1
|
Isozaki A, Kita K, Tiffany Ishii N, Oka Y, Herbig M, Yamagishi M, Wakamiya T, Araki T, Matsumura H, Harmon J, Shirasaki Y, Huang K, Zhao Y, Yuan D, Hayashi M, Ding T, Okamoto Y, Kishimoto A, Ishii M, Yanagida M, Goda K. Investigating T-Cell Receptor Dynamics Under In Vitro Antibody-Based Stimulation Using Imaging Flow Cytometry. Cytometry A 2025; 107:88-97. [PMID: 39982013 DOI: 10.1002/cyto.a.24916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
T cells play a pivotal role in the immune system's response to various conditions. They are activated by antigen-presenting cells (APCs) via T-cell surface receptors, resulting in cytokine production and T-cell proliferation. These interactions occur through the formation of immunological synapses. The advent of imaging flow cytometry has enabled detailed statistical analyses of these cellular interactions. However, the dynamics of T-cell receptors in response to in vitro stimulation are yet to receive attention, despite it being a crucial aspect of understanding T-cell behavior. In this article, we explore the responses of T cells to in vitro antibody-based stimulation without APCs. Specifically, we established a Th1 cell clone, subjected it to a combination of centrifugation-induced mechanical stress and anti-human CD3 and anti-human CD28 antibody stimulation as the in vitro antibody-based stimulation, and captured and analyzed bright-field and fluorescence images of single cells various hours after stimulation using an imaging flow cytometer. Our results indicate distinct temporal dynamics of CD3 and CD28. Notably, CD3 and CD28 relocated on the T-cell surface immediately after stimulation, with CD3 receptors dispersing after 3.5 h, whereas CD28 remained clustered for 7.5 h. These receptor morphological changes precede cytokine production, suggesting their potential as early indicators of T-cell activation.
Collapse
Affiliation(s)
- Akihiro Isozaki
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kazuma Kita
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Yuma Oka
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Maik Herbig
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | - Taketo Araki
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | | | - Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Shirasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kangrui Huang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yaqi Zhao
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Dan Yuan
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Mika Hayashi
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tianben Ding
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yuji Okamoto
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Ayuko Kishimoto
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University, Osaka, Japan
| | | | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- CYBO, Tokyo, Japan
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Biolato AM, Filali L, Krecke M, Thomas C, Hoffmann C. A comprehensive guide to study the immunological synapse using imaging flow cytometry. Methods Cell Biol 2024; 193:69-97. [PMID: 39919848 DOI: 10.1016/bs.mcb.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Cytotoxic lymphocytes, such as cytotoxic T cells and natural killer (NK) cells, are instrumental in the recognition and eradication of pathogenic cells, notably those undergoing malignant transformation. Cytotoxic lymphocytes establish direct contact with cancer cells via the formation of a specialized cell-cell junction known as the lytic immunological synapse. This structure serves as a critical platform for lymphocytes to integrate surface signals from potential cancer cells and to direct their cytolytic apparatus toward the confirmed targets. Conversely, cancer cells evolve synaptic defense strategies to evade lymphocyte cytotoxicity. This chapter delineates protocols using imaging flow cytometry to examine and quantify important subcellular processes occurring within cytotoxic lymphocytes and cancer cells engaged into an immunological synapse. These processes encompass the spatial redistribution of cytoskeletal components, vesicles, organelles and cell surface molecules. We specifically describe methods to generate and select conjugates between MDA-MB-231 breast cancer cells or K-562 leukemic cells and either the NK-92MI cell line or primary human NK cells. In addition, we detail procedures to evaluate the synaptic polarization of the actin cytoskeleton, CD63-positive vesicular compartments, MHC class I molecules, as well as the microtubule-organizing center in effector cells.
Collapse
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Max Krecke
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Shetab Boushehri S, Essig K, Chlis NK, Herter S, Bacac M, Theis FJ, Glasmacher E, Marr C, Schmich F. Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies. Nat Commun 2023; 14:7888. [PMID: 38036503 PMCID: PMC10689847 DOI: 10.1038/s41467-023-43429-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.
