1
|
Huang Y, Zhang Y, Yang X, Lin Z. A high-performance protein preparation approach in a single column-free step. Trends Biotechnol 2025; 43:476-487. [PMID: 39537535 DOI: 10.1016/j.tibtech.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.
Collapse
Affiliation(s)
- Yuan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yuanyuan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Campbell SM, DeBartolo J, Apgar JR, Mosyak L, McManus V, Beyer S, Bennett EM, Lambert M, Cunningham O. Combining random mutagenesis, structure-guided design and next-generation sequencing to mitigate polyreactivity of an anti-IL-21R antibody. MAbs 2021; 13:1883239. [PMID: 33557673 PMCID: PMC7889167 DOI: 10.1080/19420862.2021.1883239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite substantial technological advances in antibody library and display platform development, the number of approved biotherapeutics from displayed libraries remains limited. In vivo, 20–50% of peripheral B cells undergo a process of receptor editing, which modifies the variable and junctional regions of light chains to delete auto-reactive clones. However, in vitro antibody evolution relies primarily on interaction with antigen, with no in-built checkpoints to ensure that the selected antibodies have not acquired additional specificities or biophysical liabilities during the optimization process. We had previously observed an enrichment of positive charge in the complementarity-determining regions of an anti-IL-21 R antibody during affinity optimization, which correlated with more potent IL-21 neutralization, but poor in vivo pharmacokinetics (PK). There is an emerging body of data that has correlated antibody nonspecificity with poor PK in vivo, and established a series of screening assays that are predictive of this behavior. In this study we revisit the challenge of developing an anti-IL-21 R antibody that can effectively compete with IL-21 for its highly negatively charged paratope while maintaining favorable biophysical properties. In vitro deselection methods that included an excess of negatively charged membrane preparations, or deoxyribonucleic acid, during phage selection of optimization libraries were unsuccessful in avoiding enrichment of highly charged, nonspecific antibody variants. However, a combination of structure-guided rational library design, next-generation sequencing of library outputs and application of linear regression models resulted in the identification of an antibody that maintained high affinity for IL-21 R and exhibited a desirable stability and biophysical profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Beyer
- Biomedicine Design, Pfizer , Dublin, Ireland
| | | | | | | |
Collapse
|
3
|
A multi-column plate adapter provides an economical and versatile high-throughput protein purification system. Protein Expr Purif 2018; 152:84-91. [PMID: 30041031 DOI: 10.1016/j.pep.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022]
Abstract
Protein purification is essential in the study of protein structure and function, and the development of novel therapeutics. Many studies require purifying multiple proteins at once, increasing the demand for improved purification methods. We hypothesized that multiple chromatography columns could be interfaced with a multi-well collection plate for rapid and convenient protein purification without the need of expensive instrumentation. As such, we developed a multi-column plate adapter (MCPA), which provides an economical yet versatile and time efficient, high-throughput protein purification system. The MCPA system simultaneously purified milligrams of different proteins under gravity or under vacuum for faster purification. The MCPA handles up to twenty-four 12 mL columns and multiple MCPA's in sequence allow milligram-scale purification of 96 different samples with relative ease. We also used the MCPA system for large scale affinity purification of four proteins, providing sufficient yields and purity for protein crystallization and biophysical characterization. The MCPA system is ideal for optimizing resin type and volume or any other purification parameter by customizing individual columns during the same purification. The high-throughput and versatile nature of this system should prove to be useful in obtaining adequate amounts of protein for subsequent analyses in any laboratory setting.
Collapse
|
4
|
Hearty S, Leonard P, Ma H, O'Kennedy R. Measuring Antibody-Antigen Binding Kinetics Using Surface Plasmon Resonance. Methods Mol Biol 2018; 1827:421-455. [PMID: 30196510 DOI: 10.1007/978-1-4939-8648-4_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance (SPR) is now widely embraced as a technology for monitoring a diverse range of protein-protein interactions and is considered almost de rigueur for characterizing antibody-antigen interactions. The technique obviates the need to label either of the interacting species, and the binding event is visualized in real time. Thus, it is ideally suited for screening crude, unpurified antibody samples that dominate early candidate panels following antibody selection campaigns. SPR returns not only concentration and affinity data but when used correctly can resolve the discrete component kinetic parameters (association and dissociation rate constants) of the affinity interaction. Herein, we outline some SPR-based generic antibody screening configurations and methodologies in the context of expediting data-rich ranking of candidate antibody panels and ensuring that antibodies with the optimal kinetic binding characteristics are reliably identified.
