1
|
Domingues W, Folgosi VÂ, Sanabani SS, Leite Junior PD, Assone T, Casseb J. Novel approaches for HTLV-1 therapy: innovative applications of CRISPR-Cas9. Rev Inst Med Trop Sao Paulo 2024; 66:e48. [PMID: 39194140 DOI: 10.1590/s1678-9946202466048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 08/29/2024] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a single-stranded positive-sense RNA virus that belongs to the Retroviridae family, genus Deltaretro, and infects approximately five to 10 million people worldwide. Although a significant number of individuals living with HTLV-1 remain asymptomatic throughout their lives, some develop one or more severe clinical conditions, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive and debilitating disease, and/or a subtype of non-Hodgkin's lymphoma with a more threatening course known as adult T-cell leukemia/lymphoma (ATLL). Moreover, current therapeutic options are limited and focus primarily on treating symptoms and controlling viral latency. CRISPR-Cas9 gene editing is proposed as a promising tool to address the intricate links associated with HTLV-1. By targeting or silencing key genes during initial infection and dysregulating immune signaling pathways, CRISPR-Cas9 offers potential intervention opportunities. In this review, we address the therapeutic potential of CRISPR-Cas9 gene editing, as well as examine the primary mechanisms involved in editing potential target genes and discuss the existing evidence in the current scientific literature.
Collapse
Affiliation(s)
- Wilson Domingues
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Victor Ângelo Folgosi
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Pedro Domingos Leite Junior
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Tatiane Assone
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
3
|
Sumphanapai T, Chester K, Sawatnatee S, Yeung J, Yamabhai M. Targeting acute myeloid cell surface using a recombinant antibody isolated from whole-cell biopanning of a phage display human scFv antibody library. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:205. [PMID: 36175701 DOI: 10.1007/s12032-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
To discover new therapeutic antibodies for treatment of acute myeloid leukemia (AML) without the requirement of a known antigen, a human single-chain variable fragment (scFv) library was used to isolate novel antibody fragments recognizing HL-60 AML cells. After three rounds of biopanning, scFv-expressing phages were selected to test for binding to the target cell by flow cytometry. The clone with highest binding specificity to HL-60 cells (designated y1HL63D6) was further investigated. Fluorescent staining indicated that y1HL63D6 scFv bound to a target located on the cell surface. Whole immunoglobulin, IgG-y1HL63D6 was then generated and tested for the binding against bone marrow mononuclear cells (BMMCs) from AML patients. Significantly higher fluorescent signals were observed for some patient samples when compared to normal BMMCs or non-AML patients' BMMCs. Next, the IgG-y1HL63D6 format was tested for antibody-dependent cell cytotoxicity (ADCC). The results demonstrated that IgG-y1HL63D6 but not the control antibody, trastuzumab, could mediate specific killing of HL-60 target cells. In conclusion, our results indicate that specific antibodies can be isolated by biopanning whole cells with a non-immunized human scFv antibody phage display library and that the isolated antibody against HL-60 cells showed therapeutic potential.
Collapse
Affiliation(s)
- Thitima Sumphanapai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Kerry Chester
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Surasak Sawatnatee
- Hematology Unit, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Jenny Yeung
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
4
|
Watters KE, Kirkpatrick J, Palmer MJ, Koblentz GD. The CRISPR revolution and its potential impact on global health security. Pathog Glob Health 2021; 115:80-92. [PMID: 33590814 PMCID: PMC8550201 DOI: 10.1080/20477724.2021.1880202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Global health security is constantly under threat from infectious diseases. Despite advances in biotechnology that have improved diagnosis and treatment of such diseases, delays in detecting outbreaks and the lack of countermeasures for some biological agents continue to pose severe challenges to global health security. In this review, we describe some of the challenges facing global health security and how genome editing technologies can help overcome them. We provide specific examples of how the genome-editing tool CRISPR is being used to develop new tools to characterize pathogenic agents, diagnose infectious disease, and develop vaccines and therapeutics to mitigate the effects of an outbreak. The article also discusses some of the challenges associated with genome-editing technologies and the efforts that scientists are undertaking to mitigate them. Overall, CRISPR and genome-editing technologies are poised to have a significant positive influence on global health security over the years to come.