Collapse
Affiliation(s)
- Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, Department of Mathematics, Munich, Germany
- Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany
| | - Katharina Essig
- Large Molecule Research (LMR), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany
| | - Nikolaos-Kosmas Chlis
- Large Molecule Research (LMR), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany
| | - Sylvia Herter
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Zurich, Switzerland
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, Department of Mathematics, Munich, Germany
| | - Elke Glasmacher
- Research and Early Development (RED), Roche Diagnostics Solutions, Roche Innovation Center Munich, Munich, Germany.
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Fabian Schmich
- Data & Analytics (D&A), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany.
| |
Collapse
|
4
|
Zhao Y, Isozaki A, Herbig M, Hayashi M, Hiramatsu K, Yamazaki S, Kondo N, Ohnuki S, Ohya Y, Nitta N, Goda K. Intelligent sort-timing prediction for image-activated cell sorting. Cytometry A 2023; 103:88-97. [PMID: 35766305 DOI: 10.1002/cyto.a.24664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Intelligent image-activated cell sorting (iIACS) has enabled high-throughput image-based sorting of single cells with artificial intelligence (AI) algorithms. This AI-on-a-chip technology combines fluorescence microscopy, AI-based image processing, sort-timing prediction, and cell sorting. Sort-timing prediction is particularly essential due to the latency on the order of milliseconds between image acquisition and sort actuation, during which image processing is performed. The long latency amplifies the effects of the fluctuations in the flow speed of cells, leading to fluctuation and uncertainty in the arrival time of cells at the sort point on the microfluidic chip. To compensate for this fluctuation, iIACS measures the flow speed of each cell upstream, predicts the arrival timing of the cell at the sort point, and activates the actuation of the cell sorter appropriately. Here, we propose and demonstrate a machine learning technique to increase the accuracy of the sort-timing prediction that would allow for the improvement of sort event rate, yield, and purity. Specifically, we trained an algorithm to predict the sort timing for morphologically heterogeneous budding yeast cells. The algorithm we developed used cell morphology, position, and flow speed as inputs for prediction and achieved 41.5% lower prediction error compared to the previously employed method based solely on flow speed. As a result, our technique would allow for an increase in the sort event rate of iIACS by a factor of ~2.
Collapse
Affiliation(s)
- Yaqi Zhao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maik Herbig
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mika Hayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sota Yamazaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoko Kondo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,CYBO, Tokyo, Japan.,Department of Bioengineering, University of California, California, Los Angeles, USA.,Institute of Technological Sciences, Wuhan University, Hubei, China
| |
Collapse
|
5
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
6
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH, Samstag Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front Immunol 2018; 9:2584. [PMID: 30487791 PMCID: PMC6246742 DOI: 10.3389/fimmu.2018.02584] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The activity and function of T-cells are influenced by the intra- and extracellular redox milieu. Oxidative stress induces hypo responsiveness of untransformed T-cells. Vice versa increased glutathione (GSH) levels or decreased levels of reactive oxygen species (ROS) prime T-cell metabolism for inflammation, e.g., in rheumatoid arthritis. Therefore, balancing the T-cell redox milieu may represent a promising new option for therapeutic immune modulation. Here we show that sulforaphane (SFN), a compound derived from plants of the Brassicaceae family, e.g., broccoli, induces a pro-oxidative state in untransformed human T-cells of healthy donors or RA patients. This manifested as an increase of intracellular ROS and a marked decrease of GSH. Consistently, increased global cysteine sulfenylation was detected. Importantly, a major target for SFN-mediated protein oxidation was STAT3, a transcription factor involved in the regulation of TH17-related genes. Accordingly, SFN significantly inhibited the activation of untransformed human T-cells derived from healthy donors or RA patients, and downregulated the expression of the transcription factor RORγt, and the TH17-related cytokines IL-17A, IL-17F, and IL-22, which play a major role within the pathophysiology of many chronic inflammatory/autoimmune diseases. The inhibitory effects of SFN could be abolished by exogenously supplied GSH and by the GSH replenishing antioxidant N-acetylcysteine (NAC). Together, our study provides mechanistic insights into the mode of action of the natural substance SFN. It specifically exerts TH17 prone immunosuppressive effects on untransformed human T-cells by decreasing GSH and accumulation of ROS. Thus, SFN may offer novel clinical options for the treatment of TH17 related chronic inflammatory/autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido H. Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Protein Phosphatase 1α and Cofilin Regulate Nuclear Translocation of NF-κB and Promote Expression of the Anti-Inflammatory Cytokine Interleukin-10 by T Cells. Mol Cell Biol 2018; 38:MCB.00041-18. [PMID: 30181394 DOI: 10.1128/mcb.00041-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
While several protein serine/threonine kinases control cytokine production by T cells, the roles of serine/threonine phosphatases are largely unexplored. Here, we analyzed the involvement of protein phosphatase 1α (PP1α) in cytokine synthesis following costimulation of primary human T cells. Small interfering RNA (siRNA)-mediated knockdown of PP1α (PP1KD) or expression of a dominant negative PP1α (D95N-PP1) drastically diminished interleukin-10 (IL-10) production. Focusing on a key transcriptional activator of human IL-10, we demonstrate that nuclear translocation of NF-κB was significantly inhibited in PP1KD or D95N-PP1 cells. Interestingly, knockdown of cofilin, a known substrate of PP1 containing a nuclear localization signal, also prevented nuclear accumulation of NF-κB. Expression of a constitutively active nonphosphorylatable S3A-cofilin in D95N-PP1 cells restored nuclear translocation of NF-κB and IL-10 expression. Subpopulation analysis revealed that defective nuclear translocation of NF-κB was most prominent in CD4+ CD45RA- CXCR3- T cells that included IL-10-producing TH2 cells. Together these findings reveal novel functions for PP1α and its substrate cofilin in T cells namely the regulation of the nuclear translocation of NF-κB and promotion of IL-10 production. These data suggest that stimulation of PP1α could limit the overwhelming immune responses seen in chronic inflammatory diseases.
Collapse
|
9
|
Richards AL, Sheldon K, Wu X, Gruber DR, Hudson KE. The Role of the Immunological Synapse in Differential Effects of APC Subsets in Alloimmunization to Fresh, Non-stored RBCs. Front Immunol 2018; 9:2200. [PMID: 30344520 PMCID: PMC6182098 DOI: 10.3389/fimmu.2018.02200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Each year, over 5 million red blood cell (RBC) transfusions are administered to patients in the USA. Despite the therapeutic benefits of RBC transfusions, there are associated risks. RBC-specific alloantibodies may form in response to antigenic differences between RBC donors and recipients; these alloantibodies can be a problem as they may mediate hemolysis or pose barriers to future transfusion support. While there is currently no reliable way to predict which RBC recipients will make an alloantibody response, risk factors such as inflammation have been shown to correlate with increased rates of RBC alloimmunization. The underlying mechanisms behind how inflammation mediates alloantibody production are incompletely defined. Methods: To assess erythrophagocytosis, mice were treated with PBS or inflammatory stimuli followed by a transfusion of allogeneic RBCs labeled with a lipophilic dye. At multiple time points, RBC consumption and expression of activation makers by leukocytes was evaluated. To determine which antigen presenting cell (APC) subset(s) were capable of promoting allogeneic T cell activation, sorted leukocyte populations (which had participated in erythrophagocytosis) were co-cultured in vitro with allogeneic CD4+ T cells; T cell proliferation and ability to form immunological synapses with APCs were determined. Results: Upon transfusion of fresh allogeneic RBCs, multiple APCs consumed transfused RBCs. However, only CD8+ and CD11b+ dendritic cells formed productive immunological synapses with allogeneic T cells and stimulated proliferation. Importantly, allogeneic T cell activation and RBC alloantibody production occurred in response to RBC transfusion alone, and transfusion in the context of inflammation enhanced RBC consumption, the number of immune synapses, allogeneic T cell proliferation, and the rate and magnitude of alloantibody production. Conclusions: These data demonstrate that regardless of the ability to participate in RBC consumption, only a subset of APCs are capable of forming an immune synapse with T cells thereby initiating an alloantibody response. Additionally, these data provide mechanistic insight into RBC alloantibody generation.
