Phenotypic Variability of Macrophages: Insights from Donor Diversity and Pooling Strategies. Int J Mol Sci 2025; 26:1272. [PMID: 39941039 PMCID: PMC11818227 DOI: 10.3390/ijms26031272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Macrophages are key players in inflammation and immune responses due to their phenotypic plasticity. This study examined the effects of pooling donor-derived macrophages on their phenotype and function, focusing on murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages (hMDMs). Murine BMDMs were generated using L929-conditioned media and compared across single and pooled donors (two-to-five mice). Similarly, hMDMs cultured with M-CSF from individual donors were compared to pooled cultures. Pooling macrophages did not alter core phenotypic markers (CD11b, F4/80, CD64) or functional outputs such as cytokine secretion and nitric oxide production. In hMDMs, pooling reduced variability and led to slightly elevated or more-uniform marker expression. These findings demonstrate that pooling macrophages minimizes inter-individual variability without compromising cellular stability or function, enhancing reproducibility in immunological research while maintaining the option of single-donor studies for personalized analyses.
Collapse
Affiliation(s)
- Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| | - Agnieszka Grochowska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| | - Emilia Górka
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (T.P.R.)
| | - Maciej Białasek
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| | - Tomasz P. Rygiel
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (T.P.R.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.T.); (A.G.); (M.G.); (E.G.); (M.B.)
| |
Collapse
|
2
|
Chin J, Abeydeera N, Repasy T, Rivera-Lugo R, Mitchell G, Nguyen VQ, Zheng W, Richards A, Swaney DL, Krogan NJ, Ernst JD, Cox JS, Budzik JM. Tax1bp1 enhances bacterial virulence and promotes inflammatory responses during Mycobacterium tuberculosis infection of alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628616. [PMID: 39763950 PMCID: PMC11702572 DOI: 10.1101/2024.12.16.628616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. Mycobacterium tuberculosis (Mtb) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during Mtb infection and the variation of the response in different macrophage subtypes remain obscure. Here, we show that the autophagy receptor Tax1bp1 plays a critical role in enhancing inflammatory cytokine production and increasing the susceptibility of mice to Mtb infection. Surprisingly, although Tax1bp1 restricts Mtb growth during infection of bone marrow-derived macrophages (BMDMs) (Budzik et al. 2020) and terminates cytokine production in response to cytokine stimulation or viral infection, Tax1bp1 instead promotes Mtb growth in AMs, neutrophils, and a subset of recruited monocyte-derived cells from the bone marrow. Tax1bp1 also leads to increases in bacterial growth and inflammatory responses during infection of mice with Listeria monocytogenes, an intracellular pathogen that is not effectively targeted to canonical autophagy. In Mtb-infected AMs but not BMDMs, Tax1bp1 enhances necrotic-like cell death early after infection, reprogramming the mode of host cell death to favor Mtb replication in AMs. Tax1bp1's impact on host cell death is a mechanism that explains Tax1bp1's cell type-specific role in the control of Mtb growth. Similar to Tax1bp1-deficiency in AMs, the expression of phosphosite-deficient Tax1bp1 restricts Mtb growth. Together, these results show that Tax1bp1 plays a crucial role in linking the regulation of autophagy, cell death, and pro-inflammatory host responses and enhancing susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Jeffrey Chin
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Abeydeera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Seattle Children's Hospital, Seattle, WA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Open Innovation at Global Health Disease Area for Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vinh Q Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Weihao Zheng
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joel D Ernst
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan M Budzik
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Guzylack-Piriou L, Gausseres B, Tasca C, Hassel C, Tabouret G, Foucras G. A loss of function mutation in SOCS2 results in increased inflammatory response of macrophages to TLR ligands and Staphylococcus aureus. Front Immunol 2024; 15:1397330. [PMID: 39185412 PMCID: PMC11341364 DOI: 10.3389/fimmu.2024.1397330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction The role of suppressor of cytokine signaling (SOCS)2 in anti-infective bacterial immunity has been poorly investigated compared to other members of the SOCS family. Methods We characterized the previously identified loss of function R96C point mutation of SOCS2 using a genome-edited mouse model that resumes the phenotype of Socs2 knockout mice. The response of macrophages to TLR-ligands and Staphylococcus aureus was examined. Results and discussion Conversely to previously published data using human monocyte-derived macrophages, the stimulation of bone-marrow-derived macrophages with various TLR ligands did not show any difference according to the SOCS2 variant. Upregulation of IL-6 and TNF-α pro-inflammatory cytokines production was only seen when the SOCS2 expression was promoted by the culture of macrophages in the presence of GM-CSF. Furthermore, we showed that the SOCS2 point mutation is associated with heightened STAT5 phosphorylation in a short time frame upon GM-CSF incubation. In mice, recruitment of neutrophil and F4/80int Ly6C+ inflammatory macrophage, as well as IFN-γ and IL-10 concentrations, are significantly increased upon S. aureus peritoneal infection. Altogether, these data support the idea that by lowering the pro-inflammatory environment, SOCS2 favors better control of bacterial burden during a systemic infection caused by S. aureus.
