1
|
Pasetti MF, Milletich PL, White JA, Butts J, Brady RC, Dickey MD, Ballou C, Maier N, Sztein MB, Baqar S, Louis Bourgeois A, Bernstein DI. Safety and immunogenicity in humans of enterotoxigenic Escherichia coli double mutant heat-labile toxin administered intradermally. NPJ Vaccines 2025; 10:23. [PMID: 39893179 PMCID: PMC11787345 DOI: 10.1038/s41541-025-01071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) diarrhea is associated with a high burden of disease globally, for which no licensed vaccine is available. A Phase 1, double-blind, dose-escalation (0.1-2.0 µg) study was conducted to evaluate the safety and immunogenicity of double mutant heat-labile toxin LTR192G/L211A (dmLT) delivered intradermally (ID) to healthy adults. Subjects received up to three immunizations at three-week intervals. The vaccine was safe, although it induced mild local and some gastrointestinal adverse events, as well as frequent hyperpigmentation at the injection site. High levels of serum IgG and IgA, LT neutralizing antibodies, and IgG and IgA antibodies in lymphocyte supernatant were elicited post-vaccination, most prominently at the largest dose (2.0 μg). Rates of responses were the highest in subjects who received the largest dose (2.0 μg) and multiple immunizations. The ETEC dmLT vaccine was safe and highly immunogenic, inducing long-lasting systemic and mucosal responses when administered by the ID route. Trial registration Clinical Trials NCT02531685.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Patricia L Milletich
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Rebecca C Brady
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle D Dickey
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nicole Maier
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - A Louis Bourgeois
- PATH, Washington, DC, USA
- John Hopkins University School of Public Health, Baltimore, MD, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Shi Q, Wang Q, Shen Y, Chen S, Gan S, Lin T, Song F, Ma Y. Escherichia coli LTB26 mutant enhances immune responses to rotavirus antigen VP8 in a mouse model. Mol Immunol 2024; 173:10-19. [PMID: 39004021 DOI: 10.1016/j.molimm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Adjuvant is a major supplementary component of vaccines to boost adaptive immune responses. To select an efficient adjuvant from the heat-labile toxin B subunit (LTB) of E. coli, four LTB mutants (numbered LTB26, LTB34, LTB57, and LTB85) were generated by multi-amino acid random replacement. Mice have been intranasally vaccinated with human rotavirus VP8 admixed. Among the four mutants, enzyme-linked immunosorbent assay (ELISA) revealed that LTB26 had enhanced mucosal immune adjuvanticity compared to LTB, showing significantly enhanced immune responses in both serum IgG and mucosal sIgA levels. The 3D modeling analysis suggested that the enhanced immune adjuvanticity of LTB26 might be due to the change of the first LTB α-helix to a β-sheet. The molecular mechanism was studied using transcriptomic and flow cytometric (FCM) analysis. The transcriptomic data demonstrated that LTB26 enhanced immune response by enhancing B cell receptor (BCR) and major histocompatibility complex (MHC) II+-related pathways. Furthermore, LTB26 promoted Th1 and Th2-type immune responses which were confirmed by detecting IFN-γ and IL-4 expression levels. Immunohistochemical analysis demonstrated that LTB26 enhanced both Th1 and Th2 type immunity. Therefore, LTB26 was a potent mucosal immune adjuvant meeting the requirement for use in human clinics in the future.
Collapse
Affiliation(s)
- Qinlin Shi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiujuan Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijing Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijie Gan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China.
