1
|
Gubser C, Pascoe RD, Trautmann L, Rasmussen TA, Lewin SR. Protocol for measuring killing capacity and intracellular cytokine production of human HIV antigen-specific CD8 T cells using flow cytometry. STAR Protoc 2024; 5:103231. [PMID: 39116199 PMCID: PMC11362774 DOI: 10.1016/j.xpro.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Here, we present a protocol to evaluate the killing capacity and functional profile of human HIV-specific CD8 T cells. We describe steps for culturing peripheral blood mononuclear cells (PBMCs) from patients with HIV on antiretroviral therapy (ART) with HIV peptides ex vivo and quantifying HIV-specific CD8 T cell killing using flow cytometry. We then detail procedures for integrating the established killing assay with intracellular cytokine staining (ICS) and assessing CD8 T cell function. This protocol can provide insights into CD8 T cell-mediated immunity against HIV. For complete details on the use and execution of this protocol, please refer to Mbitikon-Kobo et al.,1 Noto et al.,2 and Gubser et al.3.
Collapse
Affiliation(s)
- Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.
| | - Rachel D Pascoe
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Lydie Trautmann
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8+ T cells. EBioMedicine 2022; 84:104253. [PMID: 36088683 PMCID: PMC9471490 DOI: 10.1016/j.ebiom.2022.104253] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background Harnessing CD8+ T cell responses is being explored to achieve HIV remission. Although HIV-specific CD8+ T cells become dysfunctional without treatment, antiretroviral therapy (ART) partially restores their function. However, the extent of this recovery under long-term ART is less understood. Methods We analyzed the differentiation status and function of HIV-specific CD8+ T cells after long-term ART initiated in acute or chronic HIV infection ex vivo and upon in vitro recall. Findings ART initiation in any stage of acute HIV infection promoted the persistence of long-lived HIV-specific CD8+ T cells with high expansion (P<0·0008) and cytotoxic capacity (P=0·02) after in vitro recall, albeit at low cell number (P=0·003). This superior expansion capacity correlated with stemness (r=0·90, P=0·006), measured by TCF-1 expression, similar to functional HIV-specific CD8+ T cells found in spontaneous controllers. Importanly, TCF-1 expression in these cells was associated with longer time to viral rebound ranging from 13 to 48 days after ART interruption (r =0·71, P=0·03). In contrast, ART initiation in chronic HIV infection led to more differentiated HIV-specific CD8+ T cells lacking stemness properties and exhibiting residual dysfunction upon recall, with reduced proliferation and cytolytic activity. Interpretation ART initiation in acute HIV infection preserves functional HIV-specific CD8+ T cells, albeit at numbers too low to control viral rebound post-ART. HIV remission strategies may need to boost HIV-specific CD8+ T cell numbers and induce stem cell-like properties to reverse the residual dysfunction persisting on ART in people treated after acute infection prior to ART release. Funding U.S. National Institutes of Health and U.S. Department of Defense.
Collapse
|
3
|
Longitudinal Assessment of SARS-CoV-2-Specific T Cell Cytokine-Producing Responses for 1 Year Reveals Persistence of Multicytokine Proliferative Responses, with Greater Immunity Associated with Disease Severity. J Virol 2022; 96:e0050922. [PMID: 35699447 PMCID: PMC9278147 DOI: 10.1128/jvi.00509-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.
