1
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
2
|
Eichmann M, Baptista R, Ellis RJ, Heck S, Peakman M, Beam CA. Costimulation Blockade Disrupts CD4 + T Cell Memory Pathways and Uncouples Their Link to Decline in β-Cell Function in Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2020; 204:3129-3138. [PMID: 32404353 DOI: 10.4049/jimmunol.1901439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
We previously reported that costimulation blockade by abatacept limits the decline of β-cell function and the frequency of circulating CD4+ central memory T cells (TCM) (CD45RO+CD62L+) in new-onset type 1 diabetes. In human subjects receiving placebo, we found a significant association between an increase in CD4+ TCM cells and the decline of β-cell function. To extend and refine these findings, we examined changes in human CD4+ and CD8+ naive and memory T cell subsets at greater resolution using polychromatic flow and mass cytometry. In the placebo group, we successfully reproduced the original finding of a significant association between TCM and β-cell function and extended this to other T cell subsets. Furthermore, we show that abatacept treatment significantly alters the frequencies of a majority of CD4+ conventional and regulatory T cell subsets; in general, Ag-naive subsets increase and Ag-experienced subsets decrease, whereas CD8+ T cell subsets are relatively resistant to drug effects, indicating a lesser reliance on CD28-mediated costimulation. Importantly, abatacept uncouples the relationship between changes in T cell subsets and β-cell function that is a component of the natural history of the disease. Although these data suggest immunological markers for predicting change in β-cell function in type 1 diabetes, the finding that abatacept blunts this relationship renders the biomarkers nonpredictive for this type of therapy. In sum, our findings point to a novel mechanism of action for this successful immunotherapy that may guide other disease-modifying approaches for type 1 diabetes.
Collapse
Affiliation(s)
- Martin Eichmann
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom;
| | - Roman Baptista
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom.,Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, United Kingdom
| | - Richard J Ellis
- Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, United Kingdom
| | - Susanne Heck
- Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, United Kingdom
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom.,Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London SE1 9RT, United Kingdom.,Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, United Kingdom; and
| | - Craig A Beam
- Department of Biomedical Sciences, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI 49008
| |
Collapse
|
3
|
Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun 2019; 10:1065. [PMID: 30911002 PMCID: PMC6434052 DOI: 10.1038/s41467-019-08871-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
The major cause of death after allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for acute myeloid leukemia (AML) is disease relapse. We investigated the expression of Inhibitory Receptors (IR; PD-1/CTLA-4/TIM-3/LAG-3/2B4/KLRG1/GITR) on T cells infiltrating the bone marrow (BM) of 32 AML patients relapsing (median 251 days) or maintaining complete remission (CR; median 1 year) after HSCT. A higher proportion of early-differentiated Memory Stem (TSCM) and Central Memory BM-T cells express multiple IR in relapsing patients than in CR patients. Exhausted BM-T cells at relapse display a restricted TCR repertoire, impaired effector functions and leukemia-reactive specificities. In 57 patients, early detection of severely exhausted (PD-1+Eomes+T-bet-) BM-TSCM predicts relapse. Accordingly, leukemia-specific T cells in patients prone to relapse display exhaustion markers, absent in patients maintaining long-term CR. These results highlight a wide, though reversible, immunological dysfunction in the BM of AML patients relapsing after HSCT and suggest new therapeutic opportunities for the disease.
Collapse
|
4
|
Withers SS, Moore PF, Chang H, Choi JW, McSorley SJ, Kent MS, Monjazeb AM, Canter RJ, Murphy WJ, Sparger EE, Rebhun RB. Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:64-74. [PMID: 29859828 PMCID: PMC6197816 DOI: 10.1016/j.dci.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
While dogs are increasingly being utilized as large-animal models of disease, important features of age-related immunosenescence in the dog have yet to be evaluated due to the lack of defined naïve vs. memory T lymphocyte phenotypes. We therefore performed multi-color flow cytometry on peripheral blood mononuclear cells from young and aged beagles, and determined the differential cytokine production by proposed memory subsets. CD4+ and CD8+ T lymphocytes in aged dogs displayed increased cytokine production, and decreased proliferative capacity. Antibodies targeting CD45RA and CD62L, but less so CD28 or CD44, defined canine cells that consistently exhibited properties of naïve-, central memory-, effector memory-, and terminal effector-like CD4+ and CD8+ T lymphocyte subsets. Older dogs demonstrated decreased frequencies of naïve-like CD4+ and CD8+ T lymphocytes, and an increased frequency of terminal effector-like CD8+ T lymphocytes. Overall findings revealed that aged dogs displayed features of immunosenescence similar to those reported in other species.