Collapse
|
4
|
Petrina M, Alothaimeen T, Bouzeineddine NZ, Trus E, Banete A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor exerts dominant effects over macrophage colony stimulating factor during macrophage differentiation in vitro to induce an inflammatory phenotype. Inflamm Res 2024; 73:253-262. [PMID: 38158446 DOI: 10.1007/s00011-023-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Macrophages (Mφ) can exist along a spectrum of phenotypes that include pro-inflammatory (M1) or anti-inflammatory (M2) immune cells. Mφ colony stimulating factor (M-CSF) and granulocyte Mφ colony stimulating factor (GM-CSF) are cytokines important in hematopoiesis, polarization and activation of Mφ. METHODS AND RESULTS To gain a greater understanding of the relationship between GM-CSF and M-CSF, we investigated an in vitro model of differentiation to determine if GM-CSF and M-CSF can antagonize each other, in terms of Mφ phenotype and functions. We determined that Mφ cultured in mixed M-CSF: GM-CSF ratios exhibit M1-like GM-CSF-treated macrophage phenotype when the ratios of the two cytokines are 1:1 in culture. Moreover, GM-CSF is dominant over M-CSF in influencing Mφ production of proinflammatory cytokines such as IL-6, TNFα, and IL-12p40, and the anti-inflammatory cytokine IL-10. CONCLUSIONS Our data established that GM-CSF is more dominant over M-CSF, triggering the Mφ to become pro-inflammatory cells. These findings provide insight into how GM-CSF can influence Mφ activation with implications in inflammatory diseases where the Mφ status can play a significant role in supporting the inflammatory conditions.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
5
|
Unilateral Sciatic Nerve Crush Induces White Blood Cell Infiltration of the Contralateral Nerve. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1101383. [PMID: 35392148 PMCID: PMC8983237 DOI: 10.1155/2022/1101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Nerve injury leads to the accumulation of white blood cells derived from the bone marrow in the lesioned nerve, but it is still unknown whether there are similar responses in unlesioned nerves. To address this question, sciatic nerves of mice expressing enhanced green fluorescent protein (EGFP) in their bone marrow were crushed unilaterally to observe the invasion of bone marrow-derived cells into the contralateral unlesioned nerve. Two days after surgery, EGFP+ cells began to infiltrate both the damaged and undamaged nerves. These cells gradually amplified to the highest point within 14 days and slowly lowered. In ipsilateral (lesioned) and contralateral (unlesioned) nerves, the time course of infiltration of EGFP+ cells was similar, but the magnitude was much less for the unlesioned one. Through CD68 staining, some cells were identified as macrophages. Transmission electron microscopy revealed slight demyelination and phagocytosing macrophages in the contralateral nerve. The data showed that infiltration by white blood cells is a response to nerve injury, even in uninjured nerves.
