1
|
Bessard MA, Moser A, Waeckel-Énée E, Lindo V, Gdoura A, You S, Wong FS, Greer F, van Endert P. Insulin-degrading enzyme regulates insulin-directed cellular autoimmunity in murine type 1 diabetes. Front Immunol 2024; 15:1474453. [PMID: 39600694 PMCID: PMC11588737 DOI: 10.3389/fimmu.2024.1474453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Type 1 diabetes results from the destruction of pancreatic beta cells by autoreactive T cells. As an autoantigen with extremely high expression in beta cells, insulin triggers and sustains the autoimmune CD4+ and CD8+ T cell responses and islet inflammation. We have previously shown that deficiency for insulin-degrading enzyme (IDE), a ubiquitous cytosolic protease with very high affinity for insulin, induces endoplasmic reticulum (ER) stress and proliferation in islet cells and protects non-obese diabetic mice (NOD) from diabetes. Here we wondered whether IDE deficiency affects autoreactive CD8+ T cell responses to insulin and thereby immune pathogenesis in NOD mice. We find that Ide-/- NOD harbor fewer diabetogenic T cells and reduced numbers of CD8+ T cells recognizing the dominant autoantigen insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Using in vitro digestions and cellular antigen presentation assays, we show that generation of the dominant insulin epitope B15-23 involves both the proteasome and IDE. IDE deficiency attenuates MHC-I presentation of the immunodominant insulin epitope by beta cells to cognate CD8+ T cells. Consequently, Ide-/- islets display reduced susceptibility to autoimmune destruction upon grafting, and to killing by insulin-specific CD8+ T cells. Moreover, Ide-/- mice are partly resistant to disease transfer by CD8+ T cells specific for insulin but not for IGRP. Thus, IDE has a dual role in beta cells, regulating ER stress and proliferation while at the same time promoting insulin-directed autoreactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Marie-Andrée Bessard
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Anna Moser
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Waeckel-Énée
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | | | - Abdelaziz Gdoura
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Sylvaine You
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Cochin, Paris, France
| | - F. Susan Wong
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Peter van Endert
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
2
|
Amdare NP, Shultz LD, Greiner DL, DiLorenzo TP. Human insulin as both antigen and protector in type 1 diabetes. Eur J Immunol 2024; 54:e2350949. [PMID: 38778498 PMCID: PMC11563931 DOI: 10.1002/eji.202350949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.
Collapse
Affiliation(s)
- Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Division of Endocrinology and Diabetes), Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
3
|
Zhu S, Waeckel-Énée E, Oshima M, Moser A, Bessard MA, Gdoura A, Roger K, Mode N, Lipecka J, Yilmaz A, Bertocci B, Diana J, Saintpierre B, Guerrera IC, Scharfmann R, Francesconi S, Mauvais FX, van Endert P. Islet cell stress induced by insulin-degrading enzyme deficiency promotes regeneration and protection from autoimmune diabetes. iScience 2024; 27:109929. [PMID: 38799566 PMCID: PMC11126816 DOI: 10.1016/j.isci.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-βH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Masaya Oshima
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Anna Moser
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Marie-Andrée Bessard
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Abdelaziz Gdoura
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Kevin Roger
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Nina Mode
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Joanna Lipecka
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Ayse Yilmaz
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Julien Diana
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Ida Chiara Guerrera
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Raphael Scharfmann
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Stefania Francesconi
- Genome Dynamics Unit, Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525, F-75015 Paris, France
| | - François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service de Physiologie – Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
4
|
Zhu S, Waeckel-Énée E, Moser A, Bessard MA, Roger K, Lipecka J, Yilmaz A, Bertocci B, Diana J, Saintpierre B, Guerrera IC, Francesconi S, Mauvais FX, van Endert P. Pancreatic islet cell stress induced by insulin-degrading enzyme deficiency promotes islet regeneration and protection from autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549693. [PMID: 37503145 PMCID: PMC10370150 DOI: 10.1101/2023.07.19.549693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.
