1
|
Kealy DJ, Wilson JC, Jaconelli T, Hogg K, Coop R, Forshaw G, Todd N, Yates D, Signoret N. Blood immune profiles reveal a CXCR3/CCR5 axis of dysregulation in early sepsis. J Leukoc Biol 2025; 117:qiae204. [PMID: 39312202 DOI: 10.1093/jleuko/qiae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 03/06/2025] Open
Abstract
We report on a pilot study exploring whether blood immune signatures can reveal early specific indicator profiles for patients meeting sepsis criteria upon hospital admission. We analyzed samples of sepsis-suspected patients (n = 20) and age-spanning healthy controls (n = 12) using flow cytometry-based assays. We measured inflammatory markers from plasma fractions and immunophenotyped freshly isolated unfixed peripheral blood mononucleated cells for leukocyte subset representation and expression of activation markers, including chemokine receptors. We found that besides IL-6 and sCD14, CXCR3 ligands (CXCL9 and CXCL10) separated sepsis-suspected patients from healthy controls. The abundance of CD4+ T cells was significantly reduced in patients, while they displayed substantial losses of CCR5-expressing monocytes and CXCR3/CCR5 double-positive T cells. Post hoc subgrouping of patients according to their sepsis diagnosis on discharge identified CXCR3/CCR5 double expression on T cells as a separating characteristic for confirmed cases. This work suggests a potential novel axis of dysregulation affecting CXCR3 and CCR5 in early sepsis.
Collapse
Affiliation(s)
- David J Kealy
- Hull York Medical School, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Julie C Wilson
- Department of Mathematics, James College, University of York, York YO10 5DD, UK
| | - Tom Jaconelli
- York & Scarborough Teaching Hospital NHS Foundation Trust, Wigginton Rd, Clifton, York YO31 8HE, UK
| | - Karen Hogg
- Bioscience Technology Facility, Departement of Biology, University of York, York YO10 5DD, UK
| | - Rebecca Coop
- York & Scarborough Teaching Hospital NHS Foundation Trust, Wigginton Rd, Clifton, York YO31 8HE, UK
| | - Greg Forshaw
- York & Scarborough Teaching Hospital NHS Foundation Trust, Wigginton Rd, Clifton, York YO31 8HE, UK
| | - Neil Todd
- York & Scarborough Teaching Hospital NHS Foundation Trust, Wigginton Rd, Clifton, York YO31 8HE, UK
| | - David Yates
- York & Scarborough Teaching Hospital NHS Foundation Trust, Wigginton Rd, Clifton, York YO31 8HE, UK
| | - Nathalie Signoret
- Hull York Medical School, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
2
|
Sefland Ø, Gullaksen SE, Omsland M, Reikvam H, Galteland E, Tran HTT, Spetalen S, Singh SK, Van Zeeburg HJT, Van De Loosdrecht AA, Gjertsen BT. Mass cytometric single cell immune profiles of peripheral blood from acute myeloid leukemia patients in complete remission with measurable residual disease. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39078053 DOI: 10.1002/cyto.b.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Measurable residual disease (MRD) is detected in approximately a quarter of AML chemotherapy responders, serving as a predictor for relapse and shorter survival. Immunological control of residual disease is suggested to prevent relapse, but the mechanisms involved are not fully understood. We present a peripheral blood single cell immune profiling by mass cytometry using a 42-antibody panel with particular emphasis on markers of cellular immune response. Six healthy donors were compared with four AML patients with MRD (MRD+) in first complete remission (CR1MRD+). Three of four patients demonstrated a favorable genetic risk profile, while the fourth patient had an unfavorable risk profile (complex karyotype, TP53-mutation) and a high level of MRD. Unsupervised clustering using self-organizing maps and dimensional reduction analysis was performed for visualization and analysis of immune cell subsets. CD57+ natural killer (NK)-cell subsets were found to be less abundant in patients than in healthy donors. Both T and NK cells demonstrated elevated expression of activity and maturation markers (CD44, granzyme B, and phosho-STAT5 Y694) in patients. Although mass cytometry remains an expensive method with limited scalability, our data suggest the utility for employing a 42-plex profiling for cellular immune surveillance in whole blood, and possibly as a biomarker platform in future clinical trials. The findings encourage further investigations of single cell immune profiling in CR1MRD+ AML-patients.