Collapse
|
4
|
Graveline R, Haida M, Dumont C, Poulin D, Poitout-Belissent F, Samadfam R, Kronenberg S, Regenass-Lechner F, Prell R, Piche MS. Development of a nonhuman primate challenge model to evaluate CD8 + T cell responses to an adenovirus-based vaccine expressing SIV proteins upon repeat-dose treatment with checkpoint inhibitors. MAbs 2021; 14:1979447. [PMID: 34923919 PMCID: PMC8726661 DOI: 10.1080/19420862.2021.1979447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Targeting immune checkpoint receptors expressed in the T cell synapse induces active and long-lasting antitumor immunity in preclinical tumor models and oncology patients. However, traditional nonhuman primate (NHP) studies in healthy animals have thus far demonstrated little to no pharmacological activity or toxicity for checkpoint inhibitors (CPIs), likely due to a quiescent immune system. We developed a NHP vaccine challenge model in Mauritius cynomolgus monkey (MCMs) that elicits a strong CD8+ T cell response to assess both pharmacology and safety within the same animal. MHC I-genotyped MCMs were immunized with three replication incompetent adenovirus serotype 5 (Adv5) encoding Gag, Nef and Pol simian immunodeficiency virus (SIV) proteins administered 4 weeks apart. Immunized animals received the anti-PD-L1 atezolizumab or an immune checkpoint-targeting bispecific antibody (mAbX) in early development. After a single immunization, Adv5-SIVs induced T-cell activation as assessed by the expression of several co-stimulatory and co-inhibitory molecules, proliferation, and antigen-specific T-cell response as measured by a Nef-dependent interferon-γ ELIspot and tetramer analysis. Administration of atezolizumab increased the number of Ki67+ CD8+ T cells, CD8+ T cells co-expressing TIM3 and LAG3 and the number of CD4+ T cells co-expressing 4–1BB, BTLA, and TIM3 two weeks after vaccination. Both atezolizumab and mAbX extended the cytolytic activity of the SIV antigen-specific CD8+ T cell up to 8 weeks. Taken together, this vaccine challenge model allowed the combined study of pharmacology and safety parameters for a new immunomodulatory protein-based therapeutic targeting CD8+ T cells in an NHP model.
Collapse
Affiliation(s)
| | - Morad Haida
- Immunology, Charles River Laboratories, Senneville, Canada
| | | | - Dominic Poulin
- Immunology, Charles River Laboratories, Senneville, Canada
| | | | - Rana Samadfam
- Immunology, Charles River Laboratories, Senneville, Canada
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Franziska Regenass-Lechner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Rodney Prell
- Safety Assessment, Development Sciences, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
5
|
Puksuriwong S, Ahmed MS, Sharma R, Krishnan M, Leong S, Lambe T, McNamara PS, Gilbert SC, Zhang Q. Modified Vaccinia Ankara-Vectored Vaccine Expressing Nucleoprotein and Matrix Protein 1 (M1) Activates Mucosal M1-Specific T-Cell Immunity and Tissue-Resident Memory T Cells in Human Nasopharynx-Associated Lymphoid Tissue. J Infect Dis 2021; 222:807-819. [PMID: 31740938 PMCID: PMC7399703 DOI: 10.1093/infdis/jiz593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence supports a critical role of CD8+ T-cell immunity against influenza. Activation of mucosal CD8+ T cells, particularly tissue-resident memory T (TRM) cells recognizing conserved epitopes would mediate rapid and broad protection. Matrix protein 1 (M1) is a well-conserved internal protein. Methods We studied the capacity of modified vaccinia Ankara (MVA)–vectored vaccine expressing nucleoprotein (NP) and M1 (MVA-NP+M1) to activate M1-specific CD8+ T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue from children and adults. Results After MVA-NP+M1 stimulation, M1 was abundantly expressed in adenotonsillar epithelial cells and B cells. MVA-NP+M1 activated a marked interferon γ–secreting T-cell response to M1 peptides. Using tetramer staining, we showed the vaccine activated a marked increase in M158–66 peptide-specific CD8+ T cells in tonsillar mononuclear cells of HLA-matched individuals. We also demonstrated MVA-NP+M1 activated a substantial increase in TRM cells exhibiting effector memory T-cell phenotype. On recall antigen recognition, M1-specific T cells rapidly undergo cytotoxic degranulation, release granzyme B and proinflammatory cytokines, leading to target cell killing. Conclusions MVA-NP+M1 elicits a substantial M1-specific T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue, demonstrating its strong capacity to expand memory T-cell pool exhibiting effector memory T-cell phenotype, therefore offering great potential for rapid and broad protection against influenza reinfection.