Collapse
|
5
|
Schloss J, Ali R, Babad J, Guerrero-Ros I, Pongsachai J, He LZ, Keler T, DiLorenzo TP. Development and Characterization of a Preclinical Model for the Evaluation of CD205-Mediated Antigen Delivery Therapeutics in Type 1 Diabetes. Immunohorizons 2019; 3:236-253. [PMID: 31356169 DOI: 10.4049/immunohorizons.1900014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are crucial for the production of adaptive immune responses to disease-causing microbes. However, in the steady state (i.e., in the absence of an infection or when Ags are experimentally delivered without a DC-activating adjuvant), DCs present Ags to T cells in a tolerogenic manner and are important for the establishment of peripheral tolerance. Delivery of islet Ags to DCs using Ag-linked Abs to the DC endocytic receptor CD205 has shown promise in the NOD mouse model of type 1 diabetes (T1D). It is important to note, however, that all myeloid DCs express CD205 in humans, whereas in mice, only one of the classical DC subsets does (classical DC1; CD8α+ in spleen). Thus, the evaluation of CD205-targeted treatments in mice will likely not accurately predict the results observed in humans. To overcome this challenge, we have developed and characterized a novel NOD mouse model in which all myeloid DCs transgenically express human CD205 (hCD205). This NOD.hCD205 strain displays a similar T1D incidence profile to standard NOD mice. The presence of the transgene does not alter DC development, phenotype, or function. Importantly, the DCs are able to process and present Ags delivered via hCD205. Because Ags taken up via hCD205 can be presented on both class I and class II MHC, both CD4+ and CD8+ T cells can be modulated. As both T cell subsets are important for T1D pathogenesis, NOD.hCD205 mice represent a unique, patient-relevant tool for the development and optimization of DC-directed T1D therapies.
Collapse
Affiliation(s)
- Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Jillamika Pongsachai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Li-Zhen He
- Celldex Therapeutics Inc., Hampton, NJ 08827
| | - Tibor Keler
- Celldex Therapeutics Inc., Hampton, NJ 08827
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and.,The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
6
|
Mallol C, Casana E, Jimenez V, Casellas A, Haurigot V, Jambrina C, Sacristan V, Morró M, Agudo J, Vilà L, Bosch F. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6:664-680. [PMID: 28702323 PMCID: PMC5485311 DOI: 10.1016/j.molmet.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Methods Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28–30 weeks. Results In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Conclusions Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans. Local pancreatic IGF1 expression prevents spontaneous autoimmune diabetes. Protection achieved after one-time local administration of IGF1-encoding AAV vectors. Efficacious in animals treated early or once autoimmunity is already established. Protection through maintenance of β-cell mass and endogenous insulin secretion. Treatment leads to reduced infiltration and expression of immunity genes in islets.
Collapse
Affiliation(s)
- Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| |
Collapse
|
7
|
Babad J, Ali R, Schloss J, DiLorenzo TP. An HLA-Transgenic Mouse Model of Type 1 Diabetes That Incorporates the Reduced but Not Abolished Thymic Insulin Expression Seen in Patients. J Diabetes Res 2016; 2016:7959060. [PMID: 26824049 PMCID: PMC4707332 DOI: 10.1155/2016/7959060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/04/2015] [Indexed: 01/12/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of the pancreatic islet beta cells. Multiple genetic loci contribute to disease susceptibility in humans, with the most responsible locus being the major histocompatibility complex (MHC). Certain MHC alleles are predisposing, including the common HLA-A(∗)02:01. After the MHC, the locus conferring the strongest susceptibility to T1D is the regulatory region of the insulin gene, and alleles associated with reduced thymic insulin expression are predisposing. Mice express two insulin genes, Ins1 and Ins2. While both are expressed in beta cells, only Ins2 is expressed in the thymus. We have developed an HLA-A(∗)02:01-transgenic NOD-based T1D model that is heterozygous for a functional Ins2 gene. These mice exhibit reduced thymic insulin expression and accelerated disease in both genders. Immune cell populations are not grossly altered, and the mice exhibit typical signs of islet autoimmunity, including CD8 T cell responses to beta cell peptides also targeted in HLA-A(∗)02:01-positive type 1 diabetes patients. This model should find utility as a tool to uncover the mechanisms underlying the association between reduced thymic insulin expression and T1D in humans and aid in preclinical studies to evaluate insulin-targeted immunotherapies for the disease.