Collapse
|
6
|
Jackson MA, Patel SS, Yu F, Cottam MA, Glass EB, Hoogenboezem EN, Fletcher RB, Dollinger BR, Patil P, Liu DD, Kelly IB, Bedingfield SK, King AR, Miles RE, Hasty AM, Giorgio TD, Duvall CL. Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers. Biomaterials 2021; 268:120528. [PMID: 33285438 PMCID: PMC7856291 DOI: 10.1016/j.biomaterials.2020.120528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
This work establishes that Kupffer cell release of platelet activating factor (PAF), a lipidic molecule with pro-inflammatory and vasoactive signaling properties, dictates dose-limiting siRNA nanocarrier-associated toxicities. High-dose intravenous injection of siRNA-polymer nano-polyplexes (si-NPs) elicited acute, shock-like symptoms in mice, associated with increased plasma PAF and consequently reduced PAF acetylhydrolase (PAF-AH) activity. These symptoms were completely prevented by prophylactic PAF receptor inhibition or Kupffer cell depletion. Assessment of varied si-NP chemistries confirmed that toxicity level correlated to relative uptake of the carrier by liver Kupffer cells and that this toxicity mechanism is dependent on carrier endosome disruptive function. 4T1 tumor-bearing mice, which exhibit increased circulating leukocytes, displayed greater sensitivity to these toxicities. PAF-mediated toxicities were generalizable to commercial delivery reagent in vivo-jetPEI® and an MC3 lipid formulation matched to an FDA-approved nanomedicine. These collective results establish Kupffer cell release of PAF as a key mediator of siRNA nanocarrier toxicity and identify PAFR inhibition as an effective strategy to increase siRNA nanocarrier tolerated dose.
Collapse
Affiliation(s)
- Meredith A Jackson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Shrusti S Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Danielle D Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Isom B Kelly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Allyson R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Rachel E Miles
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alyssa M Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
7
|
Abstract
Macrophages are professional innate immune cells that are broadly disseminated throughout the body, shape various innate and adaptive immune responses, and play crucial roles in inflammation, homeostasis, wound healing, and tissue remodelling. According to their surrounding microenvironments, macrophages can differentiate themselves in different phenotypes. Over the last two decades, gene expression profiling has been used to decipher new transcripts associated with macrophage phenotypes. This chapter outlines protocols used to isolate and culture murine macrophages and how they can be "polarized" to obtain a specific phenotype. Furthermore, we describe a protocol for gene expression profiling using a quantitative real-time polymerase chain reaction (qPCR), a high-standard technology in the field of gene expression.
Collapse
|
8
|
Trus E, Basta S, Gee K. Who's in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization. Cytokine 2019; 127:154939. [PMID: 31786501 DOI: 10.1016/j.cyto.2019.154939] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Collapse
Affiliation(s)
- Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
9
|
Abstract
Measuring cholesterol efflux involves the tracking of cholesterol movement out of cells. Cholesterol efflux is an essential mechanism to maintain cellular cholesterol homeostasis, and this process is largely regulated via the LXR transcription factors and their regulated genes, the ATP-binding cassette (ABC) cholesterol transporters ABCA1 and ABCG1. Typically, efflux assays are performed utilizing radiolabeled cholesterol tracers to label intracellular cholesterol pools, and these assays may be tailored to quantify the efflux of exogenously delivered cholesterol or alternatively the efflux of newly synthesized (endogenous) cholesterol, in different cell types (macrophages, hepatocytes). Cholesterol efflux may also be customized to quantify cholesterol flux out of the cell to various exogenous cholesterol acceptors, such as apolipoprotein A-I, high-density lipoprotein, or methyl-beta-cyclodextrin, depending on the purpose of the experiment. Here, we provide comprehensive protocols to quantify the net flux of cholesterol out of cells and recommendations on how this assay may be tailored as a function of the experimental question at hand.
Collapse
|
10
|
Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Clare-Salzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials 2017; 115:128-140. [PMID: 27889664 PMCID: PMC5431751 DOI: 10.1016/j.biomaterials.2016.10.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/25/2022]
Abstract
Aseptic loosening due to peri-prosthetic osteolysis is one of the primary causes for failure of artificial joint replacements. Implant-derived wear particles, often ultra-high molecular weight polyethylene (UHMWPE) microparticles, initiate an inflammatory cascade upon phagocytosis by macrophages, which leads to osteoclast recruitment and activation, ultimately resulting in osteolysis. Investigation into integrin receptors, involved in cellular interactions with biomaterial-adsorbed adhesive proteins, is of interest to understand and modulate inflammatory processes. In this work, we investigate the role of macrophage integrins Mac-1 and RGD-binding integrins in response to UHMWPE wear particles. Using integrin knockout mice as well as integrin blocking techniques, reduction in macrophage phagocytosis and inflammatory cytokine secretion is demonstrated when these receptors are either absent or blocked. Along this line, various opsonizing proteins are shown to differentially modulate microparticle uptake and macrophage secretion of inflammatory cytokines. Furthermore, using a calvarial osteolysis model it is demonstrated that both Mac-1 integrin and RGD-binding integrins modulate the particle induced osteolysis response to UHMWPE microparticles, with a 40% decrease in the area of osteolysis by the absence or blocking of these integrins, in vivo. Altogether, these findings indicate Mac-1 and RGD-binding integrins are involved in macrophage-directed inflammatory responses to UHMWPE and may serve as therapeutic targets to mitigate wear particle induced peri-prosthetic osteolysis for improved performance of implanted joints.
