1
|
Da H, Meng T, Xu Y. Application of targeted next-generation sequencing for detecting respiratory pathogens in the sputum of patients with pulmonary infections. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105722. [PMID: 39909152 DOI: 10.1016/j.meegid.2025.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Targeted next-generation sequencing (tNGS) might be valuable for identifying disease-causing pathogens. Herein, we assessed the utility of tNGS in diagnosing pulmonary infections using sputum samples. We gathered complete clinical information and tested the specimens using both conventional microbiological tests (CMTs) and tNGS. The goal was to compare the effectiveness of these two methods in detecting viral, bacterial, and fungal pathogens. Notably, tNGS demonstrated a higher pathogen detection rate compared to CMTs (80.26 % [122/152] vs. 33.55 % [51/152], P = 0.029). Specifically, tNGS was more effective in detecting viruses than CMTs (90.00 % vs. 28.07 %, P = 0.003). Moreover, tNGS detected certain fungi, such as Candida albicans and Cryptococcus neoformans, although the difference between the two assays was not statistically significant (P > 0.05). Our findings reveal that tNGS offers significant advantages in detecting pathogens in patients with lung infections, particularly for bacteria and viruses, providing valuable information that complements CMTs.
Collapse
Affiliation(s)
- Hongting Da
- Department of Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tao Meng
- Department of Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanhong Xu
- Department of Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
2
|
Mitiku H, Tesfa T, Edae M, Assefa N. Prevalence of Respiratory Syncytial Virus Among Children Under 5 Years of Age in Sub-Saharan Africa. Glob Pediatr Health 2024; 11:2333794X241298803. [PMID: 39559718 PMCID: PMC11571251 DOI: 10.1177/2333794x241298803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Background. Pneumonia and bronchiolitis are common childhood illnesses caused by the respiratory syncytial virus. A systematic analysis of published epidemiological data in sub-Saharan African children under the age of 5 was conducted. Methods. To retrieve literature, electronic databases, indexing services, and directories such as PubMed/MEDLINE, Scopus, EMBASE (Elsevier), Google Scholar, and Worldcat were utilized. Data from the included studies were extracted after screening and eligibility evaluation. Results. The pooled prevalence rate of respiratory syncytial virus was 21% (95% CI: 17, 25). Subgroup analysis based on participants' ages showed that, prevalence was highest in children <6 months (32%). High prevalence was also found in children who were hospitalized (27%), children co-infected with HIV (28%), and children co-infected with bacteria respiratory pathogens (22%). Conclusion. The prevalence of respiratory syncytial virus infection was high in children in sub-Saharan African countries. Therefore, it should be prioritized as a major health problem.
Collapse
Affiliation(s)
- Habtamu Mitiku
- Haramaya University, College of Health and Medical Sciences, Harar, Ethiopia
| | - Tewodros Tesfa
- Haramaya University, College of Health and Medical Sciences, Harar, Ethiopia
| | - Mekuria Edae
- Haramaya University, College of Health and Medical Sciences, Harar, Ethiopia
| | - Nega Assefa
- Haramaya University, College of Health and Medical Sciences, Harar, Ethiopia
| |
Collapse
|
3
|
Besteman SB, Bogaert D, Bont L, Mejias A, Ramilo O, Weinberger DM, Dagan R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: a systematic review. THE LANCET. RESPIRATORY MEDICINE 2024; 12:915-932. [PMID: 38991585 DOI: 10.1016/s2213-2600(24)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024]
Abstract
Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Pediatrics, Onze Lieve Vrouwe Gasthuis Ziekenhuis, Amsterdam, Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Louis Bont
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Koenen MH, de Steenhuijsen Piters WAA, de Jonge MI, Langereis JD, Nierkens S, Chu MLJN, van der Woude R, de Vries RP, Sanders EAM, Bogaert D, van der Vries E, Boes M, Verhagen LM. Salivary polyreactive antibodies and Haemophilus influenzae are associated with respiratory infection severity in young children with recurrent respiratory infections. Eur Respir J 2024; 64:2400317. [PMID: 39117429 PMCID: PMC11447288 DOI: 10.1183/13993003.00317-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mei Ling J N Chu
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Erhard van der Vries