Collapse
Affiliation(s)
- Øystein Sefland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Maria Omsland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eivind Galteland
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Hoa Thi Tuyet Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | - Arjan A Van De Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Rybakowska P, Alarcón-Riquelme ME, Marañón C. Approaching Mass Cytometry Translational Studies by Experimental and Data Curation Settings. Methods Mol Biol 2024; 2779:369-394. [PMID: 38526795 DOI: 10.1007/978-1-0716-3738-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Clinical studies are conducted to better understand the pathological mechanism of diseases and to find biomarkers associated with disease activity, drug response, or outcome prediction. Mass cytometry (MC) is a high-throughput single-cell technology that measures hundreds of cells per second with more than 40 markers per cell. Thus, it is a suitable tool for immune monitoring and biomarker discovery studies. Working in translational and clinical settings requires a careful experimental design to minimize, monitor, and correct the variations introduced during sample collection, preparation, acquisition, and analysis. In this review, we will focus on these important aspects of MC-related experiments and data curation in the context of translational clinical research projects.
Collapse
Affiliation(s)
- Paulina Rybakowska
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marta E Alarcón-Riquelme
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.
| |
Collapse
|
4
|
Imbratta C, Gela A, Bilek N, Mabwe S, Cloete Y, Mortensen R, Borges ÁH, Maenetje P, Mlotshwa M, Churchyard G, Sudi L, Sabi I, Meewes P, Wallis CL, Hatherill M, Scriba TJ, Nemes E. Qualification of the differential leukocyte count and immunophenotyping in cryopreserved ex vivo whole blood assay. Cytometry A 2023; 103:992-1003. [PMID: 37675607 DOI: 10.1002/cyto.a.24793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
We developed a flow cytometry-based assay, termed Differential Leukocyte Counting and Immunophenotyping in Cryopreserved Ex vivo whole blood (DLC-ICE), that allows quantification of absolute counts and frequencies of leukocyte subsets and measures expression of activation, phenotypic and functional markers. We evaluated the performance of the DLC-ICE assay by determining inter-operator variability for processing fresh whole blood (WB) from healthy donors collected at multiple clinical sites. In addition, we assessed inter-operator variability for staining of fixed cells and robustness across different anticoagulants. Accuracy was evaluated by comparing DLC-ICE measurements to real-time cell enumeration using an accredited hematology analyzer. Finally, we developed and tested the performance of a 27-colour immunophenotyping panel on cryopreserved fixed WB and compared results to matched fresh WB. Overall, we observed <20% variability in absolute counts and frequencies of granulocytes, monocytes and lymphocytes (T, B and NK cells) when fresh WB was collected in different anti-coagulant tubes, processed or stained by independent operators. Absolute cell counts measured across operators and anti-coagulants using the DLC-ICE method exhibited excellent correlation with the reference method, complete blood count (CBC) with differential, measured using a hematology analyzer (r2 > 0.9 for majority of measurements). A comparison of leukocyte immunophenotyping on fresh WB versus DLC-ICE processed blood yielded equivalent and linear results over a wide dynamic range (r2 = 0.94 over 10-104 cells/μL). These results demonstrate low variability across trained operators, high robustness, linearity and accuracy, supporting utility of the DLC-ICE assay for large cohort studies involving multiple clinical research sites.