| |
Collapse
|
3
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
4
|
Stone AE, Rambaran S, Trinh IV, Estrada M, Jarand CW, Williams BS, Murrell AE, Huerter CM, Bai W, Palani S, Nakanishi Y, Laird RM, Poly FM, Reed WF, White JA, Norton EB. Route and antigen shape immunity to dmLT-adjuvanted vaccines to a greater extent than biochemical stress or formulation excipients. Vaccine 2023; 41:1589-1601. [PMID: 36732163 PMCID: PMC10308557 DOI: 10.1016/j.vaccine.2023.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
A key aspect to vaccine efficacy is formulation stability. Biochemical evaluations provide information on optimal compositions or thermal stability but are routinely validated by ex vivo analysis and not efficacy in animal models. Here we assessed formulations identified to improve or reduce stability of the mucosal adjuvant dmLT being investigated in polio and enterotoxigenic E. coli (ETEC) clinical vaccines. We observed biochemical changes to dmLT protein with formulation or thermal stress, including aggregation or subunit dissociation or alternatively resistance against these changes with specific buffer compositions. However, upon injection or mucosal vaccination with ETEC fimbriae adhesin proteins or inactivated polio virus, experimental findings indicated immunization route and co-administered antigen impacted vaccine immunogenicity more so than dmLT formulation stability (or instability). These results indicate the importance of both biochemical and vaccine-derived immunity assessment in formulation optimization. In addition, these studies have implications for use of dmLT in clinical settings and for delivery in resource poor settings.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Saraswatie Rambaran
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ivy V Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Curtis W Jarand
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Blake S Williams
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amelie E Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chelsea M Huerter
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Bai
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Surya Palani
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA; Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frederic M Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Estrada MR, Bzami A, Norton EB, White JA. Identifying a stable bulk dmLT adjuvant formulation at a clinically relevant concentration. Vaccine 2023; 41:1362-1367. [PMID: 36658044 PMCID: PMC9932622 DOI: 10.1016/j.vaccine.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Double mutant heat-labile toxin (dmLT) is a novel vaccine adjuvant under development with several different vaccine candidates. Studies using existing dmLT adjuvant stocks require significant dilution to achieve a clinically relevant dose. This dilution leads to wastage of the adjuvant. This manuscript describes a limited formulation study to improve the stability of bulk dmLT at a more clinically relevant concentration (20 µg/mL) with minimal changes to the existing bulk dmLT formulation. In vitro methods were used to evaluate dmLT stability after lyophilization and short-term accelerated stability studies. The addition of the excipient polysorbate 80 (PS80) at 0.05 % to the existing dmLT formulation was identified as the lead modification that provided improved stability of the lyophilized dmLT at 20 µg/mL through 4 weeks at 40 °C.
Collapse
Affiliation(s)
| | - Anan Bzami
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States
| | - Elizabeth B. Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Jessica A. White
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States,Corresponding author.
| |
Collapse
|
6
|
Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, Cassels F, Bourgeois L. Vaccines for Protecting Infants from Bacterial Causes of Diarrheal Disease. Microorganisms 2021; 9:1382. [PMID: 34202102 PMCID: PMC8303436 DOI: 10.3390/microorganisms9071382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.
Collapse
Affiliation(s)
- Richard Walker
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Walter Reed Institute of Research, Silver Spring, MD 20910, USA;
| | - Chad Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - Robert K. M. Choy
- Center for Vaccine Innovation and Access, PATH, San Francisco, CA 94108, USA;
| | - Jessica A. White
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - James M. Fleckenstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Medicine Service, Saint Louis VA Health Care System, St. Louis, MO 63106, USA
| | - Fred Cassels
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| |
Collapse
|
7
|
McAdams D, Lakatos K, Estrada M, Chen D, Plikaytis B, Sitrin R, White JA. Quantification of trivalent non-replicating rotavirus vaccine antigens in the presence of aluminum adjuvant. J Immunol Methods 2021; 494:113056. [PMID: 33857473 PMCID: PMC8208242 DOI: 10.1016/j.jim.2021.113056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Parenterally administered rotavirus vaccines may overcome the low efficacy observed in resource-poor regions that use live oral formulations. We have reported work on a trivalent nonreplicating rotavirus vaccine (NRRV) for parenteral administration consisting of the recombinant tetanus toxoid P2 CD4 epitope fused to a truncated VP8* fragment (P2-VP8*) for the P[4], P[6], and P[8] serotypes of rotavirus adjuvanted with aluminum. An essential part of developing this vaccine candidate was devising quantification methods for each antigen in the trivalent NRRV in the presence of aluminum adjuvant. This report describes the development of quantitative inhibition enzyme-linked immunosorbent assays (ELISAs) for in vitro antigenicity determination of the adjuvanted trivalent NRRV using serotype-specific monoclonal antibodies (mAbs) against each of the P2-VP8* antigens. Adjuvanted trivalent vaccine samples are titrated and incubated with a constant concentration of specific mAbs against each NRRV P2-VP8* antigen variant. Unbound mAbs are measured by ELISA to indirectly quantify the amount of each antigen present in the trivalent vaccine. Sensitive, specific, and reproducible inhibition ELISAs were developed and qualified for each antigen and used for final product quantification and release testing without desorption of the vaccine antigen.