Collapse
Affiliation(s)
- Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- *Teresa P. DiLorenzo:
| |
Collapse
|
8
|
Mukherjee G, Chaparro RJ, Schloss J, Smith C, Bando CD, DiLorenzo TP. Glucagon-reactive islet-infiltrating CD8 T cells in NOD mice. Immunology 2015; 144:631-40. [PMID: 25333865 DOI: 10.1111/imm.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated destruction of the insulin-producing β cells in pancreatic islets. A number of islet antigens recognized by CD8 T cells that contribute to disease pathogenesis in non-obese diabetic (NOD) mice have been identified; however, the antigenic specificities of the majority of the islet-infiltrating cells have yet to be determined. The primary goal of the current study was to identify candidate antigens based on the level and specificity of expression of their genes in mouse islets and in the mouse β cell line MIN6. Peptides derived from the candidates were selected based on their predicted ability to bind H-2K(d) and were examined for recognition by islet-infiltrating T cells from NOD mice. Several proteins, including those encoded by Abcc8, Atp2a2, Pcsk2, Peg3 and Scg2, were validated as antigens in this way. Interestingly, islet-infiltrating T cells were also found to recognize peptides derived from proglucagon, whose expression in pancreatic islets is associated with α cells, which are not usually implicated in type 1 diabetes pathogenesis. However, type 1 diabetes patients have been reported to have serum autoantibodies to glucagon, and NOD mouse studies have shown a decrease in α cell mass during disease pathogenesis. Our finding of islet-infiltrating glucagon-specific T cells is consistent with these reports and suggests the possibility of α cell involvement in development and progression of disease.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
9
|
Fuchs YF, Jainta GW, Kühn D, Wilhelm C, Weigelt M, Karasinsky A, Upadhyaya B, Ziegler AG, Bonifacio E. Vagaries of the ELISpot assay: specific detection of antigen responsive cells requires purified CD8(+) T cells and MHC class I expressing antigen presenting cell lines. Clin Immunol 2015; 157:216-25. [PMID: 25728493 DOI: 10.1016/j.clim.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 12/15/2014] [Accepted: 02/17/2015] [Indexed: 01/22/2023]
Abstract
Quantification of antigen-specific CD8(+) T cells is important for monitoring infection, vaccination, and response to therapy in cancer and immune-mediated diseases. Cytokine enzyme-linked-immunospot (ELISpot) assays are often used for this purpose. We found that substantial spot formation in IFNγ ELISpot assays occurred independently of CD8(+) T cells even when classical MHC class I restricted peptides are used for stimulation. Using fractionated cells and intracellular cytokine staining, the non-CD8(+) T cell IFNγ production was attributed to the CD4(+) T cell fraction. We therefore refined a cell line-based ELISpot assay combining HLA-A*0201 expressing K562 cells for antigen presentation with purified CD8(+) T cells and demonstrated that it specifically detected CD8(+) T cell responses with detection limits comparable to traditional ELISpot assays and dextramer-based quantification. The assay was further adapted to whole antigen responses with antigen (pre-proinsulin)-expressing HLA-A*0201K562 cells. Thus, we revealed and corrected a weak spot of the CD8(+) ELISpot assay.
Collapse
Affiliation(s)
- Yannick F Fuchs
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany; Paul Langerhans Institute Dresden, Germany; Forschergruppe Diabetes e.V., Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Gregor W Jainta
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Denise Kühn
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Carmen Wilhelm
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Marc Weigelt
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anne Karasinsky
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Bhaskar Upadhyaya
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anette-G Ziegler
- Forschergruppe Diabetes e.V., Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany; Paul Langerhans Institute Dresden, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
10
|
Lamont D, Mukherjee G, Kumar PR, Samanta D, McPhee CG, Kay TWH, Almo SC, DiLorenzo TP, Serreze DV. Compensatory mechanisms allow undersized anchor-deficient class I MHC ligands to mediate pathogenic autoreactive T cell responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:2135-46. [PMID: 25063871 DOI: 10.4049/jimmunol.1400997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-reactive T cells must escape thymic negative selection to mediate pathogenic autoimmunity. In the NOD mouse model of autoimmune diabetes, several β cell-cytotoxic CD8 T cell populations are known, with the most aggressive of these represented by AI4, a T cell clone with promiscuous Ag-recognition characteristics. We identified a long-elusive β cell-specific ligand for AI4 as an unusually short H-2D(b)-binding 7-mer peptide lacking a C-terminal anchor residue and derived from the insulin A chain (InsA14-20). Crystallography reveals that compensatory mechanisms permit peptides lacking a C-terminal anchor to bind sufficiently to the MHC to enable destructive T cell responses, yet allow cognate T cells to avoid negative selection. InsA14-20 shares two solvent-exposed residues with previously identified AI4 ligands, providing a structural explanation for AI4's promiscuity. Detection of AI4-like T cells, using mimotopes of InsA14-20 with improved H-2D(b)-binding characteristics, establishes the AI4-like T cell population as a consistent feature of the islet infiltrates of NOD mice. Our work establishes undersized peptides as previously unrecognized targets of autoreactive CD8 T cells and presents a strategy for their further exploration as Ags in autoimmune disease.