Collapse
Affiliation(s)
- Stephen Hearty
- School of Biotechnology, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Paul Leonard
- School of Biotechnology, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
- Qatar Foundation and Research Complex, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
5
|
Steven J, Müller MR, Carvalho MF, Ubah OC, Kovaleva M, Donohoe G, Baddeley T, Cornock D, Saunders K, Porter AJ, Barelle CJ. In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties to Facilitate Clinical Development. Front Immunol 2017; 8:1361. [PMID: 29109729 PMCID: PMC5660122 DOI: 10.3389/fimmu.2017.01361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Molecular engineering to increase the percentage identity to common human immunoglobulin sequences of non-human therapeutic antibodies and scaffolds has become standard practice. This strategy is often used to reduce undesirable immunogenic responses, accelerating the clinical development of candidate domains. The first humanized shark variable domain (VNAR) was reported by Kovalenko and colleagues and used the anti-human serum albumin (HSA) domain, clone E06, as a model to construct a number of humanized versions including huE06v1.10. This study extends this work by using huE06v1.10 as a template to isolate domains with improved biophysical properties and reduced antigenicity. Random mutagenesis was conducted on huE06v1.10 followed by refinement of clones through an off-rate ranking-based selection on target antigen. Many of these next-generation binders retained high affinity for target, together with good species cross-reactivity. Lead domains were assessed for any tendency to dimerize, tolerance to N- and C-terminal fusions, affinity, stability, and relative antigenicity in human dendritic cell assays. Functionality of candidate clones was verified in vivo through the extension of serum half-life in a typical drug format. From these analyses the domain, BA11, exhibited negligible antigenicity, high stability and high affinity for mouse, rat, and HSA. When these attributes were combined with demonstrable functionality in a rat model of PK, the BA11 clone was established as our clinical candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Baddeley
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Dawn Cornock
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Andrew J Porter
- Elasmogen Ltd., Aberdeen, United Kingdom.,Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
6
|
Hélie G, Parat M, Massé F, Gerdts CJ, Loisel TP, Matte A. Application of the Protein Maker as a platform purification system for therapeutic antibody research and development. Comput Struct Biotechnol J 2016; 14:238-44. [PMID: 27418955 PMCID: PMC4932438 DOI: 10.1016/j.csbj.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022] Open
Abstract
Within the research and development environment, higher throughput, parallelized protein purification is required for numerous activities, from small scale purification of monoclonal antibodies (mAbs) and antibody fragments for in vitro and in vivo assays to process development and optimization for manufacturing. Here, we describe specific applications and associated workflows of the Protein Maker liquid handling system utilized in both of these contexts. To meet the requirements for various in vitro assays, for the identification and validation of new therapeutic targets, small quantities of large numbers of purified antibodies or antibody fragments are often required. Reducing host cell proteins (HCP) levels following capture with Protein A by evaluating various wash buffers is an example of how parallelized protein purification can be leveraged to improve a process development outcome. Stability testing under various conditions of in-process intermediates, as an example, the mAb product from a clarified harvest, requires parallelized protein purification to generate concurrent samples for downstream assays. We have found that the Protein Maker can be successfully utilized for small-to-mid scale platform purification or for process development applications to generate the necessary purified protein samples. The ability to purify and buffer exchange up to 24 samples in parallel offers a significant reduction in time and cost per sample compared to serial purification using a traditional FPLC system. By combining the Protein Maker purification system with a TECAN Freedom EVO liquid handler for automated buffer exchange we have created a new, integrated platform for a variety of protein purification and process development applications.