Collapse
Affiliation(s)
- Toral D Zaveri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95618, USA
| | - Kiri Hamaker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Rios FJ, Touyz RM, Montezano AC. Isolation and Differentiation of Murine Macrophages. Hypertension 2017; 1527:297-309. [DOI: 10.1007/978-1-4939-6625-7_23] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Yugami M, Odagiri H, Endo M, Tsutsuki H, Fujii S, Kadomatsu T, Masuda T, Miyata K, Terada K, Tanoue H, Ito H, Morinaga J, Horiguchi H, Sugizaki T, Akaike T, Gotoh T, Takai T, Sawa T, Mizuta H, Oike Y. Mice Deficient in Angiopoietin-like Protein 2 (Angptl2) Gene Show Increased Susceptibility to Bacterial Infection Due to Attenuated Macrophage Activity. J Biol Chem 2016; 291:18843-52. [PMID: 27402837 DOI: 10.1074/jbc.m116.720870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages play crucial roles in combatting infectious disease by promoting inflammation and phagocytosis. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor that induces tissue inflammation by attracting and activating macrophages to produce inflammatory cytokines in chronic inflammation-associated diseases such as obesity-associated metabolic syndrome, atherosclerosis, and rheumatoid arthritis. Here, we asked whether and how ANGPTL2 activates macrophages in the innate immune response. ANGPTL2 was predominantly expressed in proinflammatory mouse bone marrow-derived differentiated macrophages (GM-BMMs) following GM-CSF treatment relative to anti-inflammatory cells (M-BMMs) established by M-CSF treatment. Expression of the proinflammatory markers IL-1β, IL-12p35, and IL-12p40 significantly decreased in GM-BMMs from Angptl2-deficient compared with wild-type (WT) mice, suggestive of attenuated proinflammatory activity. We also report that ANGPTL2 inflammatory signaling is transduced through integrin α5β1 rather than through paired immunoglobulin-like receptor B. Interestingly, Angptl2-deficient mice were more susceptible to infection with Salmonella enterica serovar Typhimurium than were WT mice. Moreover, nitric oxide (NO) production by Angptl2-deficient GM-BMMs was significantly lower than in WT GM-BMMs. Collectively, our findings suggest that macrophage-derived ANGPTL2 promotes an innate immune response in those cells by enhancing proinflammatory activity and NO production required to fight infection.
Collapse
Affiliation(s)
- Masaki Yugami
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Haruki Odagiri
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | - Hiroyasu Tsutsuki
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Tetsuro Masuda
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | - Hironori Tanoue
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | - Hitoshi Ito
- From the Departments of Molecular Genetics, Orthopedic Surgery, and
| | | | | | | | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan, and
| | - Tomohiro Sawa
- Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | - Yuichi Oike
- From the Departments of Molecular Genetics, Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 102-0076, Japan
| |
Collapse
|
13
|
Miller MR, Blystone SD. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system. J Biol Methods 2015; 2:e23. [PMID: 26457319 DOI: 10.14440/jbm.2015.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30-70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Matthew R Miller
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| | - Scott D Blystone
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| |
Collapse
|
14
|
Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 2014; 35:3504-15. [PMID: 24462356 PMCID: PMC3970928 DOI: 10.1016/j.biomaterials.2014.01.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023]
Abstract
Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials.
