1
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Quantifying Anti-HIV Envelope-Specific Antibodies in Plasma from HIV Infected Individuals. Viruses 2019; 11:v11060487. [PMID: 31141927 PMCID: PMC6631318 DOI: 10.3390/v11060487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022] Open
Abstract
Quantifying HIV Envelope (Env)-specific antibodies in HIV+ plasma is useful for interpreting antibody dependent cellular cytotoxicity assay results. HIV Env, the only viral protein expressed on the surface of infected cells, has a native trimeric closed conformation on cells infected with wild-type HIV. However, CD4+ uninfected bystander cells in HIV+ cell cultures bind gp120 shed from HIV+ cells exposing CD4-induced epitopes normally hidden in native Env. We used flow-cytometry based assays to quantify antibodies in HIV+ plasma specific for native trimeric Env or gp120/CD4 conjugates using CEM.NKr.CCR5 (CEM) cells infected with HIV (iCEM) or coated with recombinant gp120 (cCEM), as a surrogate for gp120+ HIV- bystander cells. Results from both assays were compared to those of a plate-based ELISA to monomeric gp120. The levels of Env-specific antibodies to cCEM and iCEM, measured by flow cytometry, and to gp120 by ELISA were positively correlated. More antibodies in HIV+ plasma recognized the gp120 conformation exposed on cCEM than on iCEM. Comparisons of plasma from untreated progressors, treated progressors, and elite controllers revealed that antibodies to Env epitopes were the lowest in treated progressors. Plasma from elite controllers and untreated progressors had similarly high levels of Env-specific antibodies, despite elite controllers having undetectable HIV viral loads, while untreated progressors maintained high viral loads.
Collapse
|
3
|
Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. J Virol 2019; 93:JVI.02119-18. [PMID: 30842326 PMCID: PMC6498063 DOI: 10.1128/jvi.02119-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials. Studies in animal models are essential prerequisites for clinical trials of candidate HIV vaccines. Small animals, such as rabbits, are used to evaluate promising strategies prior to further immunogenicity and efficacy testing in nonhuman primates. Our goal was to determine how HIV-specific vaccine-elicited antibody responses, epitope specificity, and Fc-mediated functions in the rabbit model can predict those in the rhesus macaque (RM) model. Detailed comparisons of the HIV-1-specific IgG response were performed on serum from rabbits and RM given identical modified vaccinia virus Ankara-prime/gp120-boost immunization regimens. We found that vaccine-induced neutralizing antibody, gp120-binding antibody levels and immunodominant specificities, antibody-dependent cellular phagocytosis of HIV-1 virions, and antibody-dependent cellular cytotoxicity (ADCC) responses against gp120-coated target cells were similar in rabbits and RM. However, we also identified characteristics of humoral immunity that differed across species. ADCC against HIV-infected target cells was elicited in rabbits but not in RM, and we observed differences among subdominantly targeted epitopes. Human Fc receptor binding assays and analysis of antibody-cell interactions indicated that rabbit vaccine-induced antibodies effectively recruited and activated human natural killer cells, while vaccine-elicited RM antibodies were unable to activate either human or RM NK cells. Thus, our data demonstrate that both Fc-independent and Fc-dependent functions of rabbit antibodies can be measured with commonly used in vitro assays; however, the ability of immunogenicity studies performed in rabbits to predict responses in RM will vary depending on the particular immune parameter of interest. IMPORTANCE Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials.
Collapse
|
4
|
Dendle C, Gan PY, Polkinghorne KR, Ngui J, Stuart RL, Kanellis J, Thursky K, Mulley WR, Holdsworth S. Natural killer cell function predicts severe infection in kidney transplant recipients. Am J Transplant 2019; 19:166-177. [PMID: 29708649 DOI: 10.1111/ajt.14900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/25/2023]
Abstract
The aim of this study was to determine if natural killer cell number (CD3- /CD16± /CD56± ) and cytotoxic killing function predicts severity and frequency of infection in kidney transplant recipients. A cohort of 168 kidney transplant recipients with stable graft function underwent assessment of natural killer cell number and functional killing capacity immediately prior to entry into this prospective study. Participants were followed for 2 years for development of severe infection, defined as hospitalization for infection. Area under receiver operating characteristic (AUROC) curves were used to evaluate the accuracy of natural killer cell number and function for predicting severe infection. Adjusted odds ratios were determined by logistic regression. Fifty-nine kidney transplant recipients (35%) developed severe infection and 7 (4%) died. Natural killer cell function was a better predictor of severe infection than natural killer cell number: AUROC 0.84 and 0.75, respectively (P = .018). Logistic regression demonstrated that after adjustment for age, transplant function, transplant duration, mycophenolate use, and increasing natural killer function (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.74-0.90; P < .0001) but not natural killer number (OR 0.96, 95% CI 0.93-1.00; P = .051) remained significantly associated with a reduced likelihood of severe infection. Natural killer cell function predicts severe infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Claire Dendle
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Poh-Yi Gan
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Immunology, Monash Pathology, Monash Health, Clayton, Victoria, Australia
| | - Kevan R Polkinghorne
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia
| | - James Ngui
- Department of Immunology, Monash Pathology, Monash Health, Clayton, Victoria, Australia
| | - Rhonda L Stuart
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - John Kanellis
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Karin Thursky
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - William R Mulley
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Stephen Holdsworth
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Immunology, Monash Pathology, Monash Health, Clayton, Victoria, Australia.,Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Pollara J, Orlandi C, Beck C, Edwards RW, Hu Y, Liu S, Wang S, Koup RA, Denny TN, Lu S, Tomaras GD, DeVico A, Lewis GK, Ferrari G. Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay. Cytometry A 2018; 93:436-447. [PMID: 29498807 PMCID: PMC5969088 DOI: 10.1002/cyto.a.23348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/14/2023]
Abstract
Several different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Justin Pollara
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Chiara Orlandi
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Charles Beck
