1
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
3
|
Fitzpatrick KS, Degefu HN, Poljakov K, Bibby MG, Remington AJ, Searles TG, Gray MD, Boonyaratanakornkit J, Rosato PC, Taylor JJ. Validation of Ligand Tetramers for the Detection of Antigen-Specific Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1156-1165. [PMID: 36883850 PMCID: PMC10073333 DOI: 10.4049/jimmunol.2200934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
The study of Ag-specific lymphocytes has been a key advancement in immunology over the past few decades. The development of multimerized probes containing Ags, peptide:MHC complexes, or other ligands was one innovation allowing the direct study of Ag-specific lymphocytes by flow cytometry. Although these types of study are now common and performed by thousands of laboratories, quality control and assessment of probe quality are often minimal. In fact, many of these types of probe are made in-house, and protocols vary between laboratories. Although peptide:MHC multimers can often be obtained from commercial sources or core facilities, few such services exist for Ag multimers. To ensure high quality and consistency with ligand probes, we have developed an easy and robust multiplexed approach using commercially available beads able to bind Abs specific for the ligand of interest. Using this assay, we have sensitively assessed the performance of peptide:MHC and Ag tetramers and have found considerable batch-to-batch variability in performance and stability over time more easily than using murine or human cell-based assays. This bead-based assay can also reveal common production errors such as miscalculation of Ag concentration. This work could set the stage for the development of standardized assays for all commonly used ligand probes to limit laboratory-to-laboratory technical variation and experimental failure caused by probe underperformance.
Collapse
Affiliation(s)
- Kristin S Fitzpatrick
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular Medicine and Mechanisms of Disease PhD Program, University of Washington, Seattle, WA
| | - Hanna N Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Katrina Poljakov
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Madeleine G Bibby
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Allison J Remington
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Tyler G Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Matthew D Gray
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jim Boonyaratanakornkit
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Justin J Taylor
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
5
|
Fehlings M, Kim L, Guan X, Yuen K, Tafazzol A, Sanjabi S, Zill OA, Rishipathak D, Wallace A, Nardin A, Ma S, Milojkovic A, Newell EW, Mariathasan S, Yadav M. Single-cell analysis reveals clonally expanded tumor-associated CD57 + CD8 T cells are enriched in the periphery of patients with metastatic urothelial cancer responding to PD-L1 blockade. J Immunother Cancer 2022; 10:jitc-2022-004759. [PMID: 35981786 PMCID: PMC9394212 DOI: 10.1136/jitc-2022-004759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that T-cell responses against neoantigens are critical regulators of response to immune checkpoint blockade. We previously showed that circulating neoantigen-specific CD8 T cells in patients with lung cancer responding to anti-Programmed death-ligand 1 (PD-L1) (atezolizumab) exhibit a unique phenotype with high expression of CD57, CD244, and KLRG1. Here, we extended our analysis on neoantigen-specific CD8 T cells to patients with metastatic urothelial cancer (mUC) and further profiled total CD8 T cells to identify blood-based predictive biomarkers of response to atezolizumab. METHODS We identified tumor neoantigens from 20 patients with mUC and profiled their peripheral CD8 T cells using highly multiplexed combinatorial tetramer staining. Another set of patients with mUC treated with atezolizumab (n=30) or chemotherapy (n=40) were selected to profile peripheral CD8 T cells by mass cytometry. Using single-cell transcriptional analysis (single-cell RNA sequencing (scRNA-seq)), together with CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and paired T-cell receptor (TCR) sequencing, we further characterized peripheral CD8 T cells in a subset of patients (n=16). RESULTS High frequency of CD57 was observed in neoantigen-specific CD8 T cells in patients with mUC responding to atezolizumab. Extending these findings to bulk CD8 T cells, we found higher frequency of CD57 expressing CD8 T cells before treatment in patients responding to atezolizumab (n=20, p<0.01) but not to chemotherapy. These findings were corroborated in a validation cohort (n=30, p<0.01) and notably were independent of known biomarkers of response. scRNA-seq analysis identified a clonally expanded cluster enriched within CD57+ CD8 T cells in responding patients characterized by higher expression of genes associated with activation, cytotoxicity, and tissue-resident memory markers. Furthermore, compared with CD57- CD8 T cells, TCRs of CD57+ CD8 T cells showed increased overlap with the TCR repertoire of tumor-infiltrating T cells. CONCLUSIONS Collectively, we show high frequencies of CD57 among neoantigen-specific and bulk CD8 T cells in patients responding to atezolizumab. The TCR repertoire overlap between peripheral CD57+ CD8 T cells and tumor-infiltrating lymphocytes suggest that accumulation of peripheral CD57+ CD8 T cells is reflective of an ongoing antitumor T-cell response. Our findings provide evidence and rationale for using circulating CD8 T cells expressing CD57 as a readily accessible blood-based biomarker for selecting patients with mUC for atezolizumab therapy.