Collapse
Affiliation(s)
- Toral D Zaveri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Tenorio-Borroto E, Peñuelas-Rivas CG, Vásquez-Chagoyán JC, Castañedo N, Prado-Prado FJ, García-Mera X, González-Díaz H. Model for high-throughput screening of drug immunotoxicity – Study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. Eur J Med Chem 2014; 72:206-20. [DOI: 10.1016/j.ejmech.2013.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
16
|
Wikstrom ME, Khong A, Fleming P, Kuns R, Hertzog PJ, Frazer IH, Andoniou CE, Hill GR, Degli-Esposti MA. The early monocytic response to cytomegalovirus infection is MyD88 dependent but occurs independently of common inflammatory cytokine signals. Eur J Immunol 2013; 44:409-19. [PMID: 24166710 DOI: 10.1002/eji.201243109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022]
Abstract
Cytomegalovirus latently infects myeloid cells; however, the acute effects of the virus on this cell subset are poorly characterised. We demonstrate that systemic cytomegalovirus infection induced rapid activation of monocytes in the bone marrow, characterised by upregulation of CD69, CD11c, Ly6C and M-CSF receptor. Activated bone marrow monocytes were more sensitive to M-CSF and less sensitive to granulocyte-monocyte colony stimulating factor in vitro, resulting in the generation of more macrophages and fewer dendritic cells, respectively. Monocyte activation was also observed in the periphery and resulted in significant accumulation of monocytes in the spleen. MyD88 expression was required within the haematopoietic compartment to initiate monocyte activation and recruitment. However, monocytes lacking MyD88 were activated and recruited in the presence of MyD88-sufficient cells in mixed bone marrow chimeras, indicating that once initiated, the process was MyD88 independent. Interestingly, we found that monocyte activation occurred in the absence of the common inflammatory cytokines, namely type I interferons (IFNs), IL-6, TNF-α and IL-1 as well as the NLRP3 inflammasome adaptor protein, ASC. We also excluded a role for the chemokine-like protein MCK-2 (m131/129) expressed by murine CMV. Taken together, these results challenge the notion that a single inflammatory cytokine mediates activation and recruitment of monocytes in response to infection.
Collapse
Affiliation(s)
- Matthew E Wikstrom
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maurya MR, Gupta S, Li X, Fahy E, Dinasarapu AR, Sud M, Brown HA, Glass CK, Murphy RC, Russell DW, Dennis EA, Subramaniam S. Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. J Lipid Res 2013; 54:2525-42. [PMID: 23776196 DOI: 10.1194/jlr.m040212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of macrophage biology have been significantly advanced by the availability of cell lines such as RAW264.7 cells. However, it is unclear how these cell lines differ from primary macrophages such as thioglycolate-elicited peritoneal macrophages (TGEMs). We used the inflammatory stimulus Kdo2-lipid A (KLA) to stimulate RAW264.7 and TGEM cells. Temporal changes of lipid and gene expression levels were concomitantly measured and a systems-level analysis was performed on the fold-change data. Here we present a comprehensive comparison between the two cell types. Upon KLA treatment, both RAW264.7 and TGEM cells show a strong inflammatory response. TGEM (primary) cells show a more rapid and intense inflammatory response relative to RAW264.7 cells. DNA levels (fold-change relative to control) are reduced in RAW264.7 cells, correlating with greater downregulation of cell cycle genes. The transcriptional response suggests that the cholesterol de novo synthesis increases considerably in RAW264.7 cells, but 25-hydroxycholesterol increases considerably in TGEM cells. Overall, while RAW264.7 cells behave similarly to TGEM cells in some ways and can be used as a good model for inflammation- and immune function-related kinetic studies, they behave differently than TGEM cells in other aspects of lipid metabolism and phenotypes used as models for various disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Mano R Maurya
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dreymueller D, Denecke B, Ludwig A, Jahnen-Dechent W. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing. Wound Repair Regen 2012; 21:44-54. [PMID: 23126541 DOI: 10.1111/j.1524-475x.2012.00858.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
Abstract
In adults, repair of deeply injured skin wounds results in the formation of scar tissue, whereas in embryos wounds heal almost scar-free. Macrophages are important mediators of wound healing and secrete cytokines and tissue remodeling enzymes. In contrast to host defense mediated by inflammatory M1 macrophages, wound healing and tissue repair involve regulatory M2/M2-like macrophages. Embryonic/fetal macrophages are M2-like, and this may promote scar-free wound healing. In the present study, we asked whether atopical application of ex vivo generated, embryonic stem cell-derived macrophages (ESDM) improve wound healing in mice. ESDM were tested side by side with bone marrow-derived macrophages (BMDM). Compared to BMDM, ESDM resembled a less inflammatory and more M2-like macrophage subtype as indicated by their reduced responsiveness to lipopolysaccharide, reduced expression of Toll-like receptors, and reduced bacterial phagocytosis. Despite this anti-inflammatory phenotype in cell culture, ESDM prolonged the healing of deep skin wounds even more than BMDM. Healed wounds had more scar formation compared to wounds receiving BMDM or cell-free treatment. Our data indicate that atopical application of ex vivo generated macrophages is not a suitable cell therapy of dermal wounds.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| | | | | | | |
Collapse
|
19
|
Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, Chang MW, Beckman SK, Cook AD, Hamilton JA. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. THE JOURNAL OF IMMUNOLOGY 2012; 188:5752-65. [PMID: 22547697 DOI: 10.4049/jimmunol.1103426] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of "competition" at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.