Collapse
Affiliation(s)
| | - Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - P Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dibyendu Samanta
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia; and
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
11
|
Eberwine RA, Cort L, Habib M, Mordes JP, Blankenhorn EP. Autoantigen-induced focusing of Vβ13+ T cells precedes onset of autoimmune diabetes in the LEW.1WR1 rat. Diabetes 2014; 63:596-604. [PMID: 24150607 PMCID: PMC3900547 DOI: 10.2337/db13-0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The earliest events leading to autoimmune type 1 diabetes (T1D) are not known in any species. A T-cell receptor (TCR)-variable region, TCR-Vβ13, is required for susceptibility to autoimmune diabetes in rats, and selective depletion of Vβ13(+) T cells with an allele-specific monoclonal antibody prevents disease in multiple rat strains. To investigate the role of Vβ13 early in diabetes, we examined islet T-cell transcripts in susceptible (LEW.1WR1) and resistant (LEW.1W and Wistar Furth) strains induced with polyinosinic:polycytidylic acid. Vβ13(+) T cells displayed antigenic focusing in LEW.1WR1 islets 5 days postinduction and were characterized by a substantial decrease in complementarity determining region 3 diversity. This occurred prior to significant islet T-cell accumulation (day 7) or frank diabetes (days 10-14). Vβ13(+) transcripts increased in LEW.1WR1 islets during diabetes progression, but not in resistant rats. We also analyzed transcript clonality of rat TCR-Vα5, an ortholog of the dominant TCR-Vα chain found on insulin B:9-23-reactive T cells in nonobese diabetic rat islets. We observed clonal expansion of Vα5(+) transcripts in prediabetic LEW.1WR1 islets, suggesting that rat Vα5 is also an important component of islet autoantigen recognition. These data provide additional evidence that genome-encoded TCR sequences are important determinants of genetic susceptibility to T1D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Antibodies, Monoclonal
- Autoantigens
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Gene Expression Regulation/immunology
- Genetic Predisposition to Disease
- Islets of Langerhans/cytology
- Poly I-C
- Rats
- Rats, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Ryan A. Eberwine
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Laura Cort
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Michael Habib
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P. Mordes
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
- Corresponding author: Elizabeth P. Blankenhorn,
| |
Collapse
|
12
|
Mukherjee G, Geliebter A, Babad J, Santamaria P, Serreze DV, Freeman GJ, Tarbell KV, Sharpe A, DiLorenzo TP. DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8⁺ T cells independently of PD-1 and PD-L1. Int Immunol 2013; 25:651-60. [PMID: 24021877 DOI: 10.1093/intimm/dxt031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD8⁺ T cells specific for islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) have been implicated in type 1 diabetes in both humans and non-obese diabetic (NOD) mice, in which T cells specific for IGRP₂₀₆₋₂₁₄ are highly prevalent. We sought to manipulate these pathogenic T cells by exploiting the ability of steady-state dendritic cells (DCs) to present antigens in a tolerogenic manner. The endocytic receptor DEC-205 was utilized to deliver an IGRP₂₀₆₋₂₁₄ mimotope to DCs in NOD mice, and the impact of this delivery on a polyclonal population of endogenous islet-reactive cognate T cells was determined. Assessment of islet-infiltrating CD8⁺ T cells showed a decrease in the percentage, and the absolute number, of endogenous IGRP₂₀₆₋₂₁₄-specific T cells when the mimotope was delivered to DCs, compared with delivery of a specificity control. Employing an adoptive transfer system, deletion of CD8⁺ T cells as a result of DEC-205-mediated antigen targeting was found to occur independently of programmed death-1 (PD-1) and its ligand (PD-L1), both often implicated in the regulation of peripheral T-cell tolerance. Given its promise for the manipulation of self-reactive polyclonal T cells demonstrated here, the distinctive characteristics of this antigen delivery system will be important to appreciate as its potential as an intervention for autoimmune diseases continues to be investigated.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marandykina A, Palacios-Prado N, Rimkutė L, Skeberdis VA, Bukauskas FF. Regulation of connexin36 gap junction channels by n-alkanols and arachidonic acid. J Physiol 2013; 591:2087-101. [PMID: 23420660 PMCID: PMC3634521 DOI: 10.1113/jphysiol.2013.250910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