Collapse
Affiliation(s)
- Sita S Withers
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter F Moore
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, 2921 Stockton Blvd, Sacramento, CA 95716, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, Elco CP, Huang V, Matos TR, Kupper TS, Clark RA. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 2015; 7:279ra39. [PMID: 25787765 DOI: 10.1126/scitranslmed.3010302] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.
Collapse
Affiliation(s)
- Rei Watanabe
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Gehad
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chao Yang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura L Scott
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Christopher P Elco
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Huang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago R Matos
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Dana-Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Dana-Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Martin MD, Kim MT, Shan Q, Sompallae R, Xue HH, Harty JT, Badovinac VP. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection. PLoS Pathog 2015; 11:e1005219. [PMID: 26485703 PMCID: PMC4618693 DOI: 10.1371/journal.ppat.1005219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.
Collapse
Affiliation(s)
- Matthew D. Martin
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Marie T. Kim
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qiang Shan
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramakrishna Sompallae
- Iowa Institute of Human Genetics Bioinformatics Division, University of Iowa, Iowa City, Iowa, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine 2014; 32:6911-6918. [PMID: 25444816 DOI: 10.1016/j.vaccine.2014.10.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/17/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) remains one of the most important infectious diseases of man and animals, and the only available vaccine (BCG) requires urgent replacement or improvement. To facilitate this, the protective mechanisms induced by BCG require further understanding. As a live attenuated vaccine, persistence of BCG bacilli in the host may be a crucial mechanism. We have investigated the long term persistence of BCG following vaccination and the influence on the induced immune response and protection, using an established murine model. We sought to establish whether previously identified BCG-specific CD4 TEM cells represent genuine long-lived memory cells of a relatively high frequency, or are a consequence of continual priming by chronically persistent BCG vaccine bacilli. By clearing persistent bacilli, we have compared immune responses (spleen and lung CD4: cytokine producing T effector/TEM; TCR-specific) and BCG-induced protection, in the presence and absence of these persisting vaccine bacilli. Viable BCG bacilli persisted for at least 16 months post-vaccination, associated with specific CD4 T effector/TEM and tetramer-specific responses. Clearing these bacilli abrogated all BCG-specific CD4 T cells whilst only reducing protection by 1log10. BCG may induce two additive mechanisms of immunity: (i) dependant on the presence of viable bacilli and TEM; and (ii) independent of these factors. These data have crucial implications on the rational generation of replacement TB vaccines, and the interpretation of BCG induced immunity in animal models.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK
| | - M C Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK
| | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK.
| |
Collapse
|
8
|
Abstract
Mass cytometry is a form of flow cytometry based on single-cell mass spectrometry that uses monoisotopic elemental labels to probe individual cells. Reduced cross talk between channels and an ability to measure >30 independent cellular parameters make this an attractive approach for high-dimensional analysis of cellular phenotypes and function. Here, methods of using this approach for the analysis of human T cell surface markers and intracellular cytokines are described.
Collapse
Affiliation(s)
- Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A-STAR), 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore,
| | | |
Collapse
|
9
|
Khanolkar A, Williams MA, Harty JT. Antigen experience shapes phenotype and function of memory Th1 cells. PLoS One 2013; 8:e65234. [PMID: 23762323 PMCID: PMC3676405 DOI: 10.1371/journal.pone.0065234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (JTH); (MAW)
| | - John T. Harty
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (JTH); (MAW)
| |
Collapse
|
10
|
IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 2012; 121:573-84. [PMID: 23160470 DOI: 10.1182/blood-2012-05-431718] [Citation(s) in RCA: 471] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-living memory stem T cells (T(SCM)) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8(+) T(SCM) lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L(+)CCR7(+)CD45RA(+)CD45R0(+)IL-7Rα(+)CD95(+), are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, T(SCM) accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived T(SCM) prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified T(SCM) are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for T(SCM) generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.
