1
|
Swaminathan A, Varamballi P, Marate S, Paul RV, Mukhopadhyay C, Pattanaik A. Soluble Membrane Attack Complex (sMAC) as a Potential Diagnostic Biomarker Differentiating Acute Viral Encephalitis from Guillain-Barré Syndrome, a Post-infectious Autoimmune State. Curr Microbiol 2024; 82:58. [PMID: 39718594 DOI: 10.1007/s00284-024-04039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Acute encephalitis syndrome (AES) presents with the onset of fever, altered sensorium and/or seizures, known to be caused by various infectious and non-infectious aetiological agents, among which viruses are the commonest. The severity of AES prompts rapid diagnosis, which is not met by time-consuming conventional diagnostic techniques. In this study, archived cerebrospinal fluid samples of laboratory-confirmed viral AES, an acute infectious condition and Guillain-Barré Syndrome (GBS), a post-infectious, autoimmune condition was assessed for soluble membrane attack complex (sMAC) using ELISA. Statistical analysis was performed to understand the diagnostic potential of sMAC in AES versus GBS patients. sMAC levels were significantly increased in viral encephalitis compared with GBS samples (43.69 ng/mL vs. 29.33 ng/mL, P < 0.05). The diagnostic potential of sMAC was assessed using the receiver operating characteristic (ROC) curve, which demonstrated excellent diagnostic discrimination between viral AES and GBS (area under curve = 0.8125, 95% CI, P < 0.0001). Using Youden's index, the optimal sMAC cut-off was calculated as 33.6 ng/mL for distinguishing AES from GBS. The findings of our study revealed significant increase in sMAC levels in AES patients in comparison to those with GBS. This underscores the utility of sMAC as a valuable tool in distinguishing between AES and GBS, thereby facilitating more tailored patient management strategies, which varies for acute infectious and post-infectious conditions especially those mediated by autoimmunity.
Collapse
Affiliation(s)
- Akila Swaminathan
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prasad Varamballi
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srilatha Marate
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohan V Paul
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Amrita Pattanaik
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Xu Y, Wang J, Qin X, Liu J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence 2024; 15:2387180. [PMID: 39192572 PMCID: PMC11364070 DOI: 10.1080/21505594.2024.2387180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Streptococcus pneumoniae is a common pathogen associated with community-acquired bacterial meningitis, characterized by high morbidity and mortality rates. While vaccination reduces the incidence of meningitis, many survivors experience severe brain damage and corresponding sequelae. The pathogenesis of pneumococcal meningitis has not been fully elucidated. Currently, meningitis requires bacterial disruption of the blood - brain barrier, a process that involves the interaction of bacterial surface components with host cells and various inflammatory responses. This review delineates the global prevalence, pathogenesis, and treatment strategies of pneumococcal meningitis. The objective is to enhance the thorough comprehension of the clinical manifestations and biological mechanisms of the disease, thereby enabling more efficient prevention, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ji Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
3
|
Smit ER, Romijn M, Langerhorst P, van der Zwaan C, van der Staaij H, Rotteveel J, van Kaam AH, Fustolo-Gunnink SF, Hoogendijk AJ, Onland W, Finken MJJ, van den Biggelaar M. Distinct protein patterns related to postnatal development in small for gestational age preterm infants. Pediatr Res 2024:10.1038/s41390-024-03481-0. [PMID: 39152333 DOI: 10.1038/s41390-024-03481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Preterm infants, especially those born small for gestational age (SGA), are at risk of short-term and long-term health complications. Characterization of changes in circulating proteins postnatally in preterm infants may provide valuable fundamental insights into this population. Here, we investigated postnatal developmental patterns in preterm infants and explored protein signatures that deviate between SGA infants and appropriate for gestational age (AGA) infants using a mass spectrometry (MS)-based proteomics workflow. METHODS Longitudinal serum samples obtained at postnatal days 0, 3, 7, 14, and 28 from 67 preterm infants were analyzed using unbiased MS-based proteomics. RESULTS 314 out of 833 quantified serum proteins change postnatally, including previously described age-related changes in immunoglobulins, hemoglobin subunits, and new developmental patterns, e.g. apolipoproteins (APOA4) and terminal complement cascade (C9) proteins. Limited differences between SGA and AGA infants were found at birth while longitudinal monitoring revealed 69 deviating proteins, including insulin-sensitizing hormone adiponectin, platelet proteins, and 24 proteins with an annotated function in the immune response. CONCLUSIONS This study shows the potential of MS-based serum profiling in defining circulating protein trajectories in the preterm infant population and its ability to identify longitudinal alterations in protein levels associated with SGA. IMPACT Postnatal changes of circulating proteins in preterm infants have not fully been elucidated but may contribute to development of health complications. Mass spectrometry-based analysis is an attractive approach to study circulating proteins in preterm infants with limited material. Longitudinal plasma profiling reveals postnatal developmental-related patterns in preterm infants (314/833 proteins) including previously described changes, but also previously unreported proteins. Longitudinal monitoring revealed an immune response signature between SGA and AGA infants. This study highlights the importance of taking postnatal changes into account for translational studies in preterm infants.