We examined junctional conductance (gj) and its dependence on transjunctional voltage in gap junction (GJ) channels formed of wild-type connexin36 (Cx36) or its fusion form with green fluorescent protein (Cx36-EGFP) transfected in HeLa cells or endogenously expressed in primary culture of pancreatic β-cells. Only a very small fraction (∼0.8%) of Cx36-EGFP channels assembled into junctional plaques of GJs were open under control conditions. We found that short carbon chain n-alkanols (SCCAs) increased gj, while long carbon chain n-alkanols resulted in full uncoupling; cutoff is between heptanol and octanol. The fraction of functional channels and gj increased several fold under an exposure to SCCAs, or during reduction of endogenous levels of arachidonic acid (AA) by exposure to fatty acid-free BSA or cytosolic phospholipase A2 inhibitors. Moreover, uncoupling caused by exogenously applied AA can be rescued by BSA, which binds AA and other polyunsaturated fatty acids (PUFAs), but not by BSA modified with 1,2-cyclohexanedione, which does not bind AA and other PUFAs. We propose that under control conditions, Cx36 GJ channels in HeLa transfectants and β-cells are inhibited by endogenous AA, which stabilizes a closed conformational state of the channel that leads to extremely low fraction of functional channels. In addition, SCCAs increase gj by interfering with endogenous AA-dependent inhibition, increasing open probability and the fraction of functional channels.
Collapse
Affiliation(s)
- Alina Marandykina
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
14
|
Brezar V, Culina S, Gagnerault MC, Mallone R. Short-term subcutaneous insulin treatment delays but does not prevent diabetes in NOD mice. Eur J Immunol 2012; 42:1553-61. [PMID: 22678909 DOI: 10.1002/eji.201242394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite encouraging results in the NOD mouse, type 1 diabetes prevention trials using subcutaneous insulin have been unsuccessful. To explain these discrepancies, 3-week-old NOD mice were treated for 7 weeks with subcutaneous insulin at two different doses: a high dose (0.5 U/mouse) used in previous mouse studies; and a low dose (0.005 U/mouse) equivalent to that used in human trials. Effects on insulitis and diabetes were monitored along with immune and metabolic modifications. Low-dose insulin did not have any effect on disease incidence. High-dose treatment delayed but did not prevent diabetes, with reduced insulitis reappearing once insulin discontinued. This effect was not associated with significant immune changes in islet infiltrates, either in terms of cell composition or frequency and IFN-γ secretion of islet-reactive CD8(+) T cells recognizing the immunodominant epitopes insulin B(15-23) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214). Delayed diabetes and insulitis were associated with lower blood glucose and endogenous C-peptide levels, which rapidly returned to normal upon treatment discontinuation. In conclusion, high- but not low-dose prophylactic insulin treatment delays diabetes onset and is associated with metabolic changes suggestive of β-cell "rest" which do not persist beyond treatment. These findings have important implications for designing insulin-based prevention trials.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM, U986, DeAR Lab Avenir, Cochin/Saint Vincent de Paul Hospital, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | | |
Collapse
|
15
|