Collapse
Affiliation(s)
| | - Kathryn Sheldon
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Xiaoping Wu
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - David R Gruber
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Krystalyn E Hudson
- Bloodworks Northwest Research Institute, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Wabnitz GH, Kirchgessner H, Samstag Y. Imaging Flow Cytometry for Multiparametric Analysis of Molecular Mechanism Involved in the Cytotoxicity of Human CD8+
T-cells. J Cell Biochem 2017; 118:2528-2533. [DOI: 10.1002/jcb.25963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Guido H. Wabnitz
- Institute of Immunology, Section Molecular Immunology; Ruprecht-Karls-University; D-69120 Heidelberg Germany
| | - Henning Kirchgessner
- Institute of Immunology, Section Molecular Immunology; Ruprecht-Karls-University; D-69120 Heidelberg Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology; Ruprecht-Karls-University; D-69120 Heidelberg Germany
| |
Collapse
|
11
|
Juvet SC, Moshkelgosha S, Sanderson S, Hester J, Wood KJ, Bushell A. Measurement of T Cell Alloreactivity Using Imaging Flow Cytometry. J Vis Exp 2017. [PMID: 28448002 PMCID: PMC5408926 DOI: 10.3791/55283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The measurement of immunological reactivity to donor antigens in transplant recipients is likely to be crucial for the successful reduction or withdrawal of immunosuppression. The mixed leukocyte reaction (MLR), limiting dilution assays, and trans-vivo delayed-type hypersensitivity (DTH) assay have all been applied to this question, but these methods have limited predictive ability and/or significant practical limitations that reduce their usefulness.Imaging flow cytometry is a technique that combines the multiparametric quantitative powers of flow cytometry with the imaging capabilities of fluorescent microscopy. We recently made use of an imaging flow cytometry approach to define the proportion of recipient T cells capable of forming mature immune synapses with donor antigen-presenting cells (APCs). Using a well-characterized mouse heart transplant model, we have shown that the frequency of in vitro immune synapses among T-APC membrane contact events strongly predicted allograft outcome in rejection, tolerance, and a situation where transplant survival depends on induced regulatory T cells.The frequency of T-APC contacts increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. The addition of regulatory T cells to the in vitro system reduced prolonged T-APC contacts. Critically, this effect was also seen with human polyclonally expanded, naturally occurring regulatory T cells, which are known to control the rejection of human tissues in humanized mouse models. Further development of this approach may allow for a deeper characterization of the alloreactive T-cell compartment in transplant recipients. In the future, further development and evaluation of this method using human cells may form the basis for assays used to select patients for immunosuppression minimization, and it can be used to measure the impact of tolerogenic therapies in the clinic.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology, Departments of Medicine and Immunology, Toronto Lung Transplant Program, Multiorgan Transplant Program, Toronto General Research Institute, University of Toronto and University Health Network;
| | - Sajad Moshkelgosha
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network
| | - Sharon Sanderson
- National Institutes of Health Research, Oxford Biomedical Research Centre, Translational Immunology Laboratory, NDORMS, Kennedy Institute of Rheumatology, University of Oxford
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| |
Collapse
|
12
|
Viswanath DI, Mace EM, Hsu HT, Orange JS. Quantification of natural killer cell polarization and visualization of synaptic granule externalization by imaging flow cytometry. Clin Immunol 2017; 177:70-75. [PMID: 26948929 PMCID: PMC5010793 DOI: 10.1016/j.clim.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/18/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023]
Abstract
Defining immunological mechanisms underlying NK cell biology is crucial for the treatment and prevention of immune deficiency and malignancy. The limited availability of human biological specimens presents a challenge to the study of human immunobiology. The use of high throughput, multi-parametric assays will not only aid in the definition and diagnosis of complex human immune disorders affecting NK cell function but also advance NK cell biology through population-based assessment of molecular signaling. In an effort to garner the most information from limited numbers of human cells, we designed a quantitative method to study NK cell function using imaging flow cytometry (IFC), which combines multiparametric flow cytometry and fluorescence microscopy. Specifically, we developed IFC as a tool to measure polarization and secretion of lytic granules at the immunological synapse formed between an NK cell and a susceptible target. We have further validated our approach through quantitative comparison with high-resolution confocal microscopy. We show that IFC can be used as a quantitative, high throughput measure of NK cell biological function possessing greater dimensionality than standard flow cytometry.