Collapse
Affiliation(s)
| | - Leesun Kim
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Xiangnan Guan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Kobe Yuen
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Alireza Tafazzol
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Shomyseh Sanjabi
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Oliver A Zill
- Department of Oncology Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Deepali Rishipathak
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Andrew Wallace
- Department of Oncology Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | | | | | | | - Evan W Newell
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sanjeev Mariathasan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Mahesh Yadav
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
6
|
Rattan A, White CL, Nelson S, Eismann M, Padilla-Quirarte H, Glover MA, Dileepan T, Marathe BM, Govorkova EA, Webby RJ, Richards KA, Sant AJ. Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens 2022; 11:251. [PMID: 35215193 PMCID: PMC8875387 DOI: 10.3390/pathogens11020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/30/2023] Open
Abstract
The adaptive T cell response to influenza B virus is understudied, relative to influenza A virus, for which there has been considerable attention and progress for many decades. Here, we have developed and utilized the C57BL/6 mouse model of intranasal infection with influenza B (B/Brisbane/60/2008) virus and, using an iterative peptide discovery strategy, have identified a series of robustly elicited individual CD4 T cell peptide specificities. The CD4 T cell repertoire encompassed at least eleven major epitopes distributed across hemagglutinin, nucleoprotein, neuraminidase, and non-structural protein 1 and are readily detected in the draining lymph node, spleen, and lung. Within the lung, the CD4 T cells are localized to both lung vasculature and tissue but are highly enriched in the lung tissue after infection. When studied by flow cytometry and MHC class II: peptide tetramers, CD4 T cells express prototypical markers of tissue residency including CD69, CD103, and high surface levels of CD11a. Collectively, our studies will enable more sophisticated analyses of influenza B virus infection, where the fate and function of the influenza B-specific CD4 T cells elicited by infection and vaccination can be studied as well as the impact of anti-viral reagents and candidate vaccines on the abundance, functionality, and localization of the elicited CD4 T cells.
Collapse
Affiliation(s)
- Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Sean Nelson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Max Eismann
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Herbey Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
8
|
Simoni Y, Becht E, Li S, Loh CY, Yeong JPS, Lim TKH, Takano A, Tan DSW, Newell EW. Partial absence of PD-1 expression by tumor-infiltrating EBV-specific CD8 + T cells in EBV-driven lymphoepithelioma-like carcinoma. Clin Transl Immunology 2020; 9:e1175. [PMID: 32995000 PMCID: PMC7503213 DOI: 10.1002/cti2.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Lymphoepithelioma‐like carcinoma (LELC) is an uncommon lung cancer, typically observed in young, non‐smoking Asian populations. LELC is associated with Epstein–Barr virus (EBV) infection of lung tumor cells of epithelial origin, suggesting a carcinogenic role of EBV as observed in nasopharyngeal carcinoma (NPC). Here, we studied the antigen specificity and phenotype of EBV‐specific CD8+ T cells in blood and tumor of one LELC patient positive for EBV infection in lung tumor cells. Methods Using multiplex MHC class I tetramers, mass cytometry and mRNA sequencing, we studied EBV‐specific CD8+ T cells at the transcriptomic and phenotypic levels in blood and tumor tissues of the LELC patient. Results Lymphoepithelioma‐like carcinoma lung tumor cells were positive for EBV infection. In both blood and tumor tissues, we detected two populations of EBV‐specific CD8+ T cells targeting the EBV lytic cycle proteins: BRLF1 and BMLF1. Transcriptomic analyses of these two populations in the tumor, which can be considered as tumor‐specific, revealed their distinct exhausted profile and polyclonal TCR repertoire. High‐dimensional phenotypical analysis revealed the distinct phenotype of these cells between blood and tumor tissues. In tumor tissue, EBV‐specific CD8+ TILs were phenotypically heterogeneous, but consistently expressed CD39. Unexpectedly, although the LELC tumor cells expressed abundant PD‐L1, these tumor‐specific CD8+ tumor‐infiltrating lymphocytes (TILs) mostly did not express PD‐1. Conclusion Epstein–Barr virus‐specific CD8+ TILs in EBV‐driven tumor are heterogeneous and partially lack PD‐1 expression, suggesting that anti‐PD1/PD‐L1 immunotherapy may not be an appropriate strategy for disinhibiting EBV‐specific cells in the treatment of LELC patients.