- Department of Research and Development, GD Animal Health, Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Sathe PA, Dash M, Vaideeswar P, Karande S, Kadiyani L. Pediatric pneumonia - A clinico-pathological study. INDIAN J PATHOL MICR 2024; 67:766-769. [PMID: 38563703 DOI: 10.4103/ijpm.ijpm_700_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
CONTEXT Numerous pathogens (bacteria, viruses, or fungi) can cause childhood pneumonia. The clinical presentations of viral and bacterial pneumonia can be similar. Though viruses are a more common cause as compared to bacteria, antibiotics remain the first line of treatment for pneumonia. AIMS This study was planned to describe the pulmonary histopathological patterns in cases of pediatric pneumonia (age <12 years) at autopsy and aimed to identify the probable etiology and correlate with clinical presentations. MATERIALS AND METHODS This is a single-center 3-year retrospective descriptive autopsy study. Relevant clinical data was correlated with the postmortem findings. The cases were assigned to one of the following categories based on probable etiology: viral, bacterial, mixed, or others. RESULTS There were 89 cases with a postmortem diagnosis of pneumonia among 262 autopsied children (34%). Most patients had histological patterns that suggested viral and bacterial etiology in 46 (51.7%) and 27 (30.3%), respectively. A total of 35 out of 46 patients received antibiotics. Twelve cases had mixed viral and bacterial patterns. Antibiotics were also given in the remaining four children (4.5%) with a similar clinical presentation, where a diagnosis of tuberculosis (03 cases) and invasive aspergillosis (01) was made at autopsy. CONCLUSION Neither clinical features nor investigations reliably differentiate between viral and bacterial pneumonia. Autopsy has an important role in providing insights into the pathogenesis of pneumonia and suggests inappropriate antibiotic exposure. No prior Indian studies have been performed to compare the clinical and postmortem findings of pneumonia in children.
Collapse
Affiliation(s)
- Pragati A Sathe
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Monalisa Dash
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Pradeep Vaideeswar
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Sunil Karande
- Department of Pediatrics, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Lamk Kadiyani
- Department of Pediatrics, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Makrufardi F, Triasih R, Nurnaningsih N, Chung KF, Lin SC, Chuang HC. Extreme temperatures increase the risk of pediatric pneumonia: a systematic review and meta-analysis. Front Pediatr 2024; 12:1329918. [PMID: 38370139 PMCID: PMC10869493 DOI: 10.3389/fped.2024.1329918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction The impact of climate change on ambient temperatures threatens to worsen pediatric pneumonia-related outcomes considerably. This study examined the associations of temperature variation and extreme temperature with pediatric pneumonia-related events using a meta-analysis. Methods We systematically searched PubMed, Medline, Embase, and Web of Science databases for relevant literature, and the quality of evidence was assessed. Fixed and random-effects meta-analyses were performed to calculate the pooled relative risks (RRs) of the associations with pneumonia-related events. Results We observed that a 1°C temperature variation increased the RR of pneumonia events by 1.06-fold (95% confidence interval (CI): 1.03-1.10). A 1°C temperature variation increased the RR by 1.10-fold of the pediatric pneumonia hospital admissions (95% CI: 1.00-1.21) and 1.06-fold of the pediatric pneumonia emergency department visits (95% CI: 1.01-1.10). Extreme cold increased the RR by 1.25-fold of the pediatric pneumonia events (95% CI: 1.07-1.45). A 1°C temperature variation increased the RR of pneumonia events in children by 1.19-fold (95% CI: 1.08-1.32), girls by 1.03-fold (95% CI: 1.02-1.05), and in temperate climate zones by 1.07-fold (95% CI: 1.03-1.11). Moreover, an increase in extreme cold increased the RR of pneumonia events in children by 2.43-fold (95% CI: 1.72-3.43), girls by 1.96-fold (95% CI: 1.29-2.98) and in temperate climate zones by 2.76-fold (95% CI: 1.71-4.47). Conclusion Our study demonstrated that pediatric pneumonia events are more prevalent among children, particularly girls, and individuals residing in temperate climate zones. Climate change represents an emergent public health threat, affecting pediatric pneumonia treatment and prevention.. Systematic Review Registration PROSPERO (CRD42022378610).
