1
|
Mishra AK, Banday S, Thakare RP, Malonia SK, Green MR. Protocol for monitoring phagocytosis of cancer cells by TAM-like macrophages using imaging cytometry. STAR Protoc 2024; 5:103320. [PMID: 39298319 PMCID: PMC11426124 DOI: 10.1016/j.xpro.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Here, we present a protocol for monitoring phagocytosis by M2-type macrophages using automated counting of phagocytic events with an imaging cytometer. We describe steps for isolating and differentiating peripheral blood mononuclear cell (PBMC)-derived monocytes into M2-like macrophages, preparing cancer cells expressing a green fluorescence marker, labeling with a pH-sensitive dye, and co-culturing with macrophages. We then outline procedures for enumerating phagocytic events using an imaging cytometer. For complete details on the use and execution of this protocol, please refer to Mishra et al.1.
Collapse
Affiliation(s)
- Alok K Mishra
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ritesh P Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K Malonia
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Wulandari DA, Tsuru K, Minamihata K, Wakabayashi R, Goto M, Kamiya N. A Functional Hydrogel Bead-Based High-Throughput Screening System for Mammalian Cells with Enhanced Secretion of Therapeutic Antibodies. ACS Biomater Sci Eng 2024; 10:628-636. [PMID: 38048166 DOI: 10.1021/acsbiomaterials.3c01386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Droplet-based high-throughput screening systems are an emerging technology that provides a quick test to screen millions of cells with distinctive characteristics. Biopharmaceuticals, specifically therapeutic proteins, are produced by culturing cells that secrete heterologous recombinant proteins with different populations and expression levels; therefore, a technology to discriminate cells that produce more target proteins is needed. Here, we present a droplet-based microfluidic strategy for encapsulating, screening, and selecting target cells with redox-responsive hydrogel beads (HBs). As a proof-of-concept study, we demonstrate the enrichment of hybridoma cells with enhanced capability of antibody secretion using horseradish peroxidase (HRP)-catalyzed hydrogelation of tetra-thiolate poly(ethylene glycol); hybridoma cells were encapsulated in disulfide-bonded HBs. Recombinant protein G or protein M with a C-terminal cysteine residue was installed in the HBs via disulfide bonding to capture antibodies secreted from the cells. HBs were fluorescently stained by adding the protein L-HRP conjugate using a tyramide signal amplification system. HBs were then separated by fluorescence-activated droplet sorting and degraded by reducing the disulfide bonds to recover the target cells. Finally, we succeeded in the selection of hybridoma cells with enhanced antibody secretion, indicating the potential of this system in the therapeutic protein production.
Collapse
Affiliation(s)
- Diah Anggraini Wulandari
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyosuke Tsuru
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Wei L, Xu D, Yuan B, Pang C, Xu H, Nie K, Yang Q, Ozkan SA, Zhang Y, Guo Y, Sun X. A Dynamic and Pseudo-Homogeneous MBs-icELISA for the Early Detection of Aflatoxin B 1 in Food and Feed. Toxins (Basel) 2023; 15:660. [PMID: 37999523 PMCID: PMC10675393 DOI: 10.3390/toxins15110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic and harmful fungal toxins to humans and animals, and the fundamental way to prevent its entry into humans is to detect its presence in advance. In this paper, the monoclonal antibody mAbA2-2 was obtained via three-step sample amplification and multi-concentration standard detection using a subcloning method based on the limited dilution method with AFB1 as the target. A dynamic and pseucdo-homogeneous magnetic beads enzyme-linked immunosorbent assay (MBs-icELISA) was established using the prepared antibody as the recognition element and immunomagnetic beads as the antigen carrier. The MBs-icELISA showed good linear correlation in the concentration range of 0.004-10 ng/mL with R2 = 0.99396. The limit of detection (LOD) of the MBs-icELISA for AFB1 was 0.0013 ng/mL. This new ELISA strategy significantly shortened AFB1 detection time through improved sensitivity compared to the conventional ELISA method.