Collapse
Affiliation(s)
- Geneviève Hélie
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Marie Parat
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Frédéric Massé
- Primary Assays, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Cory J Gerdts
- Protein BioSolutions Inc., Suite 280, 401 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Thomas P Loisel
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Allan Matte
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| |
Collapse
|
7
|
Müller MR, Saunders K, Grace C, Jin M, Piche-Nicholas N, Steven J, O'Dwyer R, Wu L, Khetemenee L, Vugmeyster Y, Hickling TP, Tchistiakova L, Olland S, Gill D, Jensen A, Barelle CJ. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain. MAbs 2014; 4:673-85. [PMID: 23676205 DOI: 10.4161/mabs.22242] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.
Collapse
|
8
|
Fennell BJ, McDonnell B, Tam ASP, Chang L, Steven J, Broadbent ID, Gao H, Kieras E, Alley J, Luxenberg D, Edmonds J, Fitz LJ, Miao W, Whitters MJ, Medley QG, Guo YJ, Darmanin-Sheehan A, Autin B, Shúilleabháin DN, Cummins E, King A, Krebs MRH, Grace C, Hickling TP, Boisvert A, Zhong X, McKenna M, Francis C, Olland S, Bloom L, Paulsen J, Somers W, Jensen A, Lin L, Finlay WJJ, Cunningham O. CDR-restricted engineering of native human scFvs creates highly stable and soluble bifunctional antibodies for subcutaneous delivery. MAbs 2013; 5:882-95. [PMID: 23995618 PMCID: PMC3896602 DOI: 10.4161/mabs.26201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.
Collapse
Affiliation(s)
- Brian J Fennell
- Pfizer; Global Biotherapeutics Technologies; Dublin, Ireland
| | - Barry McDonnell
- Pfizer; Global Biotherapeutics Technologies; Dublin, Ireland
| | - Amy Sze Pui Tam
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Lijun Chang
- Pfizer; Global Biotherapeutics Technologies, Foresterhill; Aberdeen, UK
| | - John Steven
- Pfizer; Global Biotherapeutics Technologies, Foresterhill; Aberdeen, UK
| | - Ian D Broadbent
- Pfizer; Global Biotherapeutics Technologies, Foresterhill; Aberdeen, UK
| | - Huilan Gao
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | | | | | | | | | | | | | | | | | - Yongjing J Guo
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | | | - Bénédicte Autin
- Pfizer; Global Biotherapeutics Technologies; Dublin, Ireland
| | | | - Emma Cummins
- Pfizer; Global Biotherapeutics Technologies; Dublin, Ireland
| | - Amy King
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Mark R H Krebs
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | | | | | - Angela Boisvert
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Xiaotian Zhong
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Matthew McKenna
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | | | - Stephane Olland
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Laird Bloom
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Janet Paulsen
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Will Somers
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Allan Jensen
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | - Laura Lin
- Pfizer; Global Biotherapeutics Technologies; Cambridge, MA USA
| | | | - Orla Cunningham
- Pfizer; Global Biotherapeutics Technologies; Dublin, Ireland
| |
Collapse
|
9
|
Mahon CM, Lambert MA, Glanville J, Wade JM, Fennell BJ, Krebs MR, Armellino D, Yang S, Liu X, O'Sullivan CM, Autin B, Oficjalska K, Bloom L, Paulsen J, Gill D, Damelin M, Cunningham O, Finlay WJJ. Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential. J Mol Biol 2013; 425:1712-30. [PMID: 23429058 DOI: 10.1016/j.jmb.2013.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
We have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3. Both libraries provided diverse, specific antibodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B produced fewer hits than WySH2A when selected in parallel. WySH2A also consistently produced hits of similar quality to WySH2B, demonstrating that the diversification of the CDR-L3 reduces library fitness. Despite the absence of deliberate bias in the library design, CDR length was strongly associated with the number of hits produced, leading to a functional loop length distribution profile that mimics the biases observed in the natural repertoire. A similar trend was also observed for the CDR-L3. After target selections, several key amino acids were enriched in the CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly charged residues) in a manner that was specific to position, preferentially occurred in CDR-H3 stem positions, and tended towards residues associated with loop stabilization. As proof of principle for the WySH2 libraries to produce viable lead candidate antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and biochemical neutralization of DLL4-NOTCH1 interaction.