Collapse
Affiliation(s)
- Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Michelle Romijn
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Langerhorst
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Hilde van der Staaij
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost Rotteveel
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Suzanne F Fustolo-Gunnink
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Wes Onland
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Martijn J J Finken
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
4
|
Mo S, Shi C, Cai Y, Xu M, Xu H, Xu Y, Zhang K, Zhang Y, Liu J, Che S, Liu X, Xing C, Long X, Chen X, Liu E. Single-cell transcriptome reveals highly complement activated microglia cells in association with pediatric tuberculous meningitis. Front Immunol 2024; 15:1387808. [PMID: 38745656 PMCID: PMC11091396 DOI: 10.3389/fimmu.2024.1387808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Background Tuberculous meningitis (TBM) is a devastating form of tuberculosis (TB) causing high mortality and disability. TBM arises due to immune dysregulation, but the underlying immune mechanisms are unclear. Methods We performed single-cell RNA sequencing on peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells isolated from children (n=6) with TBM using 10 xGenomics platform. We used unsupervised clustering of cells and cluster visualization based on the gene expression profiles, and validated the protein and cytokines by ELISA analysis. Results We revealed for the first time 33 monocyte populations across the CSF cells and PBMCs of children with TBM. Within these populations, we saw that CD4_C04 cells with Th17 and Th1 phenotypes and Macro_C01 cells with a microglia phenotype, were enriched in the CSF. Lineage tracking analysis of monocyte populations revealed myeloid cell populations, as well as subsets of CD4 and CD8 T-cell populations with distinct effector functions. Importantly, we discovered that complement-activated microglial Macro_C01 cells are associated with a neuroinflammatory response that leads to persistent meningitis. Consistently, we saw an increase in complement protein (C1Q), inflammatory markers (CRP) and inflammatory factor (TNF-α and IL-6) in CSF cells but not blood. Finally, we inferred that Macro_C01 cells recruit CD4_C04 cells through CXCL16/CXCR6. Discussion We proposed that the microglial Macro_C01 subset activates complement and interacts with the CD4_C04 cell subset to amplify inflammatory signals, which could potentially contribute to augment inflammatory signals, resulting in hyperinflammation and an immune response elicited by Mtb-infected tissues.
Collapse
Affiliation(s)
- Siwei Mo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Chenyan Shi
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Maozhu Xu
- Maternal and Child Care Health Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Hongmei Xu
- Department of Infectious Diseases, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Kehong Zhang
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jiao Liu
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Siyi Che
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiangyu Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chaonan Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoru Long
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Koning R, van Roon MA, Brouwer MC, van de Beek D. Adjunctive treatments for pneumococcal meningitis: a systematic review of experimental animal models. Brain Commun 2024; 6:fcae131. [PMID: 38707710 PMCID: PMC11069119 DOI: 10.1093/braincomms/fcae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.
Collapse
Affiliation(s)
- Rutger Koning
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Marian A van Roon
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Immunology Biology and INSERM UMRS1138, Centre de Recherche des Cordeliers, Team "Inflammation, Complement and Cancer", Paris, France
| |
Collapse
|
7
|
Im H, Kim T, Na S, Song IU, Kim SH, Oh YS, Oh J, Kim W. Low serum complement level is associated with higher mortality in tuberculous meningitis: a retrospective cohort study. ENCEPHALITIS 2023; 3:7-14. [PMID: 37469713 PMCID: PMC10295820 DOI: 10.47936/encephalitis.2022.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 07/21/2023] Open
Abstract
Purpose We evaluated the associations between serum complement levels and tuberculous meningitis (TBM), bacterial meningitis (BM), and viral meningitis (VM), as well as the association between serum complement levels and mortality in TBM. Methods Background information and blood/cerebrospinal fluid analysis results were collected from 2009 to 2019. Patients who had serum complement level data collected at admission and who were diagnosed with TBM (n = 97), BM (n = 31), or VM (n = 557) were enrolled. Results Initial serum complement levels were significantly lower in the TBM group than the VM group in both the total population and the propensity score-matched population. In the TBM and VM groups, compared to patients with initial highest-quartile C4 level, patients in the lowest quartile (C4 < 24.3 mg/dL) had significantly greater odds of TBM diagnosis (odds ratio, 2.2; 95% confidence interval, 1.0-4.5; p = 0.038). In the TBM group, patients with the lowest-quartile C3 level (<96.9 mg/dL) experienced a significantly higher 90-day mortality rate compared to other TBM patients (hazard ratio, 19.0; 95% confidence interval, 2.1-167.4.5; p = 0.008). Conclusion Both serum C3 and C4 levels were significantly lower in the TBM group than in the VM group. TBM patients with lower serum C3 level had a significantly higher mortality rate than those with higher C3 level.