Collapse
Affiliation(s)
- Suttida Puksuriwong
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad S Ahmed
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ravi Sharma
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Madhan Krishnan
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sam Leong
- ENT Departments, Aintree University Hospital, Liverpool, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul S McNamara
- Institute of Child Health, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Qibo Zhang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Guo X, Mahlakõiv T, Ye Q, Somanchi S, He S, Rana H, DiFiglia A, Gleason J, van der Touw W, Hariri R, Zhang X. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J Immunother Cancer 2021; 9:e001975. [PMID: 33741730 PMCID: PMC7986888 DOI: 10.1136/jitc-2020-001975] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumors often develop resistance to surveillance by endogenous immune cells, which include natural killer (NK) cells. Ex vivo activated and/or expanded NK cells demonstrate cytotoxicity against various tumor cells and are promising therapeutics for adoptive cancer immunotherapy. Genetic modification can further enhance NK effector cell activity or activation sensitization. Here, we evaluated the effect of the genetic deletion of ubiquitin ligase Casitas B-lineage lymphoma pro-oncogene-b (CBLB), a negative regulator of lymphocyte activity, on placental CD34+ cell-derived NK (PNK) cell cytotoxicity against tumor cells. METHODS Using CRISPR/Cas9 technology, CBLB was knocked out in placenta-derived CD34+ hematopoietic stem cells, followed by differentiation into PNK cells. Cell expansion, phenotype and cytotoxicity against tumor cells were characterized in vitro. The antitumor efficacy of CBLB knockout (KO) PNK cells was tested in an acute myeloid leukemia (HL-60) tumor model in NOD-scid IL2R gammanull (NSG) mice. PNK cell persistence, biodistribution, proliferation, phenotype and antitumor activity were evaluated. RESULTS 94% of CBLB KO efficacy was achieved using CRISPR/Cas9 gene editing technology. CBLB KO placental CD34+ cells differentiated into PNK cells with high cell yield and >90% purity determined by CD56+ CD3- cell identity. Ablation of CBLB did not impact cell proliferation, NK cell differentiation or phenotypical characteristics of PNK cells. When compared with the unmodified PNK control, CBLB KO PNK cells exhibited higher cytotoxicity against a range of liquid and solid tumor cell lines in vitro. On infusion into busulfan-conditioned NSG mice, CBLB KO PNK cells showed in vivo proliferation and maturation as evidenced by increased expression of CD16, killer Ig-like receptors and NKG2A over 3 weeks. Additionally, CBLB KO PNK cells showed greater antitumor activity in a disseminated HL60-luciferase mouse model compared with unmodified PNK cells. CONCLUSION CBLB ablation increased PNK cell effector function and proliferative capacity compared with non-modified PNK cells. These data suggest that targeting CBLB may offer therapeutic advantages via enhancing antitumor activities of NK cell therapies.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Antigens, CD34/metabolism
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- GPI-Linked Proteins/metabolism
- Gene Knockout Techniques
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Mice, Inbred NOD
- Mice, SCID
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Phenotype
- Placenta/cytology
- Pregnancy
- Proto-Oncogene Proteins c-cbl/deficiency
- Proto-Oncogene Proteins c-cbl/genetics
- Receptors, IgG/metabolism
- Stem Cells/immunology
- Stem Cells/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Xuan Guo
- Celularity Inc, Florham Park, New Jersey, USA
| | | | - Qian Ye
- Celularity Inc, Florham Park, New Jersey, USA
| | | | - Shuyang He
- Celularity Inc, Florham Park, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
8
|
Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, Rosales SL, Anderson EL, LaRock CN, Vijayanand P, Seumois G, Layfield D, Cutress RI, Ottensmeier CH, Lindestam Arlehamn CS, Sette A, Nizet V, Bothwell M, Brigger M, Crotty S. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T FH cells. Sci Transl Med 2019; 11:eaau3776. [PMID: 30728285 PMCID: PMC6561727 DOI: 10.1126/scitranslmed.aau3776] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
"Strep throat" is highly prevalent among children, yet it is unknown why only some children develop recurrent tonsillitis (RT), a common indication for tonsillectomy. To gain insights into this classic childhood disease, we performed phenotypic, genotypic, and functional studies on pediatric group A Streptococcus (GAS) RT and non-RT tonsils from two independent cohorts. GAS RT tonsils had smaller germinal centers, with an underrepresentation of GAS-specific CD4+ germinal center T follicular helper (GC-TFH) cells. RT children exhibited reduced antibody responses to an important GAS virulence factor, streptococcal pyrogenic exotoxin A (SpeA). Risk and protective human leukocyte antigen (HLA) class II alleles for RT were identified. Lastly, SpeA induced granzyme B production in GC-TFH cells from RT tonsils with the capacity to kill B cells and the potential to hobble the germinal center response. These observations suggest that RT is a multifactorial disease and that contributors to RT susceptibility include HLA class II differences, aberrant SpeA-activated GC-TFH cells, and lower SpeA antibody titers.