Collapse
Affiliation(s)
- Dixita I. Viswanath
- Rice University, Houston, TX 77005, USA
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily M. Mace
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan S. Orange
- Rice University, Houston, TX 77005, USA
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Balta E, Stopp J, Castelletti L, Kirchgessner H, Samstag Y, Wabnitz GH. Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy. Methods 2017; 112:25-38. [DOI: 10.1016/j.ymeth.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022] Open
|
14
|
McFarlin BK, Gary MA. Flow cytometry what you see matters: Enhanced clinical detection using image-based flow cytometry. Methods 2016; 112:1-8. [PMID: 27620330 DOI: 10.1016/j.ymeth.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, United States; University of North Texas, Department of Biological Sciences, United States.
| | - Melody A Gary
- University of North Texas, Applied Physiology Laboratory, United States
| |
Collapse
|
15
|
Finkenstaedt-Quinn SA, Qiu TA, Shin K, Haynes CL. Super-resolution imaging for monitoring cytoskeleton dynamics. Analyst 2016; 141:5674-5688. [PMID: 27549146 DOI: 10.1039/c6an00731g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.
Collapse
|
16
|
Wabnitz GH, Balta E, Schindler S, Kirchgessner H, Jahraus B, Meuer S, Samstag Y. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov 2016; 2:16057. [PMID: 27551545 PMCID: PMC4979520 DOI: 10.1038/cddiscovery.2016.57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 – either alone or in combination with conventional immunosuppressive drugs – may be efficient to control progression of diseases, in which CTLs are crucially involved.
Collapse
Affiliation(s)
- G H Wabnitz
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - E Balta
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Schindler
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - H Kirchgessner
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - B Jahraus
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Meuer
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - Y Samstag
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| |
Collapse
|
17
|
Juvet SC, Sanderson S, Hester J, Wood KJ, Bushell A. Quantification of CD4(+) T Cell Alloreactivity and Its Control by Regulatory T Cells Using Time-Lapse Microscopy and Immune Synapse Detection. Am J Transplant 2016; 16:1394-407. [PMID: 26603026 PMCID: PMC4855688 DOI: 10.1111/ajt.13607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 10/07/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
Assays designed to select transplant recipients for immunosuppression withdrawal have met with limited success, perhaps because they measure events downstream of T cell-alloantigen interactions. Using in vitro time-lapse microscopy in a mouse transplant model, we investigated whether transplant outcome would result in changes in the proportion of CD4(+) T cells forming prolonged interactions with donor dendritic cells. By blocking CD4-MHC class II and CD28-B7 interactions, we defined immunologically relevant interactions as those ≥500 s. Using this threshold, T cell-dendritic cell (T-DC) interactions were examined in rejection, tolerance and T cell control mediated by regulatory T cells. The frequency of T-DC contacts ≥500 s increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. Regulatory T cells reduced prolonged T-DC contacts. Importantly, this effect was replicated with human polyclonally expanded naturally occurring regulatory T cells, which we have previously shown can control rejection of human tissues in humanized mouse models. Finally, in a proof-of-concept translational context, we were able to visualize differential allogeneic immune synapse formation in polyclonal CD4(+) T cells using high-throughput imaging flow cytometry.
Collapse
Affiliation(s)
- S. C. Juvet
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK,Toronto Lung Transplant Program and Division of RespirologyDepartment of MedicineUniversity Health Network and University of TorontoTorontoOntarioCanada,Present address: Toronto General HospitalTorontoOntarioCanada
| | - S. Sanderson
- NIHR BRC Translational Immunology LaboratoryNuffield Department of MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - J. Hester
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - K. J. Wood
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - A. Bushell
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|