Collapse
Affiliation(s)
- Ciara M Mahon
- Pfizer, Global Biotherapeutics Technologies, Grange Castle Business Park, Clondalkin, Dublin 22, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shih HH, Tu C, Cao W, Klein A, Ramsey R, Fennell BJ, Lambert M, Ní Shúilleabháin D, Autin B, Kouranova E, Laxmanan S, Braithwaite S, Wu L, Ait-Zahra M, Milici AJ, Dumin JA, LaVallie ER, Arai M, Corcoran C, Paulsen JE, Gill D, Cunningham O, Bard J, Mosyak L, Finlay WJJ. An ultra-specific avian antibody to phosphorylated tau protein reveals a unique mechanism for phosphoepitope recognition. J Biol Chem 2012; 287:44425-34. [PMID: 23148212 DOI: 10.1074/jbc.m112.415935] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly specific antibodies to phosphoepitopes are valuable tools to study phosphorylation in disease states, but their discovery is largely empirical, and the molecular mechanisms mediating phosphospecific binding are poorly understood. Here, we report the generation and characterization of extremely specific recombinant chicken antibodies to three phosphoepitopes on the Alzheimer disease-associated protein tau. Each antibody shows full specificity for a single phosphopeptide. The chimeric IgG pT231/pS235_1 exhibits a K(D) of 0.35 nm in 1:1 binding to its cognate phosphopeptide. This IgG is murine ortholog-cross-reactive, specifically recognizing the pathological form of tau in brain samples from Alzheimer patients and a mouse model of tauopathy. To better understand the underlying binding mechanisms allowing such remarkable specificity, we determined the structure of pT231/pS235_1 Fab in complex with its cognate phosphopeptide at 1.9 Å resolution. The Fab fragment exhibits novel complementarity determining region (CDR) structures with a "bowl-like" conformation in CDR-H2 that tightly and specifically interacts with the phospho-Thr-231 phosphate group, as well as a long, disulfide-constrained CDR-H3 that mediates peptide recognition. This binding mechanism differs distinctly from either peptide- or hapten-specific antibodies described to date. Surface plasmon resonance analyses showed that pT231/pS235_1 binds a truly compound epitope, as neither phosphorylated Ser-235 nor free peptide shows any measurable binding affinity.
Collapse
Affiliation(s)
- Heather H Shih
- Global Biotherapeutics Technologies, Pfizer Global Research & Development, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mahgoub IO. Expression and Characterization of a Functional Single-Chain Variable Fragment (scFv) Protein Recognizing MCF7 Breast Cancer Cells in E. coli Cytoplasm. Biochem Genet 2012; 50:625-41. [DOI: 10.1007/s10528-012-9506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 11/02/2011] [Indexed: 12/01/2022]
|
12
|
Smith AJ, Hancock MK, Bi K, Andrews J, Harrison P, Vaughan TJ. Feasibility of Implementing Cell-Based Pathway Reporter Assays in Early High-Throughput Screening Assay Cascades for Antibody Drug Discovery. ACTA ACUST UNITED AC 2012; 17:713-26. [DOI: 10.1177/1087057112442962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implementing functional cell-based screens in early antibody discovery has become increasingly important to select antibodies with the desired profile. However, this is limited by assay tolerance to crude antibody preparations and assay sensitivity. The current study aims to address this challenge and identify routes forward. Two common types of high-throughput screening (HTS) antibody sample, derived from either phage display or hybridoma techniques, have been screened across a wide range of CellSensor beta-lactamase reporter assays in a variety of cell backgrounds to more extensively characterize assay tolerance. Pathway-, sample-, and cell background–specific effects were observed. Reporter assays for agonism were less affected by crude antibody preparations, with 8 of 21 sample tolerant, and the potential to implement an additional 8 assays by choosing the best-tolerated sample type. Antagonist mode assays exhibited more complexity, with potentiating as well as inhibitory effects. However, 5 of 24 antagonist assays were fully tolerant, with the potential to implement an additional 11 assays. Different subsets of assays were affected in agonist versus antagonist mode, and hybridoma sample sets were better tolerated overall. The study clearly demonstrates the potential to use cell-based reporter assays in biologics HTS, particularly if the method of antibody production is considered in the context of the required assay mode (agonist/antagonist).