Collapse
Affiliation(s)
- Claire Imbratta
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Yolundi Cloete
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rasmus Mortensen
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Álvaro H Borges
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Pholo Maenetje
- Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Mandla Mlotshwa
- Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Gavin Churchyard
- Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Lwitiho Sudi
- Mbeya Medical Research Centre, National Institute for Medical Research (NIMR), Mbeya, Tanzania
| | - Issa Sabi
- Mbeya Medical Research Centre, National Institute for Medical Research (NIMR), Mbeya, Tanzania
| | | | - Carole L Wallis
- BARC, South Africa
- Lancet Laboratories, Johannesburg, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Rim S, Sakkestad ST, Zhou F, Gullaksen SE, Skavland J, Chauhan SK, Steinsland H, Hanevik K. Dynamics of circulating lymphocytes responding to human experimental enterotoxigenic Escherichia coli infection. Eur J Immunol 2023; 53:e2250254. [PMID: 37102399 DOI: 10.1002/eji.202250254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of children's and travelers' diarrhea, with no licensed vaccine. This study aimed to explore the role of cellular immunity in protection against human ETEC infection. Nine volunteers were experimentally infected with ETEC, of which six developed diarrhea. Lymphocytes were collected from peripheral blood buffy coats, before and 3, 5, 6, 7, 10, and 28 days after dose ingestion, and 34 phenotypic and functional markers were examined by mass cytometry. Thirty-three cell populations, derived by manually merging 139 cell clusters from the X-shift unsupervised clustering algorithm, were analyzed. Initially, the diarrhea group responded with increased CD56dim CD16+ natural killer cells, dendritic cells tended to rise, and mucosal-associated invariant T cells decreased. On day 5-7, an increase in plasmablasts was paralleled by a consistent rise in CD4+ Th17-like effector memory and regulatory cell subsets. CD4+ Th17-like central memory cells peaked on day 10. All Th17-like cell populations showed increased expression of activation, gut-homing, and proliferation markers. Interestingly, in the nondiarrhea group, these same CD4+ Th17-like cell populations expanded earlier, normalizing around day 7. Earlier development of these CD4+ Th17-like cell populations in the nondiarrhea group may suggest a recall response and a potential role in controlling ETEC infections.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sunniva T Sakkestad
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Department of Clinical Science, Centre of Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
- Hematology Section, Department of Internal Medicine, Helse Bergen, Bergen, Norway
| | - Jørn Skavland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sudhir K Chauhan
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Norwegian National Advisory Unit on Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Serra V, Orrù V, Lai S, Lobina M, Steri M, Cucca F, Fiorillo E. Comparison of Whole Blood Cryopreservation Methods for Extensive Flow Cytometry Immunophenotyping. Cells 2022; 11:cells11091527. [PMID: 35563832 PMCID: PMC9103885 DOI: 10.3390/cells11091527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Fresh blood immunophenotyping by flow cytometry, based on the reliable simultaneous detection of several markers in a cell, is the method of choice to study the circulating human immune system. Especially in large and multicenter studies, high sample quality is difficult to achieve, and adequate collection and storage of samples with fine-tuned whole blood cryopreservation is mandatory. Here, we compared the quality of immunophenotypic data obtained from fresh blood with those obtained after five cryopreservation methods by quantifying the levels of 41 immune cell populations. They comprised B and T lymphocyte subsets and their maturation stages, as well as monocytes and granulocytes. Three methods used fixative solutions and two other methods used dimethyl sulfoxide solutions to preserve cell viability. The fixative methods prevented detection of markers critical for identification of B and T cell subsets, including CD27, CXCR3, and CCR6. The other two methods permitted reliable discrimination of most immune-cell populations in thawed samples, though some cell frequencies varied compared to the corresponding fresh sample. Of those two methods, the one preserving blood in media containing dimethyl sulfoxide produced results that were most similar to those with fresh samples.
Collapse
Affiliation(s)
- Valentina Serra
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
- Correspondence:
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
| | - Sandra Lai
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
| | - Monia Lobina
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy; (V.O.); (S.L.); (M.L.); (M.S.); (F.C.); (E.F.)
| |
Collapse
|
7
|
Marsh‐Wakefield FMD, Mitchell AJ, Norton SE, Ashhurst TM, Leman JKH, Roberts JM, Harte JE, McGuire HM, Kemp RA. Making the most of high-dimensional cytometry data. Immunol Cell Biol 2021; 99:680-696. [PMID: 33797774 PMCID: PMC8453896 DOI: 10.1111/imcb.12456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/03/2023]
Abstract
High-dimensional cytometry represents an exciting new era of immunology research, enabling the discovery of new cells and prediction of patient responses to therapy. A plethora of analysis and visualization tools and programs are now available for both new and experienced users; however, the transition from low- to high-dimensional cytometry requires a change in the way users think about experimental design and data analysis. Data from high-dimensional cytometry experiments are often underutilized, because of both the size of the data and the number of possible combinations of markers, as well as to a lack of understanding of the processes required to generate meaningful data. In this article, we explain the concepts behind designing high-dimensional cytometry experiments and provide considerations for new and experienced users to design and carry out high-dimensional experiments to maximize quality data collection.