Collapse
Affiliation(s)
- Firdian Makrufardi
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Rina Triasih
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Nurnaningsih Nurnaningsih
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Emgård M, Andersson M, Gonzales-Siles L, Msuya SE, Nyombi BM, Nordén R, Muro F, Lindh M, Andersson R, Skovbjerg S. Co-occurrence of bacteria and viruses and serotype distribution of Streptococcus pneumoniae in the nasopharynx of Tanzanian children below 2 years of age following introduction of the PCV13. Front Public Health 2024; 12:1298222. [PMID: 38317802 PMCID: PMC10839969 DOI: 10.3389/fpubh.2024.1298222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Pneumococcal conjugate vaccines have reduced severe disease attributed to vaccine-type pneumococci in children. However, the effect is dependent on serotype distribution in the population and disease development may be influenced by co-occurrence of viral and bacterial pathogens in the nasopharynx. Methods Following introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Tanzania we performed repeated cross-sectional surveys, including 775 children below 2 years of age attending primary healthcare centers. All children were sampled from nasopharynx and pneumococci were detected by single-target PCR. Pneumococcal serotypes/groups and presence of viruses and other bacteria were determined by two multiplex PCR assays. Results The prevalence of PCV13 vaccine-type pneumococci decreased by 50%, but residual vaccine-types were still detected in 21% of the children 2 years after PCV13 introduction. An increase in the non-vaccine-type 15 BC was observed. Pneumococci were often co-occurring with Haemophilus influenzae, and detection of rhino/enterovirus was associated with higher pneumococcal load. Discussion We conclude that presence of residual vaccine-type and emerging non-vaccine-type pneumococci in Tanzanian children demand continued pneumococcal surveillance. High co-occurrence of viral and bacterial pathogens may contribute to the disease burden and indicate the need of multiple public health interventions to improve child health in Tanzania.
Collapse
Affiliation(s)
- Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Balthazar M. Nyombi
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florida Muro
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Center (KCMC), Moshi, Tanzania
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Percze K, Tolnai ZJ, Eleveld M, Ou L, Du H, Olia AS, Kwong PD, de Jonge MI, Mészáros T. Tryptophan-like side chain holding aptamers inhibit respiratory syncytial virus infection of lung epithelial cells. Sci Rep 2023; 13:9403. [PMID: 37296186 PMCID: PMC10251311 DOI: 10.1038/s41598-023-36428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of serious and even fatal acute lower respiratory tract infections in infants and in the elderly. Potent RSV neutralization has been achieved by antibodies that selectively bind the prefusion form of the viral fusion (F) protein. We hypothesised that similar potent neutralization could be achieved using F protein targeting aptamers. Aptamers have yet to reach their translational potential for therapeutics or diagnostics due to their short half-life and limited range of target-aptamer interactions; these shortcomings can, however, be ameliorated by application of amino acid-like side chain holding nucleotides. In this study, a stabilized version of the prefusion RSV F protein was targeted by aptamer selection using an oligonucleotide library holding a tryptophan-like side chain. This process resulted in aptamers that bound the F protein with high affinity and differentiated between its pre- and postfusion conformation. Identified aptamers inhibited viral infection of lung epithelial cells. Moreover, introduction of modified nucleotides extended aptamer half-lives. Our results suggest that targeting aptamers to the surface of viruses could yield effective drug candidates, which could keep pace with the continuously evolving pathogens.
Collapse
Affiliation(s)
- Krisztina Percze
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zoltán János Tolnai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marc Eleveld
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Mattila S, Sarlin S, Heikkilä R, Leinonen E, Nurmi V, Riikonen J, Paalanne N, Honkila M, Huhtamäki H, Pokka T, Koskela U, Renko M, Tapiainen T. Nasopharyngeal detection of atypical bacteria by multiplex polymerase chain reaction panel in acutely ill children was associated with an increased risk of pneumonia. Acta Paediatr 2023; 112:830-836. [PMID: 36644932 DOI: 10.1111/apa.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
AIM We aimed to assess whether detection of respiratory bacteria by multiplex polymerase chain reaction (PCR) testing associates with clinical outcomes in acutely ill children. METHODS This cross-sectional study enrolled children under the age of 18 with a suspected respiratory infection treated in a paediatric emergency department of Oulu University Hospital, Finland from January 2015 through December 2015. Nasopharyngeal samples were routinely analysed for 16 respiratory viruses and later, after storage, analysed with a multiplex PCR panel for seven respiratory bacteria. RESULTS At least one bacterial pathogen was detected in 600 out of the 1195 children (50%). The mean age was 3.3 (SD 3.7) years and 54% were boys. Atypical bacteria were associated with a risk of pneumonia (adjusted odds ratio [aOR] 14.1, 95% CI 3.98-50.1). Co-detection of rhinovirus with Streptococcus pneumoniae was not associated with risk of pneumonia (aOR 2.39, 95% CI 0.78-7.30). Detection of Streptococcus pneumoniae, Haemophilus influenzae or both was not associated with the risk of hospital admission or prescription of antibiotics. CONCLUSION Nasopharyngeal detection of atypical bacteria in acutely ill children was associated with a markedly increased risk of pneumonia. The clinical utility of wide testing for other respiratory bacteria needs further evaluation.