Collapse
Affiliation(s)
- Hansol Im
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Taewon Kim
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seunghee Na
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - In-Uk Song
- Department of Neurology, The Catholic University of Korea, Incheon St. Mary’s Hospital, Seoul, Korea
| | - Seong-Hoon Kim
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Yoon-Sang Oh
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, Korea
| | - Juhee Oh
- Department of Neurology, The Catholic University of Korea, St. Vincent’s Hospital, Seoul, Korea
| | - Woojun Kim
- Department of Neurology, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
| |
Collapse
|
8
|
Doorduijn DJ, Lukassen MV, van 't Wout MFL, Franc V, Ruyken M, Bardoel BW, Heck AJR, Rooijakkers SHM. Soluble MAC is primarily released from MAC-resistant bacteria that potently convert complement component C5. eLife 2022; 11:77503. [PMID: 35947526 PMCID: PMC9402229 DOI: 10.7554/elife.77503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The membrane attack complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC), or terminal complement complex (TCC), are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to three copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.
Collapse
Affiliation(s)
- Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Marije F L van 't Wout
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
9
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
10
|
Spatola M, Loos C, Cizmeci D, Webb N, Gorman MJ, Rossignol E, Shin S, Yuan D, Fontana L, Mukerji SS, Lauffenburger DA, Gabuzda D, Alter G. Functional compartmentalization of antibodies in the central nervous system during chronic HIV infection. J Infect Dis 2022; 226:738-750. [PMID: 35417540 PMCID: PMC9441210 DOI: 10.1093/infdis/jiac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
The central nervous system (CNS) has emerged as a critical HIV reservoir. Thus, interventions aimed at controlling and eliminating HIV must include CNS-targeted strategies. Given the inaccessibility of the brain, efforts have focused on cerebrospinal fluid (CSF), aimed at defining biomarkers of HIV-disease in the CNS, including HIV-specific antibodies. However, how antibodies traffic between the blood and CNS, and whether specific antibody profiles track with HIV-associated neurocognitive disorders (HAND) remains unclear. Here, we comprehensively profiled HIV-specific antibodies across plasma and CSF from 20 antiretroviral therapy (ART) naive or treated persons with HIV. CSF was populated by IgG1 and IgG3 antibodies, with reduced Fc-effector profiles. While ART improved plasma antibody functional coordination, CSF profiles were unaffected by ART and were unrelated to HAND severity. These data point to a functional sieving of antibodies across the blood-brain barrier, providing previously unappreciated insights for the development of next-generation therapeutics targeting the CNS reservoir.
Collapse
Affiliation(s)
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Webb
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Laura Fontana
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
12
|
Abstract
Purpose of review Community-acquired bacterial meningitis is a continually changing disease. This review summarises both dynamic epidemiology and emerging data on pathogenesis. Updated clinical guidelines are discussed, new agents undergoing clinical trials intended to reduce secondary brain damage are presented. Recent findings Conjugate vaccines are effective against serotype/serogroup-specific meningitis but vaccine escape variants are rising in prevalence. Meningitis occurs when bacteria evade mucosal and circulating immune responses and invade the brain: directly, or across the blood–brain barrier. Tissue damage is caused when host genetic susceptibility is exploited by bacterial virulence. The classical clinical triad of fever, neck stiffness and headache has poor diagnostic sensitivity, all guidelines reflect the necessity for a low index of suspicion and early Lumbar puncture. Unnecessary cranial imaging causes diagnostic delays. cerebrospinal fluid (CSF) culture and PCR are diagnostic, direct next-generation sequencing of CSF may revolutionise diagnostics. Administration of early antibiotics is essential to improve survival. Dexamethasone partially mitigates central nervous system inflammation in high-income settings. New agents in clinical trials include C5 inhibitors and daptomycin, data are expected in 2025. Summary Clinicians must remain vigilant for bacterial meningitis. Constantly changing epidemiology and emerging pathogenesis data are increasing the understanding of meningitis. Prospects for better treatments are forthcoming.
Collapse
|
13
|
Ogwang R, Muhanguzi D, Mwikali K, Anguzu R, Kubofcik J, Nutman TB, Taylor M, Newton CR, Vincent A, Conroy AL, Marsh K, Idro R. Systemic and cerebrospinal fluid immune and complement activation in Ugandan children and adolescents with long-standing nodding syndrome: A case-control study. Epilepsia Open 2021; 6:297-309. [PMID: 34033255 PMCID: PMC8166803 DOI: 10.1002/epi4.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Nodding syndrome is a poorly understood epileptic encephalopathy characterized by a unique seizure type-head nodding-and associated with Onchocerca volvulus infection. We hypothesized that altered immune activation in the cerebrospinal fluid (CSF) and plasma of children with nodding syndrome may yield insights into the pathophysiology and progression of this seizure disorder. METHOD We conducted a case-control study of 154 children (8 years or older) with long-standing nodding syndrome and 154 healthy age-matched community controls in 3 districts of northern Uganda affected by nodding syndrome. Control CSF samples were obtained from Ugandan children in remission from hematological malignancy during routine follow-up. Markers of immune activation and inflammation (cytokines and chemokines) and complement activation (C5a) were measured in plasma and CSF using ELISA or Multiplex Luminex assays. O volvulus infection was assessed by serology for anti-OV-16 IgG levels. RESULTS The mean (SD) age of the population was 15.1 (SD: 1.9) years, and the mean duration of nodding syndrome from diagnosis to enrollment was 8.3 (SD: 2.7) years. The majority with nodding syndrome had been exposed to O volvulus (147/154 (95.4%)) compared with community children (86/154 (55.8%)), with an OR of 17.04 (95% CI: 7.33, 45.58), P < .001. C5a was elevated in CSF of children with nodding syndrome compared to controls (P < .0001). The levels of other CSF markers tested were comparable between cases and controls after adjusting for multiple comparisons. Children with nodding syndrome had lower plasma levels of IL-10, APRIL, CCL5 (RANTES), CCL2, CXCL13, and MMP-9 compared with community controls (P < .05 for all; multiple comparisons). Plasma CRP was elevated in children with nodding syndrome compared to community children and correlated with disease severity. SIGNIFICANCE Nodding syndrome is associated with exposure to O. volvulus. Compared to controls, children with long-standing symptoms of nodding syndrome show evidence of complement activation in CSF and altered immune activation in plasma.