Collapse
Affiliation(s)
- Kyle E Watters
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jesse Kirkpatrick
- Institute for Philosophy and Public Policy, George Mason University, Fairfax, VA, USA
| | - Megan J Palmer
- Department of Bioengineering, Stanford University, Stanford, CA, USAs
| | - Gregory D Koblentz
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| |
Collapse
|
5
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
6
|
Screening Genes Promoting Exit from Naive Pluripotency Based on Genome-Scale CRISPR-Cas9 Knockout. Stem Cells Int 2020; 2020:8483035. [PMID: 32089710 PMCID: PMC7023212 DOI: 10.1155/2020/8483035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Two of the main problems of stem cell and regenerative medicine are the exit of pluripotency and differentiation to functional cells or tissues. The answer to these two problems holds great value in the clinical translation of stem cell as well as regenerative medicine research. Although piling researches have revealed the truth about pluripotency maintenance, the mechanisms underlying pluripotent cell self-renewal, proliferation, and differentiation into specific cell lineages or tissues are yet to be defined. To this end, we took full advantage of a novel technology, namely, the genome-scale CRISPR-Cas9 knockout (GeCKO). As an effective way of introducing targeted loss-of-function mutations at specific sites in the genome, GeCKO is able to screen in an unbiased manner for key genes that promote exit from pluripotency in mouse embryonic stem cells (mESCs) for the first time. In this study, we successfully established a model based on GeCKO to screen the key genes in pluripotency withdrawal. Our strategies included lentiviral package and infection technology, lenti-Cas9 gene knockout technology, shRNA gene knockdown technology, next-generation sequencing, model-based analysis of genome-scale CRISPR-Cas9 knockout (MAGeCK analysis), GO analysis, and other methods. Our findings provide a novel approach for large-scale screening of genes involved in pluripotency exit and offer an entry point for cell fate regulation research.
Collapse
|
7
|
Sharma S, Bartholdson SJ, Couch ACM, Yusa K, Wright GJ. Genome-scale identification of cellular pathways required for cell surface recognition. Genome Res 2018; 28:1372-1382. [PMID: 29914970 PMCID: PMC6120632 DOI: 10.1101/gr.231183.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
Interactions mediated by cell surface receptors initiate important instructive signaling cues but can be difficult to detect in biochemical assays because they are often highly transient and membrane-embedded receptors are difficult to solubilize in their native conformation. Here, we address these biochemical challenges by using a genome-scale, cell-based genetic screening approach using CRISPR gene knockout technology to identify cellular pathways required for specific cell surface recognition events. By using high-affinity monoclonal antibodies and low-affinity ligands, we determined the necessary screening parameters, including the importance of establishing binding contributions from the glycocalyx, that permitted the unequivocal identification of genes encoding directly interacting membrane-embedded receptors with high statistical confidence. Importantly, we show that this genome-wide screening approach additionally identified receptor-specific pathways that are required for functional display of receptors on the cell surface that included chaperones, enzymes that add post-translational modifications, trafficking proteins, and transcription factors. Finally, we demonstrate the utility of the approach by identifying IGF2R (insulin like growth factor 2 receptor) as a binding partner for the R2 subunit of GABAB receptors. We show that this interaction is direct and is critically dependent on mannose-6-phosphate, providing a mechanism for the internalization and regulation of GABAB receptor signaling. We conclude that this single approach can reveal both the molecular nature and the genetic pathways required for functional cell surface display of receptors recognized by antibodies, secreted proteins, and membrane-embedded ligands without the need to make any prior assumptions regarding their biochemical properties.
Collapse
Affiliation(s)
- Sumana Sharma
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - S Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Amalie C M Couch
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Kosuke Yusa
- Stem Cell Genetics Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Minter RR, Sandercock AM, Rust SJ. Phenotypic screening-the fast track to novel antibody discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017. [PMID: 28647091 DOI: 10.1016/j.ddtec.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The majority of antibody therapeutics have been isolated from target-led drug discovery, where many years of target research preceded drug program initiation. However, as the search for validated targets becomes more challenging and target space becomes increasingly competitive, alternative strategies, such as phenotypic drug discovery, are gaining favour. This review highlights successful examples of antibody phenotypic screens that have led to clinical drug candidates. We also review the requirements for performing an effective antibody phenotypic screen, including antibody enrichment and target identification strategies. Finally, the future impact of phenotypic drug discovery on antibody drug pipelines will be discussed.
Collapse
Affiliation(s)
- Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Alan M Sandercock
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
9
|
Skogs M, Stadler C, Schutten R, Hjelmare M, Gnann C, Björk L, Poser I, Hyman A, Uhlén M, Lundberg E. Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res 2016; 16:147-155. [PMID: 27723985 DOI: 10.1021/acs.jproteome.6b00821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.
Collapse
Affiliation(s)
- Marie Skogs
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Charlotte Stadler
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Rutger Schutten
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Martin Hjelmare
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Christian Gnann
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Lars Björk
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Ina Poser
- Molecular Cell Biology and Genetics, Max Planck Institute , D- 01307 Dresden, Germany
| | - Anthony Hyman
- Molecular Cell Biology and Genetics, Max Planck Institute , D- 01307 Dresden, Germany
| | - Mathias Uhlén
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, Royal Institute of Technology , SE-114 28 Stockholm, Sweden
| |
Collapse
|