Collapse
|
11
|
Single-Cell Level Response of HIV-Specific and Cytomegalovirus-Specific CD4 T Cells Correlate With Viral Control in Chronic HIV-1 Subtype A Infection. J Acquir Immune Defic Syndr 2012; 61:9-18. [DOI: 10.1097/qai.0b013e31825c1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Nanjappa SG, Heninger E, Wüthrich M, Gasper DJ, Klein BS. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells. PLoS Pathog 2012; 8:e1002771. [PMID: 22829762 PMCID: PMC3400565 DOI: 10.1371/journal.ppat.1002771] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/07/2012] [Indexed: 12/20/2022] Open
Abstract
Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4+ T-cell help, vaccine-induced CD8+ T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8+ T cells (Tc17 cells) have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4+ T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients. Systemic fungal infections have emerged as a public health problem, especially for patients with suppressed immunity. At present, there are no vaccines against fungi, partly because it is hard to elicit strong immunity in immune suppressed patients. We have found however that residual elements of T cell immunity can be harnessed by vaccination even in immune suppressed hosts. We show here that immune suppressed mice lacking T helper cells can still be vaccinated successfully against lethal fungal pneumonia. A population of T cytotoxic IL-17-producing cells (Tc17 cells) is instrumental and indispensible in vaccine protection. We describe here mechanisms that explain how these cells are induced to mature in Tc17 cells, persist for long periods in the body providing “immune memory”, recruit to the site of infection, and clear the tissue of fungi. Our work sheds new light on potent T cells that can be harnessed by vaccine strategies against fungal infection in vulnerable patients.
Collapse
Affiliation(s)
- Som Gowda Nanjappa
- The Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | | | | | | | | |
Collapse
|
13
|
Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012; 36:142-52. [PMID: 22265676 DOI: 10.1016/j.immuni.2012.01.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/19/2011] [Accepted: 11/29/2011] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD8(+) T lymphocytes directly kill infected or aberrant cells and secrete proinflammatory cytokines. By using metal-labeled probes and mass spectrometric analysis (cytometry by time-of-flight, or CyTOF) of human CD8(+) T cells, we analyzed the expression of many more proteins than previously possible with fluorescent labels, including surface markers, cytokines, and antigen specificity with modified peptide-MHC tetramers. With 3-dimensional principal component analysis (3D-PCA) to display phenotypic diversity, we observed a relatively uniform pattern of variation in all subjects tested, highlighting the interrelatedness of previously described subsets and the continuous nature of CD8(+) T cell differentiation. These data also showed much greater complexity in the CD8(+) T cell compartment than previously appreciated, including a nearly combinatorial pattern of cytokine expression, with distinct niches occupied by virus-specific cells. This large degree of functional diversity even between cells with the same specificity gives CD8(+) T cells a remarkable degree of flexibility in responding to pathogens.
Collapse
Affiliation(s)
- Evan W Newell
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | | | | | | | | |
Collapse
|
14
|
Carey JB, Pearson FE, Vrdoljak A, McGrath MG, Crean AM, Walsh PT, Doody T, O'Mahony C, Hill AVS, Moore AC. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. PLoS One 2011; 6:e22442. [PMID: 21799855 PMCID: PMC3143140 DOI: 10.1371/journal.pone.0022442] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes.