Collapse
Affiliation(s)
- Suvi Mattila
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Suvi Sarlin
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Reetta Heikkilä
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Emilia Leinonen
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Violetta Nurmi
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Jonni Riikonen
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Niko Paalanne
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Minna Honkila
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Heikki Huhtamäki
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tytti Pokka
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Ulla Koskela
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjo Renko
- Department of Pediatrics and Adolescent Medicine, Kuopio University Hospital, Kuopio, Finland.,University of Eastern Finland, Kuopio, Finland
| | - Terhi Tapiainen
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Regassa BT, Gebrewold LA, Mekuria WT, Kassa NA. Molecular epidemiology of respiratory syncytial virus in children with acute respiratory illnesses in Africa: A systematic review and meta-analysis. J Glob Health 2023; 13:04001. [PMID: 36637855 PMCID: PMC9840062 DOI: 10.7189/jogh.13.04001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Globally, the respiratory syncytial virus (RSV) is the most common etiologic agent of acute respiratory illnesses in children. However, its burden has not been well addressed in developing countries. We aimed to estimate the molecular epidemiology of RSV in children less than 18 years of age with acute respiratory infections in Africa by conducting a systematic review and meta-analysis. Methods We systematically searched PubMed, Scopus, CINAHL, and Global Index Medicus databases to identify studies published from January 1, 2002, to April 27, 2022, following the PRISMA 2020 guideline. We assessed the study quality using the Joanna Brigg's Institute (JBI) critical appraisal checklists. We conducted a qualitative synthesis by describing the characteristics of included studies and performed the quantitative synthesis with random effects model using STATA-14. We checked for heterogeneity with Q statistics, quantified by I2, and determined the prediction interval. We performed subgroup analyses to explain the sources of heterogeneity and assessed publication biases by funnel plots augmented with Egger's test. Results Eighty-eight studies with 105 139 participants were included in the review. The overall pooled prevalence of RSV in children <18 years of age was 23% (95% confidence interval (CI) = 20, 25%). Considerable heterogeneity was present across the included studies. The adjusted prediction interval was found to be 19%-27%. Heterogeneities were explained by subgroups analyses. The highest prevalence of RSV was found among inpatients, 28% (95% CI = 25, 31%) compared with inpatients/outpatients and outpatients, with statistically significant differences (P < 0.01). The RSV estimate was also highest among those with acute lower respiratory tract illnesses (ALRTIs), 28% (95% CI = 25, 31%) compared with acute upper respiratory tract illnesses (AURTIs) and both acute upper/lower respiratory manifestations, with statistically different prevalence (P < 0.01). RSV infection estimates in each sub-region of Africa were statistically different (P < 0.01). There were no statistically significant differences in RSV infections by designs, specimen types, and specimen conditions, despite them contributing to heterogeneity. Conclusions We found a high prevalence of RSV in pediatric populations with acute respiratory tract illnesses in Africa, highlighting that the prevention and control of RSV infections in children deserve more attention. Registration PROSPERO CRD42022327054.