Collapse
Affiliation(s)
- David McAdams
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Kyle Lakatos
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Marcus Estrada
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Dexiang Chen
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | | | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Jessica A White
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA.
| |
Collapse
|
8
|
White JA, Lal M. Technical product attributes in development of an oral enteric vaccine for infants. Vaccine 2020; 37:4800-4804. [PMID: 31358239 DOI: 10.1016/j.vaccine.2019.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
Development of an oral enteric vaccine for infants is important for Shigella and enterotoxigenic Escherichia coli (ETEC) vaccine development. At a recent workshop titled "Technical Product Attributes in Development of an Oral Enteric Vaccine for Infants," at the 2nd International Vaccines Against Shigella and ETEC Conference (VASE Conference), the preferred product attributes for development were discussed for these vaccines. The aims of this workshop were to identify gaps and gather opinions from key experts from preclinical, process development, manufacturing, regulatory, and clinical areas to fine-tune and refine key target product attributes for infant oral vaccine development. The workshop used some examples of marketed oral infant vaccines to discuss potential improvements that can be made, such as inclusion of preservatives, multidose vials, and antacid buffer presentation (liquid or lyophilized) in novel oral enteric vaccine development.
Collapse
Affiliation(s)
| | - Manjari Lal
- PATH, PO Box 900922, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Lal M. Freeze-dried tablets for oral vaccine delivery: Ease of administration and potential for production in existing facilities. Vaccine 2020; 38:4142-4145. [PMID: 32321686 DOI: 10.1016/j.vaccine.2020.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Manjari Lal
- PATH, PO Box 900922, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
11
|
Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA. Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PLoS One 2018; 13:e0203700. [PMID: 30192869 PMCID: PMC6128627 DOI: 10.1371/journal.pone.0203700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023] Open
Abstract
Rotaviruses are the primary cause of acute gastroenteritis in children worldwide. Although the implementation of live attenuated vaccines has reduced the number of rotavirus-associated deaths, variance in their effectiveness has been reported in different countries. This fact, among other concerns, leads to continuous efforts for the development of new generation of vaccines against rotavirus.In this work, we describe the obtention of cell wall-derived particles from a recombinant Lactococcus lactis expressing a cell wall-anchored version of the rotavirus VP6 protein. After confirming by SDS-PAGE, Western blot, flow cytometry and electronic immunomicroscopy that these particles were carrying the VP6 protein, their immunogenic potential was evaluated in adult BALB/c mice. For that, mucosal immunizations (oral or intranasal), with or without the dmLT [(double mutant Escherichia coli heat labile toxin LT(R192G/L211A)] adjuvant were performed. The results showed that these cell wall-derived particles were able to generate anti-rotavirus IgG and IgA antibodies only when administered intranasally, whether the adjuvant was present or not. However, the presence of dmLT was necessary to confer protection against rotavirus infection, which was evidenced by a 79.5 percent viral shedding reduction.In summary, this work describes the production of cell wall-derived particles which were able to induce a protective immune response after intranasal immunization. Further studies are needed to characterize the immune response elicited by these particles as well as to determine their potential as an alternative to the use of live L. lactis for mucosal antigen delivery.
Collapse
Affiliation(s)
- C. Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| | - Marcelo H. Argüelles
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolás M. Gutierrez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Patricia A. Barril
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.)–CONICET, Centenario, Neuquén, Argentina
| | - Laura E. Esteban
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Dalila Silvestre
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Marcelo G. Mandile
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| |
Collapse
|
12
|
Abstract
Perhaps the best-studied mucosal adjuvants are the bacterially derived ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT. These proteins promote a multifaceted antigen-specific response, including inflammatory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However, more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies and long-lasting memory to coadministered antigens when delivered mucosally or even parenterally. The purpose of this minireview is to describe the general properties, history and creation, preclinical studies, clinical studies, mechanisms of action, and considerations for use of the most promising enterotoxin-based adjuvant to date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing, and planned clinical investigations of dmLT in multiple vaccine formulations by government, nonprofit, and industry groups in the United States and abroad.
Collapse
Affiliation(s)
- John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|