Collapse
Affiliation(s)
- John B. Carey
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Abina M. Crean
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick T. Walsh
- National Childrens' Research Centre, Our Lady's Childrens' Hospital Crumlin, Dublin, Ireland
| | - Timothy Doody
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, Ireland
| | | | - Anne C. Moore
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
15
|
Schmidt NW, Harty JT. Cutting edge: attrition of Plasmodium-specific memory CD8 T cells results in decreased protection that is rescued by booster immunization. THE JOURNAL OF IMMUNOLOGY 2011; 186:3836-40. [PMID: 21357257 DOI: 10.4049/jimmunol.1003949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sterile protection against infection with Plasmodium sporozoites requires high numbers of memory CD8 T cells. However, infections with unrelated pathogens, as may occur in areas endemic to malaria, can dramatically decrease pre-existing memory CD8 T cells. It remains unknown whether unrelated infections will compromise numbers of Plasmodium-specific memory CD8 T cells and thus limit the duration of antimalarial immunity generated by subunit vaccination. We show that P. berghei circumsporozoite-specific memory CD8 T cells underwent significant attrition in numbers in mice subjected to unrelated infections. Attrition was associated with preferential loss of effector memory CD8 T cells and reduced immunity to P. berghei sporozoite challenge. However, and of relevance to deployment of Plasmodium vaccines in areas endemic to malaria, attrition of memory CD8 T cells was reversed by booster immunization, which restored protection. These data suggest that regular booster immunizations may be required to sustain protective vaccine-induced Plasmodium-specific memory CD8 T cells in the face of attrition caused by unrelated infections.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
16
|
Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog 2010; 6:e1001208. [PMID: 21124875 PMCID: PMC2991260 DOI: 10.1371/journal.ppat.1001208] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
Protection against malaria often decays in the absence of infection, suggesting that protective immunological memory depends on stimulation. Here we have used CD4+ T cells from a transgenic mouse carrying a T cell receptor specific for a malaria protein, Merozoite Surface Protein-1, to investigate memory in a Plasmodium chabaudi infection. CD4+ memory T cells (CD44hiIL-7Rα+) developed during the chronic infection, and were readily distinguishable from effector (CD62LloIL-7Rα−) cells in acute infection. On the basis of cell surface phenotype, we classified memory CD4+ T cells into three subsets: central memory, and early and late effector memory cells, and found that early effector memory cells (CD62LloCD27+) dominated the chronic infection. We demonstrate a linear pathway of differentiation from central memory to early and then late effector memory cells. In adoptive transfer, CD44hi memory cells from chronically infected mice were more effective at delaying and reducing parasitemia and pathology than memory cells from drug-treated mice without chronic infection, and contained a greater proportion of effector cells producing IFN-γ and TNFα, which may have contributed to the enhanced protection. These findings may explain the observation that in humans with chronic malaria, activated effector memory cells are best maintained in conditions of repeated exposure. Protective immunity against malaria develops only after several infections and can be lost on leaving an area in which malaria is transmitted. This suggests that the chronic infection may maintain the protective immune response. In this paper we have used a mouse model of a blood-stage malaria infection to examine the memory response of CD4+ T cells during chronic infection. These T cells are required for protective immunity, and also play a part in the inflammatory response that gives rise to malaria disease. Understanding what constitutes a protective CD4+ T cell may help us design more protective vaccines. We show that these memory CD4+ T cells persist in an activated state, produce the inflammatory cytokines TNFα and IFN-γ, and are more protective than “resting” memory CD4+ T cells obtained from mice in which the infection has been eliminated. This may explain why people are better protected against malaria disease when they are infected frequently.
Collapse
|
17
|
Raposo BR, Rodrigues-Santos P, Carvalheiro H, Água-Doce AM, Carvalho L, Pereira da Silva JA, Graça L, Souto-Carneiro MM. Monoclonal anti-CD8 therapy induces disease amelioration in the K/BxN mouse model of spontaneous chronic polyarthritis. ACTA ACUST UNITED AC 2010; 62:2953-62. [DOI: 10.1002/art.27729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Zhao DM, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, Harty JT, Xue HH. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1191-9. [PMID: 20026746 PMCID: PMC2809813 DOI: 10.4049/jimmunol.0901199] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.
Collapse
Affiliation(s)
- Dong-Mei Zhao
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xinyuan Zhou
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jodie S. Haring
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Werner Held
- Ludwig Institute for Cancer Research Ltd., Lausanne Branch and University of Lausanne, 155 Ch. des Boveresses, 1006 Epalinges, Switzerland
| | - Vladimir P. Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John T. Harty
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
19
|
Brinkman CC, Sheasley-O'Neill SL, Ferguson AR, Engelhard VH. Activated CD8 T cells redistribute to antigen-free lymph nodes and exhibit effector and memory characteristics. THE JOURNAL OF IMMUNOLOGY 2008; 181:1814-24. [PMID: 18641319 DOI: 10.4049/jimmunol.181.3.1814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exogenous dendritic cells display restricted trafficking when injected in vivo and stimulate CD8 T cell responses that are localized to a small number of lymphoid compartments. By examining these responses in the presence and absence of FTY720, a drug that causes sequestration of T cells in lymph nodes, we demonstrate that a significant fraction of divided CD8 T cells redistribute into Ag-free lymph nodes within 3 days of activation. Despite variation in the level of expression of CD62L, redistribution of these cells is CD62L-dependent. Redistributed CD8 T cells exhibit characteristics of differentiated effectors. However, when re-isolated from Ag-free lymph nodes 3 days after activation and transferred into naive mice, they persist for at least 3 wk and expand upon Ag challenge. Thus, CD8 T cells that redistribute to Ag-free lymph nodes 3 days after immunization contain memory precursors. We suggest that this redistribution process represents an important mechanism for establishment of lymph node resident central memory, and that redistribution to Ag-free nodes is an additional characteristic to be added to those that distinguish memory precursors from terminal effectors.