Collapse
Affiliation(s)
- Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Rita Al-Kolla
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Ericka L Anderson
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Human Longevity Inc., San Diego, CA 92121, USA
| | - Christopher N LaRock
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - David Layfield
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | - Ramsey I Cutress
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
| | - Marcella Bothwell
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Matthew Brigger
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Perdomo-Celis F, Velilla PA, Taborda NA, Rugeles MT. An altered cytotoxic program of CD8+ T-cells in HIV-infected patients despite HAART-induced viral suppression. PLoS One 2019; 14:e0210540. [PMID: 30625227 PMCID: PMC6326488 DOI: 10.1371/journal.pone.0210540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023] Open
Abstract
Despite the suppression of viral replication induced by the highly active anti-retroviral therapy (HAART), an increased immune activation and inflammatory state persists in HIV-infected patients, contributing to lower treatment response and immune reconstitution, and development of non-AIDS conditions. The chronic activation and inflammation affect the functionality and differentiation of CD8+ T-cells, particularly reducing their cytotoxic capacity, which is critical in the control of HIV replication. Although previous studies have shown that HAART induce a partial immune reconstitution, its effect on CD8+ T-cells cytotoxic function, as well as its relationship with the inflammatory state, is yet to be defined. Here, we characterized the functional profile of polyclonal and HIV-specific CD8+ T cells, based on the expression of cell activation and differentiation markers, in individuals chronically infected with HIV, under HAART. Compared with seronegative controls, CD8+ T-cells from patients on HAART exhibited a low degranulation capacity (surface expression of CD107a), with consequent low secreted levels and high intracellular expression of granzyme B and perforin. This degranulation defect was particularly observed in those cells expressing the activation marker HLA-DR, which were further characterized as effector memory cells with high expression of CD57. The expression of CD107a, but not of granzyme B and perforin, in CD8+ T-cells from HIV-infected patients on HAART reached levels similar to those in seronegative controls when the treatment duration was higher than 25 months. In addition, the expression of CD107a was negatively correlated with the expression of exhaustion markers on CD8+ T-cells and the plasma inflammatory molecule sCD14. Thus, despite HAART-induced viral suppression, CD8+ T-cells from HIV-infected patients have an alteration in their cytotoxic program. This defect is associated with the cellular activation, differentiation and exhaustion state, as well as with the inflammation levels, and can be partially recovered with a long and continuous treatment.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Natalia A. Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
- * E-mail:
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. RECENT FINDINGS Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. SUMMARY New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.