Collapse
Affiliation(s)
| | | | - Kun Bi
- Life Technologies, Madison, WI, USA
| | | | | | | |
Collapse
|
13
|
Hearty S, Leonard P, O'Kennedy R. Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol Biol 2012; 907:411-442. [PMID: 22907366 DOI: 10.1007/978-1-61779-974-7_24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface plasmon resonance (SPR) is now widely embraced as a technology for monitoring a diverse range of protein-protein interactions and is considered almost de rigueur for characterizing antibody-antigen interactions. The technique obviates the need to label either of the interacting species and the binding event is visualized in real-time. Thus, it is ideally suited for screening crude, unpurified antibody samples that dominate early candidate panels following antibody selection campaigns. SPR returns both concentration and affinity data but when used correctly can also resolve the discrete component kinetic parameters (association and dissociation rate constants) of the affinity interaction. Herein, we outline some SPR-based generic antibody screening configurations and methodologies in the context of expediting data-rich ranking of candidate antibody panels and ensuring that antibodies with the optimal kinetic binding characteristics are reliably identified.
Collapse
Affiliation(s)
- Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Wu L, Oficjalska K, Lambert M, Fennell BJ, Darmanin-Sheehan A, Ní Shúilleabháin D, Autin B, Cummins E, Tchistiakova L, Bloom L, Paulsen J, Gill D, Cunningham O, Finlay WJJ. Fundamental characteristics of the immunoglobulin VH repertoire of chickens in comparison with those of humans, mice, and camelids. THE JOURNAL OF IMMUNOLOGY 2011; 188:322-33. [PMID: 22131336 DOI: 10.4049/jimmunol.1102466] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.
Collapse
Affiliation(s)
- Leeying Wu
- Global Biotherapeutics Technologies, Pfizer, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vugmeyster Y, Guay H, Szklut P, Qian MD, Jin M, Widom A, Spaulding V, Bennett F, Lowe L, Andreyeva T, Lowe D, Lane S, Thom G, Valge-Archer V, Gill D, Young D, Bloom L. In vitro potency, pharmacokinetic profiles, and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus. MAbs 2010; 2:335-46. [PMID: 20424514 DOI: 10.4161/mabs.2.3.11850] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Using phage display, we generated a panel of optimized neutralizing antibodies against the human and mouse receptors for interleukin 21 (IL-21), a cytokine that is implicated in the pathogenesis of many types of autoimmune disease. Two antibodies, Ab-01 and Ab-02, which differed by only four amino acids in V(L) CDR3, showed potent inhibition of human and mouse IL-21R in cell-based assays and were evaluated for their pharmacological and pharmacodynamic properties. Ab-01, but not Ab-02, significantly reduced a biomarker of disease (anti-dsDNA antibodies) and IgG deposits in the kidney in the MRL-Fas(lpr) mouse model of lupus, suggesting that anti-IL-21R antibodies may prove useful in the treatment of lupus. Ab-01 also had a consistently higher exposure (AUC(0-infinity)) than Ab-02 following a single dose in rodents or cynomolgus monkeys (2-3-fold or 4-7-fold, respectively). Our data demonstrate that small differences in CDR3 sequences of optimized antibodies can lead to profound differences in in vitro and in vivo properties, including differences in pharmacological activity and pharmacokinetic profiles. The lack of persistent activity of Ab-02 in the MRL-Fas(lpr) mouse lupus model may have been a consequence of faster elimination, reduced potency in blocking the effects of mouse IL-21R, and more potent/earlier onset of the anti-product response relative to Ab-01.