Collapse
Affiliation(s)
- Yannick Simoni
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,ImmunoScape Pte Ltd Singapore
| | - Etienne Becht
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Shamin Li
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Chiew Yee Loh
- Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Joe Poh Sheng Yeong
- Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Angela Takano
- Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology National Cancer Centre Singapore (NCCS) Singapore.,Agency for Science, Technology and Research (ASTAR) Genome Institute of Singapore (GIS) Singapore
| | - Evan W Newell
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,Senior Corresponding Author
| |
Collapse
|
9
|
Vianna P, Mendes MF, Bragatte MA, Ferreira PS, Salzano FM, Bonamino MH, Vieira GF. pMHC Structural Comparisons as a Pivotal Element to Detect and Validate T-Cell Targets for Vaccine Development and Immunotherapy-A New Methodological Proposal. Cells 2019; 8:E1488. [PMID: 31766602 PMCID: PMC6952977 DOI: 10.3390/cells8121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/02/2022] Open
Abstract
The search for epitopes that will effectively trigger an immune response remains the "El Dorado" for immunologists. The development of promising immunotherapeutic approaches requires the appropriate targets to elicit a proper immune response. Considering the high degree of HLA/TCR diversity, as well as the heterogeneity of viral and tumor proteins, this number will invariably be higher than ideal to test. It is known that the recognition of a peptide-MHC (pMHC) by the T-cell receptor is performed entirely in a structural fashion, where the atomic interactions of both structures, pMHC and TCR, dictate the fate of the process. However, epitopes with a similar composition of amino acids can produce dissimilar surfaces. Conversely, sequences with no conspicuous similarities can exhibit similar TCR interaction surfaces. In the last decade, our group developed a database and in silico structural methods to extract molecular fingerprints that trigger T-cell immune responses, mainly referring to physicochemical similarities, which could explain the immunogenic differences presented by different pMHC-I complexes. Here, we propose an immunoinformatic approach that considers a structural level of information, combined with an experimental technology that simulates the presentation of epitopes for a T cell, to improve vaccine production and immunotherapy efficacy.
Collapse
Affiliation(s)
- Priscila Vianna
- Laboratory of Human Teratogenesis and Population Medical Genetics, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Marcus F.A. Mendes
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Marcelo A. Bragatte
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Priscila S. Ferreira
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
| | - Francisco M. Salzano
- Laboratory of Molecular Evolution, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Martin H. Bonamino
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
- Vice Presidency of Research and Biological Collections, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Gustavo F. Vieira
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
- Laboratory of Health Bioinformatics, Post Graduate Program in Health and Human Development, La Salle University, Canoas 91.501-970, Brazil
| |
Collapse
|
10
|
Knowlden ZAG, Richards KA, Moritzky SA, Sant AJ. Peptide Epitope Hot Spots of CD4 T Cell Recognition Within Influenza Hemagglutinin During the Primary Response to Infection. Pathogens 2019; 8:pathogens8040220. [PMID: 31694141 PMCID: PMC6963931 DOI: 10.3390/pathogens8040220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies specific for the hemagglutinin (HA) protein of influenza virus are critical for protective immunity to infection. Our studies show that CD4 T cells specific for epitopes derived from HA are the most effective in providing help for the HA-specific B cell responses to infection and vaccination. In this study, we asked whether HA epitopes recognized by CD4 T cells in the primary response to infection are equally distributed across the HA protein or if certain segments are enriched in CD4 T cell epitopes. Mice that collectively expressed eight alternative MHC (Major Histocompatibility Complex) class II molecules, that would each have different peptide binding specificities, were infected with an H1N1 influenza virus. CD4 T cell peptide epitope specificities were identified by cytokine EliSpots. These studies revealed that the HA-specific CD4 T cell epitopes cluster in two distinct regions of HA and that some segments of HA are completely devoid of CD4 T cell epitopes. When located on the HA structure, it appears that the regions that most poorly recruit CD4 T cells are sequestered within the interior of the HA trimer, perhaps inaccessible to the proteolytic machinery inside the endosomal compartments of antigen presenting cells.