Antal Z, Baker JC, Smith C, Jarchum I, Babad J, Mukherjee G, Yang Y, Sidney J, Sette A, Santamaria P, DiLorenzo TP. Beyond HLA-A*0201: new HLA-transgenic nonobese diabetic mouse models of type 1 diabetes identify the insulin C-peptide as a rich source of CD8+ T cell epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5766-75. [PMID: 22539795 PMCID: PMC3358524 DOI: 10.4049/jimmunol.1102930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes is an autoimmune disease characterized by T cell responses to β cell Ags, including insulin. Investigations employing the NOD mouse model of the disease have revealed an essential role for β cell-specific CD8(+) T cells in the pathogenic process. As CD8(+) T cells specific for β cell Ags are also present in patients, these reactivities have the potential to serve as therapeutic targets or markers for autoimmune activity. NOD mice transgenic for human class I MHC molecules have previously been employed to identify T cell epitopes having important relevance to the human disease. However, most studies have focused exclusively on HLA-A*0201. To broaden the reach of epitope-based monitoring and therapeutic strategies, we have looked beyond this allele and developed NOD mice expressing human β(2)-microglobulin and HLA-A*1101 or HLA-B*0702, which are representative members of the A3 and B7 HLA supertypes, respectively. We have used islet-infiltrating T cells spontaneously arising in these strains to identify β cell peptides recognized in the context of the transgenic HLA molecules. This work has identified the insulin C-peptide as an abundant source of CD8(+) T cell epitopes. Responses to these epitopes should be of considerable utility for immune monitoring, as they cannot reflect an immune reaction to exogenously administered insulin, which lacks the C-peptide. Because the peptides bound by one supertype member were found to bind certain other members also, the epitopes identified in this study have the potential to result in therapeutic and monitoring tools applicable to large numbers of patients and at-risk individuals.
Collapse
Affiliation(s)
- Zoltan Antal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Pediatric Endocrinology, Children's Hospital at Montefiore, Bronx, NY 10467
| | - Jason C. Baker
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine (Division of Endocrinology), Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carla Smith
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Irene Jarchum
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yang Yang
- Julia McFarlane Diabetes Research Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine (Division of Endocrinology), Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
16
|
Liu Z, Cort L, Eberwine R, Herrmann T, Leif JH, Greiner DL, Yahalom B, Blankenhorn EP, Mordes JP. Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody: Vβ13 as a therapeutic target and biomarker. Diabetes 2012; 61:1160-8. [PMID: 22368175 PMCID: PMC3331757 DOI: 10.2337/db11-0867] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In earlier studies of the Iddm14 diabetes susceptibility locus in the rat, we identified an allele of the T-cell receptor (TCR) β-chain, Tcrb-V13S1A1, as a candidate gene. To establish its importance, we treated susceptible rats with a depleting anti-rat Vβ13 monoclonal antibody and then exposed them to either polyinosinic:polycytidylic acid or a diabetogenic virus to induce diabetes. The overall frequency of diabetes in the controls was 74% (n = 50), compared with 17% (n = 30) in the anti-Vβ13-treated animals, with minimal islet pathology in nondiabetic treated animals. T cells isolated from islets on day 5 after starting induction showed a greater proportion of Vβ13(+) T cells than did peripheral lymph node T cells. Vβ13 transcripts recovered from day 5 islets revealed focused Jβ usage and less CDR3 diversity than did transcripts from peripheral Vβ13(+) T cells. CDR3 usage was not skewed in control Vβ16 CDR3 transcripts. Anti-rat Vβ13 antibody also prevented spontaneous diabetes in BBDP rats. The Iddm14 gene is likely to be Tcrb-V13, indicating that TCR β-chain usage is a determinant of susceptibility to autoimmune diabetes in rats. It may be possible to prevent autoimmune diabetes by targeting a limited element of the T-cell repertoire.