Collapse
Affiliation(s)
- Lin Wei
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Haitao Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Kunying Nie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| |
Collapse
|
4
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
5
|
Li Y, Li P, Ke Y, Yu X, Yu W, Wen K, Shen J, Wang Z. Monoclonal Antibody Discovery Based on Precise Selection of Single Transgenic Hybridomas with an On-Cell-Surface and Antigen-Specific Anchor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17128-17141. [PMID: 35385643 DOI: 10.1021/acsami.2c02299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybridoma technology is widely used for monoclonal antibody (mAb) discovery, whereas the generation and identification of single hybridomas by the limiting dilution method (LDM) are tedious, inefficient, and time- and cost-consuming, especially for hapten molecules. Here, we describe a single transgenic hybridoma selection method (STHSM) that employs a transgenic Sp2/0 with an artificial and stable on-cell-surface anchor. The anchor was designed by combining the truncated variant transmembrane domain of EGFR with a biotin acceptor peptide AVI-tag, which was stably integrated into the genome of Sp2/0 via a piggyBac transposon. To ensure the subsequent precise selection of the hybridoma, the number of on-cell-surface anchors of the transfected Sp2/0 for fusion with immunized splenocytes was further normalized by flow cytometry at the single cell level. Then the single antigen-specific transgenic hybridomas were precisely identified and automatically selected using a CellenONE platform based on the fluorescence assay of the on-cell-surface anchor with the corresponding secreted antigen-specific mAb. The STHSM produced 579 single chloramphenicol (CAP)-specific transgenic hybridomas with a positive rate of 62.7% in 10 plates within 2 h by one-step selection, while only 12 single CAP-specific hybridomas with a positive rate of 6.3% in 40 plates required at least 32 days using the LDM with multiple subcloning steps. The best affinity of mAbs from the STHSM was more than 2-fold higher than that of those from the LDM, and this was mainly due to the preaffinity selection based on the on-cell-surface anchors and more interactions between the mAb and CAP. Then the mAbs from the STHSM and LDM were used to develop an immunoassay for CAP in spiked and natural biological samples. The method displayed satisfactory sensitivity, accuracy, and precision, demonstrating that the STHSM we developed is a versatile, practical, and efficient method for mAb discovery.
Collapse
Affiliation(s)
- Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 518000 Shenzhen, China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, China
| |
Collapse
|
6
|
He L, Liu R, Yue H, Ren S, Zhu G, Guo Y, Qin C. Actin-granule formation is an additional step in cardiac myofibroblast differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:165. [PMID: 33569467 PMCID: PMC7867932 DOI: 10.21037/atm-20-8231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Atrial fibrillation is the most common and long-lasting cardiac arrhythmia, and profoundly effects the daily lives of patients. The pathogenesis and persistence of atrial fibrillation is closely related to the cardiac fibroblast and its myofibroblast differentiation as increased collagen synthesis and migration capability. Thus better understanding of myofibroblast differentiation is essential for the prevention and treatment of atrial fibrillation. Methods Cardiac fibroblasts were isolated from neonatal rats and its actin structure was analyzed by immunofluorescence staining. Myofibroblast differentiation was induced by Angiotensin II (Ang II) and ROCK signaling related proteins were determined by western blot. Fasudil and Ricolinostat were employed to abrogate ROCK signaling and their effects on myofibroblast differentiation were assessed by IF microscopy and Celigo Image Cytometry. Results Stress actin fibers similar to actin filaments in myofibroblast differentiation are regulated by ROCK signaling, and our results also suggested Guanine nucleotide exchange factor-H1 (GEF-H1) phosphorylation could be induced by Ang II. In addition, Fasudil could down-regulate RhoA, GEF-H1, and phosphorylated GEF-H1 to inhibit ROCK signaling and further reduce Col I expression and the myofibroblast proportion. Conclusions An individual phase characterized by actin-granule formation was identified in cardiac myofibroblast differentiation. In the meanwhile, myofibroblast differentiation and its F-actin assembly could be detained in this phase by Fasudil abrogating the ROCK signaling pathway.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuofang Ren
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wang Y, Chan LLY, Grimaud M, Fayed A, Zhu Q, Marasco WA. High-Throughput Image Cytometry Detection Method for CAR-T Transduction, Cell Proliferation, and Cytotoxicity Assays. Cytometry A 2020; 99:689-697. [PMID: 33191639 DOI: 10.1002/cyto.a.24267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has drawn much attention due to its recent clinical success in B-cell malignancies. In general, the CAR-T cell discovery process consists of CAR identification, T-cell activation, transduction, and expansion, as well as assessment of CAR-T cytotoxicity. The current evaluation methods for the CAR-T discovery process can be time-consuming, low-throughput and requires the preparation of multiple sacrificial samples in order to produce kinetic data. In this study, we employed the use of a plate-based image cytometer to monitor anti-CAIX (carbonic anhydrase IX) G36 CAR-T generation and assess its cytotoxic potency of direct and selective killing against CAIX+ SKRC-59 human renal cell carcinoma cells. The transduction efficiency and cytotoxicity results were analyzed using image cytometry and compared directly to flow cytometry and Chromium 51 (51 Cr) release assays, showing that image cytometry was comparable against these conventional methods. Image cytometry method streamlines the assays required during the CAR-T cell discovery process by analyzing a plate of T cells from CAR-T generation to in vitro functional assays with minimum disruption. The proposed method can reduce assay time and uses less cell samples by imaging and analyze the same plate over time without the need to sacrifice any cells. The ability to monitor kinetic data can allow additional insights into the behavior and interaction between CAR-T and target tumor cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC., Lawrence, Massachusetts, 01843, USA