Collapse
Affiliation(s)
- Derek C Lacey
- Department of Medicine, Arthritis and Inflammation Research Centre, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
CCR8 signaling influences Toll-like receptor 4 responses in human macrophages in inflammatory diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2050-9. [PMID: 21976223 DOI: 10.1128/cvi.05275-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients.
Collapse
|
21
|
van Berlo D, Wessels A, Boots AW, Wilhelmi V, Scherbart AM, Gerloff K, van Schooten FJ, Albrecht C, Schins RPF. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles. Free Radic Biol Med 2010; 49:1685-93. [PMID: 20828610 DOI: 10.1016/j.freeradbiomed.2010.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/09/2010] [Accepted: 08/29/2010] [Indexed: 11/26/2022]
Abstract
The carcinogenicity of respirable quartz is considered to be driven by reactive oxygen species (ROS) generation in association with chronic inflammation. The contribution of phagocyte-derived ROS to inflammation, oxidative stress, and DNA damage responses was investigated in the lungs of C57BL/6J wild-type and p47(phox-/-) mice, 24h after pharyngeal aspiration of DQ12 quartz (100 mg/kg bw). Bone-marrow-derived neutrophils from wild-type and p47(phox-/-) mice were used for parallel in vitro investigations in coculture with A549 human alveolar epithelial cells. Quartz induced a marked neutrophil influx in both wild-type and p47(phox-/-) mouse lungs. Significant increases in mRNA expression of the oxidative stress markers HO-1 and γ-GCS were observed only in quartz-treated wild-type animals. Oxidative DNA damage in lung tissue was not affected by quartz exposure and did not differ between p47(phox-/-) and WT mice. Differences in mRNA expression of the DNA repair genes OGG1, APE-1, DNA Polβ, and XRCC1 were also absent. Quartz treatment of cocultures containing wild-type neutrophils, but not p47(phox-/-) neutrophils, caused increased oxidative DNA damage in epithelial cells. Our study demonstrates that neutrophil-derived ROS significantly contribute to pulmonary oxidative stress responses after acute quartz exposure, yet their role in the associated induction of oxidative DNA damage could be shown only in vitro.
Collapse
Affiliation(s)
- Damien van Berlo
- Institut für Umweltmedizinische Forschung, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, Ren F, Keselowsky BG. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 2010; 31:2999-3007. [DOI: 10.1016/j.biomaterials.2009.12.055] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 01/13/2023]
|
23
|
Production of and applications for a polyclonal IgY diagnostic reagent specific for Mycobacterium avium subsp. paratuberculosis. J Microbiol 2009; 47:600-9. [DOI: 10.1007/s12275-009-0052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
24
|
Bcr and Abr cooperate in negatively regulating acute inflammatory responses. Mol Cell Biol 2009; 29:5742-50. [PMID: 19703997 DOI: 10.1128/mcb.00357-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr and Abr are GTPase-activating proteins for the small GTPase Rac. Both proteins are expressed in cells of the innate immune system, including neutrophils and macrophages. The function of Bcr has been linked to the negative regulation of neutrophil reactive oxygen species (ROS) production, but the function of Abr in the innate immune system was unknown. Here, we report that mice lacking both proteins are severely affected in two models of experimental endotoxemia, including exposure to Escherichia coli lipopolysaccharide and polymicrobial sepsis, with extensive microvascular leakage, resulting in severe pulmonary edema and hemorrhage. Additionally, in vivo-activated neutrophils of abr and bcr null mutant mice produced excessive tissue-damaging myeloperoxidase (MPO), elastase, and ROS. Moreover, the secretion of the tissue metalloproteinase MMP9 by monocytes and ROS by elicited macrophages was abnormally high. In comparison, ROS production from bone marrow monocytes was not significantly different from that of controls, and the exocytosis of neutrophil secondary and tertiary granule products, including lactoferrin, was normal. These data show that Abr and Bcr normally curb very specific functions of mature tissue innate immune cells, and that each protein has distinct as well as partly overlapping functions in the downregulation of inflammatory processes.