Collapse
|
11
|
Li X, Wang P, Li H, Du X, Liu M, Huang Q, Wang Y, Wang S. The Efficacy of Oncolytic Adenovirus Is Mediated by T-cell Responses against Virus and Tumor in Syrian Hamster Model. Clin Cancer Res 2016; 23:239-249. [PMID: 27435398 DOI: 10.1158/1078-0432.ccr-16-0477] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic adenoviruses (Ad) represent an innovative approach to cancer therapy. Its efficacy depends on multiple actions, including direct tumor lysis and stimulation of antiviral and antitumor immune responses. In this study, we investigated the roles of T-cell responses in oncolytic adenoviral therapy. EXPERIMENTAL DESIGN An immunocompetent and viral replication-permissive Syrian hamster tumor model was used. The therapeutic mechanisms of oncolytic Ad were investigated by T-cell deletion, immunohistochemical staining, and CTL assay. RESULTS Deletion of T cells with an anti-CD3 antibody completely demolished the antitumor efficacy of oncolytic Ad. Intratumoral injection of Ad induced strong virus- and tumor-specific T-cell responses, as well as antiviral antibody response. Both antiviral and antitumor T-cell responses contributed to the efficacy of oncolytic Ad. Deletion of T cells increased viral replication and extended the persistence of infectious virus within tumors but almost abrogated the antitumor efficacy. Preexisting antiviral immunity promoted the clearance of injected oncolytic Ad from tumors but had no effect on antitumor efficacy. Strikingly, the repeated treatment with oncolytic Ad has strong therapeutic effect on relapsed tumors or tumors insensitive to the primary viral therapy. CONCLUSIONS These results demonstrate that T cell-mediated immune responses outweigh the direct oncolysis in mediating antitumor efficacy of oncolytic Ad. Our data have a high impact on redesigning the regimen of oncolytic Ad for cancer treatment. Clin Cancer Res; 23(1); 239-49. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Hang Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuexiang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qibin Huang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Abstract
Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.
Collapse
|
13
|
Developing Combined HIV Vaccine Strategies for a Functional Cure. Vaccines (Basel) 2013; 1:481-96. [PMID: 26344343 PMCID: PMC4494210 DOI: 10.3390/vaccines1040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022] Open
Abstract
Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral replication in the absence of drugs (functional cure). Therapeutic vaccines against HIV have been evaluated in many trials over the last 20 years and important knowledge has been gained from these trials. However, the major obstacle to HIV eradication is the persistence of latent proviral reservoirs. Different molecules are currently tested in ART-treated subjects to reactivate these latent reservoirs. Such anti-latency agents should be combined with a vaccination regimen in order to control or eradicate reactivated latently-infected cells. New in vitro assays should also be developed to assess the success of tested therapeutic vaccines by measuring the immune-mediated killing of replication-competent HIV reservoir cells. This review provides an overview of the current strategies to combine HIV vaccines with anti-latency agents that could act as adjuvant on the vaccine-induced immune response as well as new tools to assess the efficacy of these approaches.
Collapse
|
14
|
Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection. Blood 2012; 120:3466-77. [PMID: 22955926 DOI: 10.1182/blood-2012-04-422550] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immediate-early host-virus interactions that occur during the first weeks after HIV infection have a major impact on disease progression. The mechanisms underlying the failure of HIV-specific CD8 T-cell response to persist and control viral replication early in infection are yet to be characterized. In this study, we performed a thorough phenotypic, gene expression and functional analysis to compare HIV-specific CD8 T cells in acutely and chronically infected subjects. We showed that HIV-specific CD8 T cells in primary infection can be distinguished by their metabolic state, rate of proliferation, and susceptibility to apoptosis. HIV-specific CD8 T cells in acute/early HIV infection secreted less IFN-γ but were more cytotoxic than their counterparts in chronic infection. Importantly, we showed that the levels of IL-7R expression and the capacity of HIV-specific CD8 T cells to secrete IL-2 on antigenic restimulation during primary infection were inversely correlated with the viral set-point. Altogether, these data suggest an altered metabolic state of HIV-specific CD8 T cells in primary infection resulting from hyperproliferation and stress induced signals, demonstrate the discordant function of HIV-specific CD8 T cells during early/acute infection, and highlight the importance of T-cell maintenance for viral control.
Collapse
|