Collapse
Affiliation(s)
- Rodney Ogwang
- Makerere University College of Health Sciences, Kampala, Uganda.,Centre of Tropical Neuroscience (CTN), Kitgum Site, Uganda.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Kioko Mwikali
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Ronald Anguzu
- Centre of Tropical Neuroscience (CTN), Kitgum Site, Uganda.,Division of Epidemiology, Institute of Health and Equity, Medical College of Wisconsin, Wisconsin, WI, USA
| | - Joe Kubofcik
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mark Taylor
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Charles R Newton
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea L Conroy
- Indiana University School of Medicine, Ryan White Center for Pediatric Infectious Disease & Global Health, Indianapolis, IN, USA
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Idro
- Makerere University College of Health Sciences, Kampala, Uganda.,Centre of Tropical Neuroscience (CTN), Kitgum Site, Uganda.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Wall EC, Brownridge P, Laing G, Terra VS, Mlozowa V, Denis B, Nyirenda M, Allain T, Ramos-Sevillano E, Carrol E, Collins A, Gordon SB, Lalloo DG, Wren B, Beynon R, Heyderman RS, Brown JS. CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With Streptococcus pneumoniae Meningitis. Front Cell Infect Microbiol 2020; 10:603623. [PMID: 33363056 PMCID: PMC7759504 DOI: 10.3389/fcimb.2020.603623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Background Mortality from bacterial meningitis, predominately caused by Streptococcus pneumoniae, exceeds 50% in sub-Saharan African countries with high HIV prevalence. Underlying causes of high mortality are poorly understood. We examined the host and pathogen proteome in the CSF of adults with proven pneumococcal meningitis (PM), testing if there was an association between differentially expressed proteins and outcome. Materials/Methods CSF proteomes were analyzed by quantitative Mass-Spectrometry. Spectra were identified using the Swissprot human and TIGR4 pneumococcal protein libraries. Proteins were quantitated and analyzed against mortality. Unique proteins in PM were identified against published normal CSF proteome. Random-Forest models were used to test for protein signatures discriminating outcome. Proteins of interest were tested for their effects on growth and neutrophil opsonophagocytic killing of S. pneumoniae. Results CSF proteomes were available for 57 Adults with PM (median age 32 years, 60% male, 70% HIV-1 co-infected, mortality 63%). Three hundred sixty individual human and 23 pneumococcal proteins were identified. Of the human protein hits, 30% were not expressed in normal CSF, and these were strongly associated with inflammation and primarily related to neutrophil activity. No human protein signature predicted outcome. However, expression of the essential S. pneumoniae protein Elongation Factor Tu (EF-Tu) was significantly increased in CSF of non-survivors [False Discovery Rate (q) <0.001]. Expression of EF-Tu was negatively co-correlated against expression of Neutrophil defensin (r 0.4 p p < 0.002), but not against complement proteins C3 or Factor H. In vitro, addition of EF-Tu protein impaired S. pneumoniae neutrophil killing in CSF. Conclusions Excessive S. pneumoniae EF-Tu protein in CSF was associated with reduced survival in meningitis in a high HIV prevalence population. We show EF-Tu may inhibit neutrophil mediated killing of S. pneumoniae in CSF. Further mechanistic work is required to better understand how S. pneumoniae avoids essential innate immune responses during PM through production of excess EF-Tu.