Collapse
|
25
|
Abstract
Mesenchymal stem cells (MSCs), which potentially transdifferentiate into multiple cell types, are increasingly reported to be beneficial in models of organ system injury. However, the molecular mechanisms underlying interactions between MSCs and host cells, in particular endothelial cells (ECs), remain unclear. We show here in a matrigel angiogenesis assay that MSCs are capable of inhibiting capillary growth. After addition of MSCs to EC-derived capillaries in matrigel at EC:MSC ratio of 1:1, MSCs migrated toward the capillaries, intercalated between ECs, established Cx43-based intercellular gap junctional communication (GJC) with ECs, and increased production of reactive oxygen species (ROS). These events led to EC apoptosis and capillary degeneration. In an in vivo tumor model, direct MSC inoculation into subcutaneous melanomas induced apoptosis and abrogated tumor growth. Thus, our findings show for the first time that at high numbers, MSCs are potentially cytotoxic and that when injected locally in tumor tissue they might be effective antiangiogenesis agents suitable for cancer therapy.
Collapse
|
26
|
Analysis of PRA1 and its relationship to Candida albicans- macrophage interactions. Infect Immun 2008; 76:4345-58. [PMID: 18625733 DOI: 10.1128/iai.00588-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of Candida albicans by either primary bone marrow-derived mouse macrophages or RAW 264.7 cells upregulated transcription of PRA1, which encodes a cell wall/membrane-associated antigen previously described as a fibrinogen binding protein. However, a pra1 null mutant was still able to bind fibrinogen, showing that Pra1p is not uniquely required for fibrinogen binding. As well, Pra1 tagged with green fluorescent protein did not colocalize with AlexaFluor 546-labeled human fibrinogen, and while PRA1 expression was inhibited when Candida was grown in fetal bovine serum-containing medium, Candida binding to fibrinogen was activated by these conditions. Therefore, it appears that Pra1p can play at most a minor role in fibrinogen binding to C. albicans. PRA1 gene expression is induced in vitro by alkaline pH, and therefore its activation in phagosomes suggested that phagosome maturation was suppressed by the presence of Candida cells. LysoTracker red-labeled organelles failed to fuse with phagosomes containing live Candida, while phagosomes containing dead Candida underwent a normal phagosome-to-phagolysosome maturation. Immunofluorescence staining with the early/recycling endosomal marker transferrin receptor (CD71) suggested that live Candida may escape macrophage destruction through the inhibition of phagolysosomal maturation.
Collapse
|
27
|
Nogueira Silva JJ, Pavanelli WR, Salazar Gutierrez FR, Alves Lima FC, Ferreira da Silva AB, Santana Silva J, Wagner Franco D. Complexation of the anti-Trypanosoma cruzi Drug Benznidazole Improves Solubility and Efficacy. J Med Chem 2008; 51:4104-14. [DOI: 10.1021/jm701306r] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean Jerley Nogueira Silva
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fredy R. Salazar Gutierrez
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francisco Chagas Alves Lima
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Albérico Borges Ferreira da Silva
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - João Santana Silva
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Douglas Wagner Franco
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP, Brazil, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DWY, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008; 26:561-9. [PMID: 18438401 PMCID: PMC3014085 DOI: 10.1038/nbt1402] [Citation(s) in RCA: 953] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/07/2008] [Indexed: 02/07/2023]
Abstract
The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2'-O-methyl (2'-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.