| | - Marion Grimaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Atef Fayed
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Pearson M, LaVoy A, Chan LLY, Dean GA. High-throughput viral microneutralization method for feline coronavirus using image cytometry. J Virol Methods 2020; 286:113979. [PMID: 32979406 PMCID: PMC7510446 DOI: 10.1016/j.jviromet.2020.113979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 09/19/2020] [Indexed: 01/24/2023]
Abstract
There are no approved antiviral drugs or recommended vaccines for feline coronavirus infection. Plate-based image cytometry is used for high-throughput viral microneutralization assays. Image cytometry is faster and more sensitive than traditional plaque reduction neutralization tests. Cell seeding density, plate surface coating, virus concentration and incubation time, fluorescent labeling, and buffers were optimized. Cross-neutralization between FCoV type I and II viruses was not observed.
Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2–3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.
Collapse
Affiliation(s)
- Morgan Pearson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Alora LaVoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, United States.
| | - Gregg A Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| |
Collapse
|
9
|
Li Z, Xiao Y, Peng J, Locke D, Holmes D, Li L, Hamilton S, Cook E, Myer L, Vanderwall D, Cloutier N, Siddiqui AM, Whitehead P, Bishop R, Zhao L, Cvijic ME. Quantifying drug tissue biodistribution by integrating high content screening with deep-learning analysis. Sci Rep 2020; 10:14408. [PMID: 32873881 PMCID: PMC7463244 DOI: 10.1038/s41598-020-71347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/09/2020] [Indexed: 01/23/2023] Open
Abstract
Quantitatively determining in vivo achievable drug concentrations in targeted organs of animal models and subsequent target engagement confirmation is a challenge to drug discovery and translation due to lack of bioassay technologies that can discriminate drug binding with different mechanisms. We have developed a multiplexed and high-throughput method to quantify drug distribution in tissues by integrating high content screening (HCS) with U-Net based deep learning (DL) image analysis models. This technology combination allowed direct visualization and quantification of biologics drug binding in targeted tissues with cellular resolution, thus enabling biologists to objectively determine drug binding kinetics.
Collapse
Affiliation(s)
- Zhuyin Li
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA.
| | - Youping Xiao
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jia Peng
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| | - Darren Locke
- Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Derek Holmes
- Immunoscience Biology Discovery, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Lei Li
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| | - Shannon Hamilton
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| | - Erica Cook
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| | - Larnie Myer
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| | - Dana Vanderwall
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Normand Cloutier
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Akbar M Siddiqui
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Paul Whitehead
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Richard Bishop
- Information Technology for R&D, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Lei Zhao
- Cardiovascular Translational Research, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Mary Ellen Cvijic
- Lead Discovery and Optimization, Bristol-Myers Squibb, 3551 Lawrenceville Road, Princeton, NJ, 08540, USA
| |
Collapse
|
10
|
Magnotti EL, Chan LLY, Zhu Q, Marasco WA. A high-throughput chemotaxis detection method for CCR4 + T cell migration inhibition using image cytometry. J Immunol Methods 2020; 479:112747. [PMID: 31958449 DOI: 10.1016/j.jim.2020.112747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Chemotaxis is an important aspect of immune cell behavior within the tumor microenvironment (TME). One prominent example of chemotaxis within the TME is the migration of regulatory T cells (Tregs) in response to the chemokine ligands CCL17 and CCL22. Tregs within the TME cause the suppression of anti-tumor immunity and inhibition of the effect of immunotherapeutic treatments. Therefore, the ability to screen for therapeutic antibodies that can inhibit or stimulate the chemotaxis of various immune cell types is crucial. Traditionally, chemotaxis is studied by determining the number of cells in the bottom reservoir of a Transwell microplate using flow cytometry; however, this method is time-consuming and thus not appropriate for high-throughput screening purposes. The Celigo Image Cytometer has been employed to perform high-throughput cell-based assays and was used to develop a new detection method for chemotaxis measurement. The image-based detection method was developed using chemokine ligands CCL17 and CCL22 to induce the migration of CCR4+ T cells and directly count them on the bottom of the Transwell plates. Finally, the method was applied to measure the inhibitory effects of commercially available anti-CCL17 and anti-CCL22 antibodies, which caused a dose-dependent decrease in the number of migrated T cells. The proposed image cytometry method allowed screening of multiple antibodies at various concentrations, simultaneously, which can improve the efficiency for discovering potential antibody candidates that can induce or inhibit recruitment of immune cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Elizabeth L Magnotti
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States.