Collapse
Affiliation(s)
- Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Philip Brownridge
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gavin Laing
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Vanessa S. Terra
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Veronica Mlozowa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mulinda Nyirenda
- Adult Emergency Trauma Centre, Queen Elizabeth Central Hospital, Ministry of Health, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Theresa Allain
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Enitan Carrol
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Collins
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospital Foundation Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Beynon
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jeremy S. Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
15
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
16
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
17
|
Role of Bacterial and Host DNases on Host-Pathogen Interaction during Streptococcus suis Meningitis. Int J Mol Sci 2020; 21:ijms21155289. [PMID: 32722502 PMCID: PMC7432635 DOI: 10.3390/ijms21155289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is a zoonotic agent causing meningitis in pigs and humans. Neutrophils, as the first line of defense against S. suis infections, release neutrophil extracellular traps (NETs) to entrap pathogens. In this study, we investigated the role of the secreted nuclease A of S. suis (SsnA) as a NET-evasion factor in vivo and in vitro. Piglets were intranasally infected with S. suis strain 10 or an isogenic ssnA mutant. DNase and NET-formation were analyzed in cerebrospinal fluid (CSF) and brain tissue. Animals infected with S. suis strain 10 or S. suis 10ΔssnA showed the presence of NETs in CSF and developed similar clinical signs. Therefore, SsnA does not seem to be a crucial virulence factor that contributes to the development of meningitis in pigs. Importantly, DNase activity was detectable in the CSF of both infection groups, indicating that host nucleases, in contrast to bacterial nuclease SsnA, may play a major role during the onset of meningitis. The effect of DNase 1 on neutrophil functions was further analyzed in a 3D-cell culture model of the porcine blood–CSF barrier. We found that DNase 1 partially contributes to enhanced killing of S. suis by neutrophils, especially when plasma is present. In summary, host nucleases may partially contribute to efficient innate immune response in the CSF.
Collapse
|
18
|
Koelman DLH, Brouwer MC, van de Beek D. Targeting the complement system in bacterial meningitis. Brain 2020; 142:3325-3337. [PMID: 31373605 PMCID: PMC6821383 DOI: 10.1093/brain/awz222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is most commonly caused by Streptococcus pneumoniae and Neisseria meningitidis and continues to pose a major public health threat. Morbidity and mortality of meningitis are driven by an uncontrolled host inflammatory response. This comprehensive update evaluates the role of the complement system in upregulating and maintaining the inflammatory response in bacterial meningitis. Genetic variation studies, complement level measurements in blood and CSF, and experimental work have together led to the identification of anaphylatoxin C5a as a promising treatment target in bacterial meningitis. In animals and patients with pneumococcal meningitis, the accumulation of neutrophils in the CSF was mainly driven by C5-derived chemotactic activity and correlated positively with disease severity and outcome. In murine pneumococcal meningitis, adjunctive treatment with C5 antibodies prevented brain damage and death. Several recently developed therapeutics target C5 conversion, C5a, or its receptor C5aR. Caution is warranted because treatment with C5 antibodies such as eculizumab also inhibits the formation of the membrane attack complex, which may result in decreased meningococcal killing and increased meningococcal disease susceptibility. The use of C5a or C5aR antagonists to specifically target the harmful anaphylatoxins-induced effects, therefore, are most promising and present opportunities for a phase 2 clinical trial.
Collapse
Affiliation(s)
- Diederik L H Koelman
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kasanmoentalib ES, Valls Serón M, Engelen-Lee JY, Tanck MW, Pouw RB, van Mierlo G, Wouters D, Pickering MC, van der Ende A, Kuijpers TW, Brouwer MC, van de Beek D. Complement factor H contributes to mortality in humans and mice with bacterial meningitis. J Neuroinflammation 2019; 16:279. [PMID: 31883521 PMCID: PMC6935240 DOI: 10.1186/s12974-019-1675-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Background The complement system is a vital component of the inflammatory response occurring during bacterial meningitis. Blocking the complement system was shown to improve the outcome of experimental pneumococcal meningitis. Complement factor H (FH) is a complement regulatory protein inhibiting alternative pathway activation but is also exploited by the pneumococcus to prevent complement activation on its surface conferring serum resistance. Methods In a nationwide prospective cohort study of 1009 episodes with community-acquired bacterial meningitis, we analyzed whether genetic variations in CFH influenced FH cerebrospinal fluid levels and/or disease severity. Subsequently, we analyzed the role of FH in our pneumococcal meningitis mouse model using FH knock-out (Cfh−/−) mice and wild-type (wt) mice. Finally, we tested whether adjuvant treatment with human FH (hFH) improved outcome in a randomized investigator blinded trial in a pneumococcal meningitis mouse model. Results We found the major allele (G) of single nucleotide polymorphism in CFH (rs6677604) to be associated with low FH cerebrospinal fluid concentration and increased mortality. In patients and mice with bacterial meningitis, FH concentrations were elevated during disease and Cfh−/− mice with pneumococcal meningitis had increased mortality compared to wild-type mice due to C3 depletion. Adjuvant treatment of wild-type mice with purified human FH led to complement inhibition but also increased bacterial outgrowth which resulted in similar disease outcomes. Conclusion Low FH levels contribute to mortality in pneumococcal meningitis but adjuvant treatment with FH at a clinically relevant time point is not beneficial.