Collapse
Affiliation(s)
- Akin Akinc
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Proulx LI, Paré G, Bissonnette EY. Alveolar macrophage cytotoxic activity is inhibited by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogenic component of cigarette smoke. Cancer Immunol Immunother 2007; 56:831-8. [PMID: 17096151 PMCID: PMC11030841 DOI: 10.1007/s00262-006-0243-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/19/2006] [Indexed: 11/25/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic compound of cigarette smoke that generates electrophilic intermediates capable of damaging DNA. Recently, we have shown that NNK can modulate mediator production by alveolar macrophages (AM) and bronchial and alveolar epithelial cells, suggesting that cigarette smoke can alter lung immune response. Thus, we investigated the effect of NNK and cigarette smoke extract (CSE) on AM capacity to eliminate tumoral cells. Rat AM cell line, NR8383, was treated with NNK (500 microM) or CSE (3%) and stimulated with lipopolysaccharide (10 ng/ml). The release of cytotoxic mediators, tumor necrosis factor (TNF) and reactive oxygen species (ROS), was measured in cell-free supernatants using ELISA and superoxide anion production. TNF- and ROS-dependent cytotoxicity were studied using a (51)Chromium-release assay and WEHI-164 and P-815 cell lines. Treatment of AM with NNK and CSE for 18 h significantly inhibited AM TNF release. CSE exposure resulted in a significant increase of ROS production, whereas NNK did not. TNF-dependent cytotoxic activity of NR8383 and freshly isolated rat AM was significantly inhibited after treatment with NNK and CSE. Interestingly, although ROS production was stimulated by CSE and not affected by NNK, CSE inhibited AM ROS-dependent cytotoxicity. These results suggest that NNK may be one of the cigarette smoke components responsible for the reduction of pulmonary cytotoxicity. Thus, NNK may have a double pro-carcinogenic effect by contributing to DNA adduct formation and inhibiting AM cytotoxicity against tumoral cells.
Collapse
Affiliation(s)
- Léa-Isabelle Proulx
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l’Université Laval, 2725 Chemin Ste-Foy, G1V 4G5 Quebec, QC Canada
| | - Guillaume Paré
- Centre de recherche en Immunologie et Rhumatologie du CHUL, Quebec, QC Canada
| | - Elyse Y. Bissonnette
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l’Université Laval, 2725 Chemin Ste-Foy, G1V 4G5 Quebec, QC Canada
| |
Collapse
|
30
|
Cho YJ, Cunnick JM, Yi SJ, Kaartinen V, Groffen J, Heisterkamp N. Abr and Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular functions of murine macrophages. Mol Cell Biol 2006; 27:899-911. [PMID: 17116687 PMCID: PMC1800684 DOI: 10.1128/mcb.00756-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Small GTPases of the Rho family are key regulators of phagocytic leukocyte function. Abr and Bcr are homologous, multidomain proteins. Their C-terminal domain has GTPase-activating protein (GAP) activity that, in vitro, is specific for Rac and Cdc42. To address the in vivo relevance of these entire proteins, of which little is known, the current study examined the effect of the genetic ablation of Abr and Bcr in murine macrophages. The concomitant loss of Abr and Bcr induced multiple alterations of macrophage cellular behavior known to be under the control of Rac. Macrophages lacking both Abr and Bcr exhibited an atypical, elongated morphology that was reproduced by the ectopic expression of GAP domain mutant Abr and Bcr in a macrophage cell line and of constitutively active Rac in primary macrophages. A robust increase in colony-stimulating factor 1 (CSF-1)-directed motility was observed in macrophages deficient for both proteins and, in response to CSF-1 stimulation, Abr and Bcr transiently translocated to the plasma membrane. Phagocytosis of opsonized particles was also increased in macrophages lacking both proteins and correlated with sustained Rac activation. Bcr and Abr GAP mutant proteins localized around phagosomes and induced distinct phagocytic cup formation. These results identify Abr and Bcr as the only GAPs to date that specifically negatively regulate Rac function in vivo in primary macrophages.
Collapse
Affiliation(s)
- Young Jin Cho
- Division of Hematology/Oncology Ms#54, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|