Collapse
|
11
|
Zheng J, Ou Z, Xu Y, Xia Z, Lin X, Jin S, Liu Y, Wu J. Hepatitis B virus-specific effector CD8 + T cells are an important determinant of disease prognosis: A meta-analysis. Vaccine 2019; 37:2439-2446. [PMID: 30935741 DOI: 10.1016/j.vaccine.2019.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV)-specific effector CD8+ T cells are critical for viral clearance. To determine the effects of HBV-specific effector CD8+ T cells on HBV infection, we performed a meta-analysis of the available literature. METHODS Electronic database searches identified appropriately designed studies that detected specific CD8+ T cells in HBV-infected patients. Our main endpoints were the course of infection, seroconversion of HBV "e" antigen (HBeAg), the level of HBVDNA, and alanine aminotransferase (ALT) activity. We used a fixed/random model for analysis, according to the results of a heterogeneity test (P value of Q-squared, I2). RESULTS Our searches found five eligible articles. Pooled estimation of the reported results showed that levels of specific CD8+ T cells were significantly higher in patients with acute hepatitis B than in patients with chronic hepatitis B (odds ratio [OR] = 76.30, 95% confidence interval [CI]: 15.37-378.70). With respect to chronic hepatitis B, patients with <107 copies/ml HBVDNA had higher levels of specific CD8+ T cells relative to patients with >107 copies/ml HBVDNA, but the difference had no statistics significance (OR: 3.89, 95% CI: 0.71-21.33). Patients with negative HBeAg or positive anti-HBeAg antibody (anti-HBe) results had significantly higher levels of specific CD8+ T cells versus patients with positive HBeAg results (OR: 5.82, 95% CI: 1.41-24.13). There were no significant associations between the levels of specific CD8+ T cells and serum ALT activity (OR = 0.86, 95% CI: 0.01-74.15). CONCLUSION HBV-specific effector CD8+ T cells influence the disease activity in HBV-infected patients in various ways and determine prognosis by eliminating the virus. Therefore, efforts of studying HBV-specific effector CD8+ T cells focused vaccine are potentially needed.
Collapse
Affiliation(s)
- Juzeng Zheng
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhanfan Ou
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yilun Xu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ziqiang Xia
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xianfan Lin
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sisi Jin
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yang Liu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jinming Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
12
|
Simoni Y, Fehlings M, Newell EW. Multiplex MHC Class I Tetramer Combined with Intranuclear Staining by Mass Cytometry. Methods Mol Biol 2019; 1989:147-158. [PMID: 31077105 DOI: 10.1007/978-1-4939-9454-0_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antigen-specific CD8+ T cells play a crucial role in the host protective immune response against viruses, tumors, and other diseases. Major histocompatibility complex (MHC) class I tetramers allow for a direct detection of such antigen-specific CD8+ T cells. Using mass cytometry together with multiplex MHC class I tetramer staining, we are able to screen more than 1000 different antigen candidates simultaneously across tissues in health and disease, while retaining the possibility to deliver an in-depth characterization of antigen-specific CD8+ T cells and associated phenotypes. Here we describe the method for a MHC class I tetramer multiplexing approach together with intracellular antibody staining for a parallel phenotypic cell characterization using mass cytometry in human specimens.
Collapse
Affiliation(s)
- Yannick Simoni
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, Singapore. .,Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
| | | | - Evan W Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, Singapore. .,Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
| |
Collapse
|