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
11
|
Rosen O, Chan LLY, Abiona OM, Gough P, Wang L, Shi W, Zhang Y, Wang N, Kong WP, McLellan JS, Graham BS, Corbett KS. A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry. J Virol Methods 2019; 265:77-83. [PMID: 30468747 PMCID: PMC6357230 DOI: 10.1016/j.jviromet.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
The emergence of new pathogens, such as Middle East respiratory syndrome coronavirus (MERS-CoV), poses serious challenges to global public health and highlights the urgent need for methods to rapidly identify and characterize potential therapeutic or prevention options, such as neutralizing antibodies. Spike (S) proteins are present on the surface of MERS-CoV virions and mediate viral entry. S is the primary target for MERS-CoV vaccine and antibody development, and it has become increasingly important to understand MERS-CoV antibody binding specificity and function. Commonly used serological methods like ELISA, biolayer interferometry, and flow cytometry are informative, but limited. Here, we demonstrate a high-throughput protein binding inhibition assay using image cytometry. The image cytometry-based high-throughput screening method was developed by selecting a cell type with high DPP4 expression and defining optimal seeding density and protein binding conditions. The ability of monoclonal antibodies to inhibit MERS-CoV S binding was then tested. Binding inhibition results were comparable with those described in previous literature for MERS-CoV spike monomer and showed similar patterns as neutralization results. The coefficient of variation (CV) of our cell-based assay was <10%. The proposed image cytometry method provides an efficient approach for characterizing potential therapeutic antibodies for combating MERS-CoV that compares favorably with current methods. The ability to rapidly determine direct antibody binding to host cells in a high-throughput manner can be applied to study other pathogen-antibody interactions and thus can impact future research on viral pathogens.
Collapse
Affiliation(s)
- Osnat Rosen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Portia Gough
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nianshuang Wang
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jason S McLellan
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Zigon ES, Purseglove SM, Toxavidis V, Rice W, Tigges J, Chan LLY. A rapid single cell sorting verification method using plate-based image cytometry. Cytometry A 2018; 93:1060-1065. [DOI: 10.1002/cyto.a.23520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/10/2018] [Accepted: 06/11/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Eric S. Zigon
- Flow Cytometry Core; Beth Israel Deaconess Medical Center; Boston Massachusetts
| | | | - Vasilis Toxavidis
- Flow Cytometry Core; Beth Israel Deaconess Medical Center; Boston Massachusetts
| | - William Rice
- Department of Technology R&D; Nexcelom Bioscience LLC; Lawrence Massachusetts
| | - John Tigges
- Flow Cytometry Core; Beth Israel Deaconess Medical Center; Boston Massachusetts
| | - Leo Li-Ying Chan
- Department of Technology R&D; Nexcelom Bioscience LLC; Lawrence Massachusetts
| |
Collapse
|
13
|
Lu M, Chan BM, Schow PW, Chang WS, King CT. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells. J Immunol Methods 2017; 451:20-27. [PMID: 28803843 DOI: 10.1016/j.jim.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules.
Collapse
Affiliation(s)
- Mei Lu
- Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, United States.
| | - Brian M Chan
- Therapeutic Discovery, Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Peter W Schow
- Medical Sciences, Amgen Inc., South San Francisco, CA 94080, United States
| | - Wesley S Chang
- Medical Sciences, Amgen Inc., South San Francisco, CA 94080, United States
| | - Chadwick T King
- Therapeutic Discovery, Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada.
| |
Collapse
|