Collapse
MESH Headings
- Alleles
- Animals
- Antibodies, Monoclonal/therapeutic use
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Genetic Testing
- Islets of Langerhans/cytology
- Islets of Langerhans/metabolism
- Male
- Poly I-C/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Laura Cort
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ryan Eberwine
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jean H. Leif
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dale L. Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Barak Yahalom
- Division of Research Development, Biomedical Research Models, Worcester, Massachusetts
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - John P. Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Corresponding author: John P. Mordes,
| |
Collapse
|
17
|
Abstract
Beta cell destruction in autoimmune diabetes is accompanied by the presence of autoantibodies and autoreactive T cells against beta cell antigens. Autoantibodies to insulin are predictive of future diabetes in man and in the non-obese diabetic mouse model. Furthermore, the detection of peripheral autoreactive CD8(+) T cells in this mouse model is indicative of beta cell killing and correlates with the development of diabetes. We describe two protocols that are helpful for the detection of beta-cell autoimmunity in mice. The first protocol describes the detection of insulin-specific autoantibodies using a radio-binding assay. The other is a general CD8(+) T cell ELISpot protocol for the detection of peptide-specific responses of CD8(+) T cells from secondary lymphoid organs or pancreatic islets.
Collapse
|
18
|
Brezar V, Culina S, Østerbye T, Guillonneau F, Chiappetta G, Verdier Y, Vinh J, Wong FS, Buus S, Mallone R. T cells recognizing a peptide contaminant undetectable by mass spectrometry. PLoS One 2011; 6:e28866. [PMID: 22194932 PMCID: PMC3237501 DOI: 10.1371/journal.pone.0028866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/16/2011] [Indexed: 12/18/2022] Open
Abstract
Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility complex (MHC) Class I-restricted β-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP206-214 using a novel method confirmed the identity of the contaminant, further underlining the immunodominance of IGRP206-214. If left undetected, minute impurities in synthetic peptide preparations may thus give spurious results.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Slobodan Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Thomas Østerbye
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - François Guillonneau
- Université Paris Descartes, Sorbonne Paris Cité, 3P5 Proteomics Facility, Paris, France
| | - Giovanni Chiappetta
- Ecole Supérieure de Physique et de Chimie Industrielles de Paris, USR 3149 CNRS/ESPCI ParisTech, Paris, France
| | - Yann Verdier
- Ecole Supérieure de Physique et de Chimie Industrielles de Paris, USR 3149 CNRS/ESPCI ParisTech, Paris, France
| | - Joelle Vinh
- Ecole Supérieure de Physique et de Chimie Industrielles de Paris, USR 3149 CNRS/ESPCI ParisTech, Paris, France
| | - F. Susan Wong
- Centre for Endocrine and Diabetes Sciences, Cardiff University, Cardiff, United Kingdom
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Mallone
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique – Hopitaux de Paris, Hôpital Cochin et Hôtel Dieu, Service de Diabétologie, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Samanta D, Mukherjee G, Ramagopal UA, Chaparro RJ, Nathenson SG, DiLorenzo TP, Almo SC. Structural and functional characterization of a single-chain peptide-MHC molecule that modulates both naive and activated CD8+ T cells. Proc Natl Acad Sci U S A 2011; 108:13682-7. [PMID: 21825122 PMCID: PMC3158197 DOI: 10.1073/pnas.1110971108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8(+) T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8(+) T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK(d).IGRP) by using the class I MHC molecule H-2K(d) and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK(d).IGRP tetramers bound specifically to cognate CD8(+) T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8(+) T cells makes them a potential intervention strategy in early and late stages of disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Teresa P. DiLorenzo
- Departments of Microbiology and Immunology
- Medicine/Division of Endocrinology, and
| | - Steven C. Almo
- Biochemistry
- Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
20
|