Collapse
Affiliation(s)
- C Colin Brinkman
- Department of Microbiology and Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
20
|
Haring JS, Jing X, Bollenbacher-Reilley J, Xue HH, Leonard WJ, Harty JT. Constitutive expression of IL-7 receptor alpha does not support increased expansion or prevent contraction of antigen-specific CD4 or CD8 T cells following Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:2855-62. [PMID: 18292507 DOI: 10.4049/jimmunol.180.5.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of IL-7Ralpha (CD127) has been suggested as a major determinant in the survival of memory T cell precursors. We investigated whether constitutive expression of IL-7Ralpha on T cells increased expansion and/or decreased contraction of endogenous Ag-specific CD4 and CD8 T cells following infection with Listeria monocytogenes. The results indicate that constitutive expression of IL-7Ralpha alone was not enough to impart an expansion or survival advantage to CD8 T cells responding to infection, and did not increase memory CD8 T cell numbers over those observed in wild-type controls. Constitutive expression of IL-7Ralpha did allow for slightly prolonged expansion of Ag-specific CD4 T cells; however, it did not alter the contraction phase or protect against the waning of memory T cell numbers at later times after infection. Memory CD4 and CD8 T cells generated in IL-7Ralpha transgenic mice expanded similarly to wild-type T cells after secondary infection, and immunized IL-7Ralpha transgenic mice were fully protected against lethal bacterial challenge demonstrating that constitutive expression of IL-7Ralpha does not impair, or markedly improve memory/secondary effector T cell function. These results indicate that expression of IL-7Ralpha alone does not support increased survival of effector Ag-specific CD4 or CD8 T cells into the memory phase following bacterial infection.
Collapse
Affiliation(s)
- Jodie S Haring
- Department of Microbiology, Carver School of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
21
|
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon-Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 2008; 38:706-19. [PMID: 18286565 DOI: 10.1002/eji.200737660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).
Collapse
Affiliation(s)
- Blaise Dondji
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Generation and maintenance of Listeria-specific CD8+ T cell responses in perforin-deficient mice chronically infected with LCMV. Virology 2007; 370:310-22. [PMID: 17936870 DOI: 10.1016/j.virol.2007.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/03/2007] [Accepted: 08/27/2007] [Indexed: 01/15/2023]
Abstract
Disruption of the perforin gene results in primary immunodeficiency and an increased susceptibility to opportunistic pathogens. Perforin-deficient (PKO) mice fail to clear primary lymphocytic choriomeningitis virus (LCMV) Armstrong, resulting in persistent infection and functional exhaustion of virus-specific CD8+ T cells. CD8+ T cell responses to Listeria monocytogenes (LM) challenge within the first week after LCMV infection were diminished in both WT and PKO mice, and correlated with enhanced bacterial clearance. However, bacterial challenge at later time points generated similar CD8 T cell responses in both groups of mice. The phenotype and function of pre-existing LM-specific memory CD8+ T cells were maintained in persistently infected PKO mice. Thus persistent LCMV infection, as a result of perforin deficiency, results in dysfunction of the virus-specific CD8+ T cell response but does not compromise the host's ability to maintain pre-existing memory CD8+ T cells or to generate new memory CD8+ T cell responses against other pathogens.
Collapse
|
23
|
Messingham KAN, Badovinac VP, Jabbari A, Harty JT. A role for IFN-gamma from antigen-specific CD8+ T cells in protective immunity to Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2007; 179:2457-66. [PMID: 17675507 DOI: 10.4049/jimmunol.179.4.2457] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.
Collapse
|