Collapse
Affiliation(s)
- E Soemirien Kasanmoentalib
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Mercedes Valls Serón
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joo Yeon Engelen-Lee
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Arie van der Ende
- Department of Medical Microbiology and The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Pneumococcal meningitis is the most frequent form of bacterial meningitis in Europe and the United States. Although early antimicrobial and adjuvant therapy with dexamethasone have helped to improve disease outcome in adults, mortality and morbidity rates remain unsatisfactorily high, emphasizing the need for additional treatment options. Promising targets for adjuvant therapy have been identified recently and will be the focus of this review. RECENT FINDINGS Brain disease in pneumococcal meningitis is caused by direct bacterial toxicity and excessive meningeal inflammation. Accordingly, promising targets for adjuvant therapy comprise limiting the release of toxic bacterial products and suppressing inflammation in a way that maximally protects against tissue injury without hampering pathogen eradication by antibiotics. Among the agents tested so far in experimental models, complement inhibitors, matrix-metalloproteinase inhibitors, and nonbacteriolytic antibiotics or a combination of the above have the potential to more efficiently protect the brain either alone (e.g., in children and outside the high-income settings) or in addition to adjuvant dexamethasone. Additionally, new protein-based pneumococcal vaccines are being developed that promise to improve disease prevention, namely by addressing the increasing problem of serotype replacement seen with pneumococcal conjugate vaccines. SUMMARY Pneumococcal meningitis remains a life-threatening disease requiring early antibiotic and targeted anti-inflammatory therapy. New adjuvant therapies showed promising results in animal models but need systematic clinical testing.
Collapse
|
21
|
Veje M, Studahl M, Bergström T. Intrathecal complement activation by the classical pathway in tick-borne encephalitis. J Neurovirol 2019; 25:397-404. [PMID: 30850976 PMCID: PMC6647885 DOI: 10.1007/s13365-019-00734-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most prevalent viral central nervous system (CNS) infections in Eurasia and neurological sequelae are common. The immune responses are considered crucial for the pathogenesis. The aim of this study was to explore the activation of the complement system in TBE. The complement system is a part of the innate immune response in the CNS, which previously has been reported to be activated in other flavivirus infections. We analyzed complement factors in 44 paired cerebrospinal fluid (CSF) and serum samples from 20 cases of TBE in the acute and later stages, as well as in serum and CSF from 32 healthy controls. The concentrations of complement factors C1q, C3a, C3b, and C5a were determined with commercially available ELISA kits. Clinical data to categorize the severity of disease and outcome was retrieved from the medical records of the TBE patients. We found significantly higher concentrations of all of the analyzed complement factors in the CSF from TBE patients compared to the healthy controls. In particular, the marked increment of C1q concentrations in the CSF (p < 0,001 as compared to controls) indicated an intrathecal activation by the classical pathway. There was no correlation between complement factor concentrations in the CSF and severity of the disease in the acute phase or with sequelae at 6 months follow-up. We have found an intrathecal complement activation in TBE, and the marked increase of complement factor C1q indicated an activation by the classical pathway.
Collapse
Affiliation(s)
- Malin Veje
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Sandholm K, Persson B, Skattum L, Eggertsen G, Nyman D, Gunnarsson I, Svenungson E, Nilsson B, Ekdahl KN. Evaluation of a Novel Immunoassay for Quantification of C1q for Clinical Diagnostic Use. Front Immunol 2019; 10:7. [PMID: 30740097 PMCID: PMC6357986 DOI: 10.3389/fimmu.2019.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/28/2023] Open
Abstract
Objectives: C1q is a valuable biomarker of disease activity in systemic lupus erythematosus (SLE). The “gold standard” assay, rocket immunoelectrophoresis (RIE), is time-consuming, and thus a shift to soluble immune precipitation techniques such as nephelometry has occurred. However, quantification of C1q with these techniques has been questioned as a result of the antibody binding properties of C1q. In the present work, we have compared results using various techniques (RIE, nephelometry, and ELISA) and have developed and validated a new magnetic bead-based sandwich immunoassay (MBSI). Methods: C1q was quantified by nephelometry and the new sandwich immunoassay in 45 serum samples analyzed using RIE. C1q was also assessed in plasma using RIE and sandwich immunoassay in samples from SLE patients with nephritis (n = 69), SLE patients without nephritis (n = 310) as classified by BILAG score, and matched controls (n = 322). In addition, cerebrospinal fluid (CSF) samples from 31 patients, previously analyzed with ELISA, were also analyzed with the MBSI to test the behavior of this new assay in the lower detection range. Results: We found a strong correlation between the new MBSI, RIE, and ELISA, but not with nephelometry. The MBSI demonstrated lower levels of C1q in SLE patients than in matched controls (p < 0.0001), and patients with nephritis had lower levels than patients without nephritis (p < 0.01). Similarily, RIE showed significant differences between the patient groups (p < 0.0001). An association was also found between the levels of C1q and the SLE disease activity index (SLEDAI). Furthermore, there was good correlation between the values obtained by MBSI and ELISA, in both serum (r = 0.960) and CSF (r = 0.786), underscoring the ability of both techniques to measure low concentrations of C1q with high accuracy. Conclusion: The sandwich immunoassay correlated well with RIE, but soluble immune precipitation techniques, such as nephelometry, did not appear suitable alternatives, since C1q itself, and possibly anti-C1q antibodies, interfered with the measurements. The new sandwich immunoassay is therefore a good replacement for RIE in monitoring SLE disease activity.