Coppieters KT, Amirian N, von Herrath MG. Incidental CD8 T cell reactivity against caspase-cleaved apoptotic self-antigens from ubiquitously expressed proteins in islets from prediabetic human leucocyte antigen-A2 transgenic non-obese diabetic mice. Clin Exp Immunol 2011; 165:155-62. [PMID: 21605113 DOI: 10.1111/j.1365-2249.2011.04420.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apoptosis is known as a major mechanism which contributes to beta cell decay in type 1 diabetes. Commitment to this pathway generally involves caspase-mediated protein cleavage and was found to induce cross-presentation of a specific antigen repertoire under certain inflammatory conditions. We aimed to assess the significance of the CD8 T cell population reactive against such caspase-cleaved apoptotic self-antigens in pancreatic islets of prediabetic human leucocyte antigen (HLA)-A2 transgenic non-obese diabetic chimeric monochain transgene construct (NOD.HHD) mice. We have reproduced a unique peptide library consisting of human CD8 T cell-derived apoptosis-specific antigens, all of which belong to structural proteins expressed ubiquitously in human islets. Pancreatic islets from prediabetic NOD.HHD mice, harbouring humanized major histocompatibilty complex (MHC) class I, were isolated and handpicked at various ages, and islet-infiltrating CD8 T cells were expanded in vitro and used as responders in an interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay. Human T2 cells were used as antigen-presenting cells (APC) to avoid endogenous antigen presentation. Analogous to the interindividual variability found with peptides from known islet autoantigens such as islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) and insulin, some mice showed variable, low-degree CD8 T cell reactivity against caspase-cleaved self-antigens. Because reactivity was predominantly minor and often undetectable, we conclude that beta cell apoptosis does not routinely provoke the development of dominant cytotoxic T lymphocyte (CTL) reactive against caspase-cleaved self-antigens in the NOD.HHD model.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
21
|
In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci U S A 2010; 107:9317-22. [PMID: 20439719 DOI: 10.1073/pnas.0913835107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A current paradigm states that non-antigen-specific inflammatory cues attract noncognate, bystander T cell specificities to sites of infection and autoimmune inflammation. Here we show that cues emanating from a tissue undergoing spontaneous autoimmune inflammation cannot recruit naive or activated bystander T cell specificities in the absence of local expression of cognate antigen. We monitored the recruitment of CD8(+) T cells specific for the prevalent diabetogenic epitope islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) in gene-targeted nonobese diabetic (NOD) mice expressing a T cell "invisible" IGRP(206-214) sequence. These mice developed islet inflammation and diabetes with normal incidence and kinetics, but their inflammatory lesions could recruit neither naive (endogenous or exogenous) nor ex vivo-activated IGRP(206-214)-reactive CD8(+) T cells. Conversely, IGRP(206-214)-reactive, but not nonautoreactive CD8(+) T cells rapidly homed to and accumulated in the inflamed islets of wild-type NOD mice. Our results indicate that CD8(+) T cell recruitment to a site of autoimmune inflammation results from an active process that is strictly dependent on local display of cognate pMHC and suggest that CD8(+) T cells contained in extralymphoid autoimmune lesions are largely autoreactive.
Collapse
|
22
|
Jarchum I, DiLorenzo TP. Ins2 deficiency augments spontaneous HLA-A*0201-restricted T cell responses to insulin. THE JOURNAL OF IMMUNOLOGY 2009; 184:658-65. [PMID: 19966211 DOI: 10.4049/jimmunol.0903414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type 1 diabetes results from the autoimmune destruction of insulin-producing beta cells by T cells specific for beta cell Ags, including insulin. In humans, the non-MHC locus conferring the strongest disease susceptibility is the insulin gene, and alleles yielding lower thymic insulin expression are predisposing. We sought to incorporate this characteristic into an HLA-transgenic model of the disease and to determine the influence of reduced thymic insulin expression on CD8+ T cell responses to preproinsulin. We examined NOD.Ins2(-/-) mice, which do not express insulin in the thymus and show accelerated disease, to determine whether they exhibit quantitative or qualitative differences in CD8+ T cell responses to preproinsulin. We also generated NOD.Ins2(-/-) mice expressing type 1 diabetes-associated HLA-A*0201 (designated NOD.beta2m(-/-).HHD.Ins2(-/-)) in an effort to obtain an improved humanized disease model. We found that CD8+ T cell reactivity to certain insulin peptides was more readily detected in NOD.Ins2(-/-) mice than in NOD mice. Furthermore, the proportion of insulin-reactive CD8+ T cells infiltrating the islets of NOD.Ins2(-/-) mice was increased. NOD.beta2m(-/-).HHD.Ins2(-/-) mice exhibited rapid onset of disease and had an increased proportion of HLA-A*0201-restricted insulin-reactive T cells, including those targeting the clinically relevant epitope Ins B10-18. Our results suggest that insulin alleles that predispose to type 1 diabetes in humans do so, at least in part, by facilitating CD8+ T cell responses to the protein. We propose the NOD.beta2m(-/-).HHD.Ins2(-/-) strain as an improved humanized disease model, in particular for studies seeking to develop therapeutic strategies targeting insulin-specific T cells.
Collapse
Affiliation(s)
- Irene Jarchum
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|