Collapse
Affiliation(s)
- Belay Tafa Regassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Lami Abebe Gebrewold
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Wagi Tosisa Mekuria
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Nega Assefa Kassa
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Ethiopia
| |
Collapse
|
11
|
Ciptaningtyas VR, Hapsari R, Lestari ES, Farida H, de Mast Q, de Jonge MI. Bacterial colonization of the upper airways of children positive and negative for SARS-CoV-2 during the COVID-19 pandemic. BMC Infect Dis 2022; 22:860. [PMID: 36396997 PMCID: PMC9670079 DOI: 10.1186/s12879-022-07851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Our understanding of the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bacterial colonization in the children’s upper nasopharyngeal tract during the coronavirus infectious disease (COVID-19) pandemic is limited. This study aimed to determine whether there were any differences in bacterial colonization between asymptomatic children with or without a positive SARS-CoV-2 quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results in the community setting. Methods A cross-sectional community-based exploratory study was conducted from March to May 2021 in Semarang, Central Java Province, Indonesia. Using stored nasopharyngeal swabs collected from children under 18 years as a contact tracing program, we performed a real-time quantitative (qPCR) for the most important bacterial colonizing pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Klebsiella pneumoniae. Results Swabs from a total of 440 children were included in this study, of which 228 (51.8%) were RT-qPCR-confirmed SARS-CoV-2 positive. In the 440 children, colonization rates were highest for H. influenzae (61.4%), followed by S. pneumoniae (17.5%), S. aureus (12.0%), and K. pneumoniae (1.8%). The co-occurrence of both S. pneumoniae and H. influenzae in the upper respiratory tract was significantly associated with a SARS-CoV-2 negative RT-qPCR. In contrast, colonization with only S. aureus was more common in SARS-CoV-2-positive children. Conclusion Overall, this exploratory study concludes that there is a significant difference in the bacterial nasopharyngeal colonization pattern between SARS-CoV-2 positive and negative in asymptomatic children in the community in Indonesia. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07851-z.
Collapse
|
12
|
Onwuchekwa C, Edem B, Williams V, Olajuwon I, Jallow M, Sanyang B, Verdonck K. Systematic review and meta-analysis on the etiology of bacterial pneumonia in children in sub-Saharan Africa. J Public Health Afr 2022; 13:2151. [PMID: 36300133 PMCID: PMC9589242 DOI: 10.4081/jphia.2022.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Before the introduction of vaccination to protect children from pneumonia, Streptococcus pneumoniae and Haemophilus influenzae type B (HiB) were the most frequent aetiological agents causing bacterial pneumonia in children under five years old. However, the etiology of childhood pneumonia appears to be changing and nonvaccine- type S. pneumoniae, non-typeable H. influenzae, and Staphylococcus aureus are becoming more relevant. Objective We conducted a systematic review aimed at identifying the common causes of bacterial pneumonia in children in sub-Saharan Africa. Methods We searched PubMed, Web of Science and African Index Medicus and included primary studies conducted since January 2010 that reported on the bacterial causes of pneumonia in children under five from sub-Saharan Africa. We extracted data items (about the study setting, pneumonia diagnosis, sampling, microbiological methods, and etiological agents) as well as study quality indicators. Results Streptococcus pneumoniae was the most common bacteria in blood cultures from children with pneumonia (8%, 95% CI: 4-14%), and H. influenzae was second (3%, 95% CI: 1-17%). Children’s nasopharynx commonly contained S. pneumoniae (66%), Moraxella catarrhalis (62%), and H. influenzae (44%). Conclusion S. pneumoniae and H. influenzae cause bacterial pneumonia in sub-Saharan African children. Our review also highlights the prevalence of potentially pathogenic bacteria in the nasopharynx of children under five and calls for more research into how nasopharyngeal colonization causes pneumonia.
Collapse
|
13
|
Martens L, Kaboré B, Post A, van der Gaast-de Jongh CE, Langereis JD, Tinto H, Jacobs J, van der Ven AJ, de Mast Q, de Jonge MI. Nasopharyngeal colonisation dynamics of bacterial pathogens in patients with fever in rural Burkina Faso: an observational study. BMC Infect Dis 2022; 22:15. [PMID: 34983432 PMCID: PMC8725287 DOI: 10.1186/s12879-021-06996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Background Nasopharyngeal colonisation with clinically relevant bacterial pathogens is a risk factor for severe infections, such as pneumonia and bacteraemia. In this study, we investigated the determinants of nasopharyngeal carriage in febrile patients in rural Burkina Faso. Methods From March 2016 to June 2017, we recruited 924 paediatric and adult patients presenting with fever, hypothermia or suspicion of severe infection to the Centre Medical avec Antenne Chirurgicale Saint Camille de Nanoro, Burkina Faso. We recorded a broad range of clinical data, collected nasopharyngeal swabs and tested them for the presence of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Klebsiella pneumoniae by quantitative polymerase chain