Collapse
Affiliation(s)
- Kerstin Sandholm
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Barbro Persson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lillemor Skattum
- Section of Microbiology, Department of Laboratory Medicine, Immunology and Glycobiology, Lund University, and Clinical Immunology and Transfusion Medicine, Lund, Sweden
| | - Gösta Eggertsen
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Laboratory, Clinical Chemistry, Stockholm, Sweden
| | - Dag Nyman
- Åland Borrelia Group, Åland Central Hospital, Mariehamn, Finland
| | - Iva Gunnarsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Complement C5a Receptor 1 Exacerbates the Pathophysiology of N. meningitidis Sepsis and Is a Potential Target for Disease Treatment. mBio 2018; 9:mBio.01755-17. [PMID: 29362231 PMCID: PMC5784250 DOI: 10.1128/mbio.01755-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1−/− mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1−/− mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.
Collapse
|
24
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
25
|
Shen L, Zheng J, Wang Y, Zhu M, Zhu H, Cheng Q, Li Q. Increased activity of the complement system in cerebrospinal fluid of the patients with Non-HIV Cryptococcal meningitis. BMC Infect Dis 2017; 17:7. [PMID: 28052761 PMCID: PMC5214839 DOI: 10.1186/s12879-016-2107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/10/2016] [Indexed: 11/29/2022] Open
Abstract
Backgrounds Cryptococcal meningitis (CM) has been known to lead to significant morbidity and mortality. The relative contribution of the complement system in protection and pathogenesis during CM remains largely unknown. The purpose of this study was to evaluate the baseline complement component profiles in human cerebrospinal fluid (CSF) and plasma from non-HIV patients with CM, and therefore to provide insights of possible roles of the complement system in CM. Methods CSF and blood samples from forty two CM patients not infected with HIV and thirteen non-CM control patients (Ctrl) were retrospectively selected and evaluated from the patients admitted to the hospital with a suspected diagnosis of CM. CSF and blood samples were collected at the admission. Enzyme-linked immunosorbent assay (ELISA) for complement components, cytokine IL-12 and western blot for C3 activation were performed on CSF and plasma samples. The levels of complement C1q, factor B (FB), mannose binding lectin (MBL), C2, C3, C4, C5, C4 binding protein (C4BP), Factor I (FI), Factor H (FH), sC5b-9 in CSF and plasma samples were compared. Pearson’s correlation coefficients were calculated on variables between complement components and the levels of total protein in the CSF samples. Results Our data demonstrated that the CSF levels of complement components of C1q, FB, MBL as well as complement pathway factors sC5b-9 and complement regulator FH were all elevated in patients with CM as compared to the controls, CSF C3 breakdown products iC3b were found in both CSF and plasma samples of the CM patients. A positive correlation was found between the levels of CSF protein and MBL, C1q or FB. Conclusions The activity of the complement system in CSF was increased in non-HIV patients with CM. C1q, MBL and FB are the important participants in the complement activation in CM. The relative contribution of each of the specific complement pathways and complement cascades in protection and inflammation resolution against CM warrant further investigation.
Collapse
Affiliation(s)
- Lei Shen
- Department of Thoracic Intensive Care Units, Shanghai Pulmonary Hospital, Shanghai, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Kasanmoentalib ES, Valls Seron M, Ferwerda B, Tanck MW, Zwinderman AH, Baas F, van der Ende A, Schwaeble WJ, Brouwer MC, van de Beek D. Mannose-binding lectin-associated serine protease 2 (MASP-2) contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Neuroinflammation 2017; 14:2. [PMID: 28086930 PMCID: PMC5234106 DOI: 10.1186/s12974-016-0770-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/30/2016] [Indexed: 02/08/2023] Open
Abstract
Background Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the pro-inflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Methods We investigated mannose-binding lectin-associated serine protease (MASP-2) levels in cerebrospinal fluid (CSF) samples derived from the diagnostic lumbar puncture, which was available for 307 of 792 pneumococcal meningitis episodes included in our prospective nationwide cohort study (39%), and the association between these levels and clinical outcome. Subsequently, we studied the role of MASP-2 in our experimental pneumococcal meningitis mouse model using Masp2−/− mice and evaluated the potential of adjuvant treatment with MASP-2-specific monoclonal antibodies in wild-type (WT) mice. Results MASP-2 levels in cerebrospinal fluid of patients with bacterial meningitis were correlated with poor functional outcome. Consistent with these human data, Masp2-deficient mice with pneumococcal meningitis had lower cytokine levels and increased survival compared to WT mice. Adjuvant treatment with MASP-2-specific monoclonal antibodies led to reduced complement activation and decreased disease severity. Conclusions MASP-2 contributes to poor disease outcome in human and mice with pneumococcal meningitis. MASP-2-specific monoclonal antibodies can be used to attenuate the inflammatory response in pneumococcal meningitis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0770-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mercedes Valls Seron
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Matthijs C Brouwer
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands. .,Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam Neuroscience, PO Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers 2016; 2:16074. [PMID: 27808261 DOI: 10.1038/nrdp.2016.74] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Rodrigo Hasbun
- Department of Internal Medicine, UT Health McGovern Medical School, Houston, Texas, USA
| | - Uwe Koedel
- Department of Neurology, Clinic Grosshadern of the Ludwig-Maximilians University of Munich, Munich, Germany
| | - Cynthia G Whitney
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eelco Wijdicks
- Division of Critical Care Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Eriksson CE, Studahl M, Bergström T. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis. J Neuroimmunol 2016; 295-296:130-8. [PMID: 27235358 DOI: 10.1016/j.jneuroim.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation.