Collapse
|
16
|
Fennell BJ, Darmanin-Sheehan A, Hufton SE, Calabro V, Wu L, Müller MR, Cao W, Gill D, Cunningham O, Finlay WJJ. Dissection of the IgNAR V domain: molecular scanning and orthologue database mining define novel IgNAR hallmarks and affinity maturation mechanisms. J Mol Biol 2010; 400:155-70. [PMID: 20450918 DOI: 10.1016/j.jmb.2010.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The shark antigen-binding V(NAR) domain has the potential to provide an attractive alternative to traditional biotherapeutics based on its small size, advantageous physiochemical properties, and unusual ability to target clefts in enzymes or cell surface molecules. The V(NAR) shares many of the properties of the well-characterised single-domain camelid V(H)H but is much less understood at the molecular level. We chose the hen-egg-lysozyme-specific archetypal Type I V(NAR) 5A7 and used ribosome display in combination with error-prone mutagenesis to interrogate the entire sequence space. We found a high level of mutational plasticity across the V(NAR) domain, particularly within the framework 2 and hypervariable region 2 regions. A number of residues important for affinity were identified, and a triple mutant combining A1D, S61R, and G62R resulted in a K(D) of 460 pM for hen egg lysozyme, a 20-fold improvement over wild-type 5A7, and the highest K(D) yet reported for V(NAR)-antigen interactions. These findings were rationalised using structural modelling and indicate the importance of residues outside the classical complementarity determining regions in making novel antigen contacts that modulate affinity. We also located two solvent-exposed residues (G15 and G42), distant from the V(NAR) paratope, which retain function upon mutation to cysteine and have the potential to be exploited as sites for targeted covalent modification. Our findings with 5A7 were extended to all known NAR structures using an in-depth bioinformatic analysis of sequence data available in the literature and a newly generated V(NAR) database. This study allowed us to identify, for the first time, both V(NAR)-specific and V(NAR)/Ig V(L)/TCR V(alpha) overlapping hallmark residues, which are critical for the structural and functional integrity of the single domain. Intriguingly, each of our designated V(NAR)-specific hallmarks align precisely with previously defined mutational 'cold spots' in natural nurse shark cDNA sequences. These findings will aid future V(NAR) engineering and optimisation studies towards the development of V(NAR) single-domain proteins as viable biotherapeutics.
Collapse
Affiliation(s)
- B J Fennell
- Pfizer, Grange Castle Business Park, Clondalkin, Dublin 22, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Finlay WJ, Cunningham O, Lambert MA, Darmanin-Sheehan A, Liu X, Fennell BJ, Mahon CM, Cummins E, Wade JM, O'Sullivan CM, Tan XY, Piche N, Pittman DD, Paulsen J, Tchistiakova L, Kodangattil S, Gill D, Hufton SE. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol 2009; 388:541-58. [PMID: 19285987 DOI: 10.1016/j.jmb.2009.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/06/2009] [Accepted: 03/07/2009] [Indexed: 12/16/2022]
Abstract
Antibodies that neutralize RAGE (receptor for advanced glycation end products)-ligand interactions have potential therapeutic applications in both acute and chronic diseases. We generated XT-M4, a rat anti-RAGE monoclonal antibody that has in vivo efficacy in an acute sepsis model. This antibody was subsequently humanized. To improve the affinity of this antibody for the treatment of chronic indications, we used random and targeted mutagenesis strategies in combination with ribosome and phage-display technologies, respectively, to generate libraries of XT-M4 variants. We identified a panel of single-chain Fv antibody fragments (scFv's) that was improved up to 110-fold in a homogeneous time-resolved fluorescence competition assay against parental XT-M4 immunoglobulin G (IgG). After reformatting to bivalent scFv-Fc fusions and IgGs, we observed similar gains in potency in the same assay. Further analysis of binding kinetics as IgG revealed multiple variants with subnanomolar apparent affinity that was dictated primarily by improvements in the off-rate. All variants also had improved binding to cell surface-expressed human RAGE, and all retained, or had improved, apparent affinity for mouse RAGE. F100bL in V(H) (variable region of the heavy chain) complementarity-determining region 3 (CDR3) was one of a number of key mutations that correlated with affinity improvements and was independently identified by both mutagenesis strategies. Random mutagenesis coupled with ribosome display and high-throughput screening revealed an unexpectedly high level of mutational plasticity across the whole length of the humanized scFv, suggesting greater scope for structural optimization outside of the primary antigen-combining site defined by V(H) CDR3 and V(kappa) CDR3. In summary, our comprehensive mutagenesis approach not only achieved the desired affinity maturation of XT-M4 but also defined multiple mutational hotspots across the antibody sequence, provided an insight into the specificity-determining residues of the antibody paratope, and identified additional sites within the CDR loops where human germ-line amino acids may be introduced without affecting function.
Collapse
Affiliation(s)
- William J Finlay
- Wyeth Research Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|