Collapse
Affiliation(s)
- Felix MD Marsh‐Wakefield
- Vascular Immunology UnitDiscipline of PathologyThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Andrew J Mitchell
- Department of Chemical EngineeringMaterials Characterisation and Fabrication PlatformThe University of MelbourneParkvilleVICAustralia
| | - Samuel E Norton
- Nanix LtdDunedinNew Zealand
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Thomas Myles Ashhurst
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Sydney CytometryUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
| | - Julia KH Leman
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | | - Jessica E Harte
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Helen M McGuire
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology GroupDiscipline of PathologyThe University of SydneySydneyNSWAustralia
| | - Roslyn A Kemp
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
8
|
Fernandes SB, Patil ND, Meriaux S, Theresine M, Muller CP, Leenen FAD, Elwenspoek MMC, Zimmer J, Turner JD. Unbiased Screening Identifies Functional Differences in NK Cells After Early Life Psychosocial Stress. Front Immunol 2021; 12:674532. [PMID: 34394074 PMCID: PMC8363253 DOI: 10.3389/fimmu.2021.674532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Early Life Adversity (ELA) is closely associated with the risk for developing diseases later in life, such as autoimmune diseases, type-2 diabetes and cardiovascular diseases. In humans, early parental separation, physical and sexual abuse or low social-economic status during childhood are known to have great impact on brain development, in the hormonal system and immune responses. Maternal deprivation (MD) is the closest animal model available to the human situation. This paradigm induces long lasting behavioral effects, causes changes in the HPA axis and affects the immune system. However, the mechanisms underlying changes in the immune response after ELA are still not fully understood. In this study we investigated how ELA changes the immune system, through an unbiased analysis, viSNE, and addressed specially the NK immune cell population and its functionality. We have demonstrated that maternal separation, in both humans and rats, significantly affects the sensitivity of the immune system in adulthood. Particularly, NK cells’ profile and response to target cell lines are significantly changed after ELA. These immune cells in rats are not only less cytotoxic towards YAC-1 cells, but also show a clear increase in the expression of maturation markers after 3h of maternal separation. Similarly, individuals who suffered from ELA display significant changes in the cytotoxic profile of NK cells together with decreased degranulation capacity. These results suggest that one of the key mechanisms by which the immune system becomes impaired after ELA might be due to a shift on the senescent state of the cells, specifically NK cells. Elucidation of such a mechanism highlights the importance of ELA prevention and how NK targeted immunotherapy might help attenuating ELA consequences.
Collapse
Affiliation(s)
- Sara B Fernandes
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Doctoral School in Systems and Molecular Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Doctoral School in Systems and Molecular Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Meriaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Maud Theresine
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Fleur A D Leenen
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Martha M C Elwenspoek
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Doctoral School in Systems and Molecular Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Braudeau C, Salabert-Le Guen N, Chevreuil J, Rimbert M, Martin JC, Josien R. An easy and reliable whole blood freezing method for flow cytometry immuno-phenotyping and functional analyses. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:652-665. [PMID: 33544978 DOI: 10.1002/cyto.b.21994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Immune profiling by flow cytometry is not always possible on fresh blood samples due to time and/or transport constraints. Furthermore, the cryopreservation of peripheral blood mononuclear cells (PBMC) requires on-site specialized lab facilities, thus severely restricting the extent to which blood immune monitoring can be applied to multicenter clinical studies. These major limitations can be addressed through the development of simplified whole blood freezing methods. METHODS In this report, we describe an optimized easy protocol for rapid whole blood freezing with the CryoStor® CS10 solution. Using flow cytometry, we compared cellular viability and composition on cryopreserved whole blood samples to matched fresh blood, as well as fresh and frozen PBMC. RESULTS Though partial loss of neutrophils was observed, leucocyte viability was routinely >75% and we verified the preservation of viable T cells, NK cells, monocytes, dendritic cells, and eosinophils in frequencies similar to those observed in fresh samples. A moderate decrease in B cell frequencies was observed. Importantly, we validated the possibility to analyze major intracellular markers, such as FOXP3 and Helios in regulatory T cells. Finally, we demonstrated good functional preservation of CS10-cryopreserved cells through the analysis of intracellular cytokine production in ex vivo stimulated T cells (IFNg, IL-4, IL-17A,) and monocytes (IL-1b, IL-6, TNFa). CONCLUSIONS In conclusion, our protocol provides a robust method to apply reliable immune monitoring studies to cryopreserved whole blood samples, hence offering new important opportunities for the design of future multicenter clinical trials.