Collapse
Affiliation(s)
- Charlotta E Eriksson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Östra, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Kasanmoentalib ES, Valls Seron M, Morgan BP, Brouwer MC, van de Beek D. Adjuvant treatment with dexamethasone plus anti-C5 antibodies improves outcome of experimental pneumococcal meningitis: a randomized controlled trial. J Neuroinflammation 2015; 12:149. [PMID: 26272468 PMCID: PMC4536776 DOI: 10.1186/s12974-015-0372-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background We compared adjunctive treatment with placebo, dexamethasone, anti-C5 antibodies, and the combination of dexamethasone plus anti-C5 antibodies in experimental pneumococcal meningitis. Methods In this prospective, investigator-blinded, randomized trial, 96 mice were infected intracisternally with 107 CFU/ml Streptococcus pneumoniae serotype 3, treated with intraperitoneal ceftriaxone at 20 h, and randomly assigned to intraperitoneal adjunctive treatment with placebo (saline), dexamethasone, anti-C5 antibodies, or dexamethasone plus anti-C5 antibodies. The primary outcome was survival during a 72-h observational period that was analyzed with the log-rank test. Secondary outcome was clinical severity, scored on a validated scale using a linear mixed model. Results Mortality rates were 16 of 16 mice (100 %) in the placebo group, 12 of 15 mice (80 %) in the dexamethasone group, 25 of 31 mice (80 %) in the anti-C5 antibody group, and 18 of 30 mice (60 %) in the dexamethasone plus anti-C5 antibody group (Fisher’s exact test for overall difference, P = .012). Mortality of mice treated with dexamethasone plus anti-C5 antibodies was lower compared to the anti-C5 antibody-treated mice (log-rank P = .039) and dexamethasone-treated mice (log-rank P = .040). Clinical severity scores for the dexamethasone plus anti-C5 antibody-treated mice increased more slowly (0.199 points/h) as compared to the anti-C5 antibody-treated mice (0.243 points/h, P = .009) and dexamethasone-treated mice (0.249 points/h, P = .012). Modeling of severity data suggested an additive effect of dexamethasone and anti-C5 antibodies. Conclusion Adjunctive treatment with dexamethasone plus anti-C5 antibodies improves survival in severe experimental meningitis caused by S. pneumoniae serotype 3, posing an important new treatment strategy for patients with pneumococcal meningitis.
Collapse
Affiliation(s)
- E Soemirien Kasanmoentalib
- Center for Immunity and Infection (CINIMA): Department of Neurology, Center for Immunity and Infection (CINIMA), Academic Medical Center, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Mercedes Valls Seron
- Center for Immunity and Infection (CINIMA): Department of Neurology, Center for Immunity and Infection (CINIMA), Academic Medical Center, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - B Paul Morgan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK.
| | - Matthijs C Brouwer
- Center for Immunity and Infection (CINIMA): Department of Neurology, Center for Immunity and Infection (CINIMA), Academic Medical Center, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Diederik van de Beek
- Center for Immunity and Infection (CINIMA): Department of Neurology, Center for Immunity and Infection (CINIMA), Academic Medical Center, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Zhang Y, Guo Z, Zou L, Yang Y, Zhang L, Ji N, Shao C, Sun W, Wang Y. A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteomics 2015; 119:90-9. [DOI: 10.1016/j.jprot.2015.01.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/25/2014] [Accepted: 01/13/2015] [Indexed: 01/11/2023]
|
31
|
Bouwens TAM, Trouw LA, Veerhuis R, Dirven CMF, Lamfers MLM, Al-Khawaja H. Complement activation in Glioblastoma multiforme pathophysiology: evidence from serum levels and presence of complement activation products in tumor tissue. J Neuroimmunol 2014; 278:271-6. [PMID: 25468776 DOI: 10.1016/j.jneuroim.2014.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/01/2023]
Abstract
Inflammation plays a key role in the pathophysiology of Glioblastoma Multiforme (GBM). Here we focus on the contribution of the so far largely ignored complement system. ELISA and immunohistochemistry were combined to assess levels and localization of critical components of the initiation- and effector pathways of the complement cascade in sera and tumor tissue from GBM patients and matched controls. Serum levels of factor-B were decreased in GBM patients whereas C1q levels were increased. C1q and factor-B deposited in the tumor tissue. Deposition of C3 and C5b-9 suggests local complement activation.MBL deficiency, based on serum levels, was significantly less frequent among GBM patients compared to controls (14% vs. 33%). Therefore low levels of MBL may protect against the initiation/progression of GBM.
Collapse
Affiliation(s)
- T A M Bouwens
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - L A Trouw
- Leiden University Medical Center, Department of Rheumatology, PO Box 9600, 2300 RC Leiden, Netherlands
| | - R Veerhuis
- Vrije University Medical Center, Departments of Clinical Chemistry and Psychiatry, PO Box 7057, 1007 MB Amsterdam, Netherlands
| | - C M F Dirven
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - M L M Lamfers
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - H Al-Khawaja
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|