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - R. Whitney Edwards
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Yi Hu
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Shuying Liu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Shixia Wang
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Richard A. Koup
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMaryland
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of MedicineDurhamNorth Carolina
| | - Shan Lu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Georgia D. Tomaras
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Anthony DeVico
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - George K. Lewis
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Guido Ferrari
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| |
Collapse
|
6
|
Richard J, Prévost J, Baxter AE, von Bredow B, Ding S, Medjahed H, Delgado GG, Brassard N, Stürzel CM, Kirchhoff F, Hahn BH, Parsons MS, Kaufmann DE, Evans DT, Finzi A. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. mBio 2018; 9:e00358-18. [PMID: 29559570 PMCID: PMC5874913 DOI: 10.1128/mbio.00358-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands.IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we performed a side-by-side comparison of different methods currently being used in the field to measure ADCC responses to HIV-1. We found that assays which are unable to differentiate virus-infected from uninfected cells greatly overestimate ADCC responses mediated by antibodies to CD4i epitopes and underestimate responses mediated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the use of assays that measure ADCC against HIV-1-infected cells expressing physiologically relevant conformations of Env to evaluate correlates of protection in vaccine trials.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E Baxter
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
8
|
Sung AP, Tang JJJ, Guglielmo MJ, Redelman D, Smith-Gagen J, Bateman L, Hudig D. An improved method to quantify human NK cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) per IgG FcR-positive NK cell without purification of NK cells. J Immunol Methods 2017; 452:63-72. [PMID: 29113954 DOI: 10.1016/j.jim.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) lymphocyte ADCC supports anti-viral protection and monoclonal antibody (mAb) anti-tumor therapies. To predict in vivo ADCC therapeutic responses of different individuals, measurement of both ADCC cellular lytic capacity and their NK cellular receptor recognition of antibodies on 'target' cells are needed, using clinically available amounts of blood. Twenty ml of blood provides sufficient peripheral blood mononuclear cells (PBMCs) for the new assay for lytic capacity described here and for an antibody EC50 assay for Fc-receptor recognition. For the lytic capacity assay, we employed flow cytometry to quantify the CD16A IgG Fc-receptor positive NK effector cells from PBMCs to avoid loss of NKs during isolation. Targets were 51Cr-labeled Daudi B cells pretreated with excess obinutuzumab type 2 anti-CD20 mAb and washed; remaining free mAb was insufficient to convert B cells in the PBMCs into 'targets'. We calculated: the percentage Daudis killed at a 1:1 ratio of CD16A-positive NK cells to Daudis (CX1:1); lytic slopes; and ADCC50 lytic units. Among 27 donors, we detected wide ranges in CX1:1 (16-73% targets killed) and in lytic slopes. Slope variations prevented application of lytic units. We recommend CX1:1 to compare individuals' ADCC capacity. CX1:1 was similar for purified NK cells vs. PBMCs and independent of CD16A V & F genotypes and antibody EC50s. With high mAb bound onto targets and the high affinity of obinutuzumab Fc for CD16A, CX1:1 measurements discern ADCC lytic capacity rather than antibody recognition. This assay allows ADCC to be quantified without NK cell isolation and avoids distortion associated with lytic units.
Collapse
Affiliation(s)
- Alexander P Sung
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Jennifer J-J Tang
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Michael J Guglielmo
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Doug Redelman
- University of Nevada Reno School of Medicine, Department of Physiology and Cell Biology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Julie Smith-Gagen
- University of Nevada Reno School of Medicine, School of Community Health Sciences Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT 84102, United States
| | - Dorothy Hudig
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
9
|
Chung S, Nguyen V, Lin YL, Kamen L, Song A. Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays. J Immunol Methods 2017; 447:37-46. [PMID: 28434980 DOI: 10.1016/j.jim.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
In vitro antibody-dependent cell-mediated cytotoxicity (ADCC) assays are routinely performed to support the research and development of therapeutic antibodies. In ADCC assays, target cells bound by the antibodies are lysed by activated effector cells following interactions between the Fc region of the bound antibody and Fcγ receptors on effector cells. Target cell lysis is typically measured by quantification of released endogenous enzymes, e.g., lactate dehydrogenase, or measurement of released exogenous labels, e.g., 51Cr, europium or calcein. ADCC assays based on the detection of exogenous labels released from lysed target cells generally show higher sensitivity and require shorter incubation times. However, target cells are usually labeled immediately prior to assay, which inadvertently introduces additional assay variations due to differences in target cell conditions and labeling/handling processes. In this report, we describe the use of thaw-and-use pre-labeled target cells for ADCC assays. Thaw-and-use target cells in our experiments were pre-labeled with the fluorescent dye calcein AM, cryopreserved in single-use aliquots and used directly in assays after thawing. Upon thaw, the pre-labeled cells displayed viability and label retention comparable to freshly labeled cells, responded to ADCC mediated by both peripheral blood mononuclear cells and engineered natural killer cells, performed stably for at least 3 years and provided favorable precision and accuracy to ADCC assays. Implementation of thaw-and-use pre-labeled target cells in ADCC assays can help to alleviate both cell culture and dye labeling derived variability, increase the flexibility of assay scheduling and improve assay consistency and robustness.
Collapse
Affiliation(s)
- Shan Chung
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, United States.
| | - Van Nguyen
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, United States
| | - Yuwen Linda Lin
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, United States
| | - Lynn Kamen
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, United States
| | - An Song
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, United States
| |
Collapse
|