Collapse
Affiliation(s)
- Cecile Braudeau
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Nina Salabert-Le Guen
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Justine Chevreuil
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Marie Rimbert
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jerome C Martin
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Regis Josien
- Laboratoire d'Immunologie, CIMNA, LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
10
|
Dujardin A, Chesneau M, Dubois F, Danger R, Bui L, Kerleau C, Guérif P, Brouard S, Dantal J. Clinical and immunological follow-up of very long-term kidney transplant recipients treated with calcineurin inhibitors indicates dual phenotypes. Kidney Int 2020; 99:1418-1429. [PMID: 33137335 DOI: 10.1016/j.kint.2020.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Operationally tolerant kidney transplant recipients harbor an immunological signature, associated with low rejection risk, and focused on B lymphocytes. Here, we investigated whether patients with long-term transplantation and still on immunosuppressive therapy would present such a signature of low immunological rejection risk, compared to more recently transplanted patients. Of 114 kidney transplant recipients enrolled, 38 with more than 25 years of graft survival and stable graft function under calcineurin inhibitors, were matched with two different groups of transplanted patients (10-15 and 5-7 years after transplantation). Three phenotypes associated with low immunological rejection risk (Tfh, B and regulatory T cells), initially found in operationally tolerant kidney transplant recipients, and the composite score of tolerance (combination of six transcriptomic markers, age at transplantation and age at sampling) were analyzed. We found that very long-term patients were characterized by a significantly lower percentage of total B cells, a significantly higher proportion of CD24HiCD38Lo memory B cells, significantly fewer CD24LoCD38Lo naive B cells, and a significantly lower proportion of PD1HiCCR7Lo Tfh lymphocytes than more recently transplanted patients. This phenotype is associated with a positive composite score of tolerance in patients transplanted for more than 25 years. Thus, our study suggests a dual phenotype in very long-term kidney transplanted patients with an immunological profile associated with low rejection risk.
Collapse
Affiliation(s)
- Amaury Dujardin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France; Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Mélanie Chesneau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Florian Dubois
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Richard Danger
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Linh Bui
- Service de Néphrologie, Centre Hospitalier de Béthune, Bethune Cedex, France
| | - Clarisse Kerleau
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Pierrick Guérif
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France; Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes Université, ITUN, Nantes, France.
| | - Jacques Dantal
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France; Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes Université, ITUN, Nantes, France
| |
Collapse
|
11
|
Rybakowska P, Alarcón-Riquelme ME, Marañón C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput Struct Biotechnol J 2020; 18:874-886. [PMID: 32322369 PMCID: PMC7163213 DOI: 10.1016/j.csbj.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
High-dimensional, single-cell cell technologies revolutionized the way to study biological systems, and polychromatic flow cytometry (FC) and mass cytometry (MC) are two of the drivers of this revolution. As up to 30-50 dimensions respectively can be measured per single-cell, they allow deep phenotyping combined with cellular functions studies, like cytokine production or protein phosphorylation. In parallel, the bioinformatics field develops algorithms that are able to process incoming data and extract the most useful and meaningful biological information. However, the success of automated analysis tools depends on the generation of high-quality data. In this review we present the most recent FC and MC computational approaches that are used to prepare, process and interpret high-content cytometry data. We also underscore proper experimental design as a key step for obtaining good quality data.
Collapse
Affiliation(s)
- Paulina Rybakowska
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
| | - Marta E. Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
- Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Concepción Marañón
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
| |
Collapse
|