reaction. Using logistic regression, we investigated the determinants of carriage and aimed to find correlations with clinical outcome. Results Nasopharyngeal colonisation with S. pneumoniae, H. influenzae and M. catarrhalis was highly prevalent and strongly dependent on age and season. Females were less likely to be colonised with S. pneumoniae (OR 0.71, p = 0.022, 95% CI 0.53–0.95) and M. catarrhalis (OR 0.73, p = 0.044, 95% CI 0.54–0.99) than males. Colonisation rates were highest in the age groups < 1 year and 1–2 years of age and declined with increasing age. Colonisation also declined towards the end of the rainy season and rose again during the beginning of the dry season. K. pneumoniae prevalence was low and not significantly correlated with age or season. For S. pneumoniae and H. influenzae, we found a positive association between nasopharyngeal carriage and clinical pneumonia [OR 1.75, p = 0.008, 95% CI 1.16–2.63 (S. pneumoniae) and OR 1.90, p = 0.004, 95% CI 1.23–2.92 (H. influenzae)]. S. aureus carriage was correlated with mortality (OR 4.01, p < 0.001, 95% CI 2.06–7.83), independent of bacteraemia caused by this bacterium. Conclusions Age, sex and season are important determinants of nasopharyngeal colonisation with S. pneumoniae, H. influenzae and M. catarrhalis in patients with fever in Burkina Faso. S. pneumoniae and H. influenzae carriage is associated with clinical pneumonia and S. aureus carriage is associated with mortality in patients with fever. These findings may help to understand the dynamics of colonisation and the associated transmission of these pathogens. Furthermore, understanding the determinants of nasopharyngeal colonisation and the association with disease could potentially improve the diagnosis of febrile patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06996-7.
Collapse
Affiliation(s)
- Liesbeth Martens
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands. .,Department of Medical Microbiology, Radboud university medical center, Nijmegen, the Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.
| | - Bérenger Kaboré
- Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands.,Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Annelies Post
- Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Christa E van der Gaast-de Jongh
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands.,Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Jeroen D Langereis
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands.,Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - André J van der Ven
- Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Quirijn de Mast
- Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands.,Radboudumc Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Muhandule Birindwa A, Gonzales-Siles L, Nordén R, Geravandi S, Tumusifu Manegabe J, Morisho L, Saili Mushobekwa S, Andersson R, Skovbjerg S. High bacterial and viral load in the upper respiratory tract of children in the Democratic Republic of the Congo. PLoS One 2020; 15:e0240922. [PMID: 33119683 PMCID: PMC7595347 DOI: 10.1371/journal.pone.0240922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Respiratory pathogens including Streptococcus pneumoniae and Haemophilus influenzae, are implicated in the pathogenicity of acute lower respiratory infection (ALRI). These are also commonly found in both healthy and sick children. In this study, we describe the first data on the most frequent bacteria and viruses detected in the nasopharynx of children from the general population in the Eastern DR Congo. METHODS From January 2014 to June 2015, nasopharyngeal samples from 375 children aged from 2 to 60 months attending health centres for immunisation or growth monitoring were included in the study. Multiplex real-time PCR assays were used for detection of 15 different viruses and 5 bacterial species and for determination of pneumococcal serotypes/serogroups in the nasopharyngeal secretions. RESULTS High levels of S. pneumoniae were detected in 77% of cases, and H. influenzae in 51%. Rhinovirus and enterovirus were the most commonly found viruses, while respiratory syncytial virus (RSV) was rare (1%). Co-occurrence of both bacteria and viruses at high levels was detected in 33% of the children. The pneumococcal load was higher in those children who lived in a dwelling with an indoor kitchen area with an open fire, i.e. a kitchen with an open fire for cooking located inside the dwelling with the resultant smoke passing to the living room and/or bedrooms; this was also higher in children from rural areas as compared to children from urban areas or children not living in a dwelling with an indoor kitchen area with an open fire/not living in this type of dwelling. Immunization with 2-3 doses of PCV13 was associated with lower rates of pneumococcal detection. Half of the identified serotypes were non-PCV13 serotypes. The most common non-PCV13 serotypes/serogroups were 15BC, 10A, and 12F, while 5, 6, and 19F were the most prevalent PCV13 serotypes/serogroups. CONCLUSIONS The burden of respiratory pathogens including S. pneumoniae in Congolese children was high but relatively few children had RSV. Non-PCV13 serotypes/serogroups became predominant soon after PCV13 was introduced in DR Congo.
Collapse
Affiliation(s)
- Archippe Muhandule Birindwa
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
- Institut Superieur Technique Medical, Uvira, Democratic Republic of the Congo
- * E-mail: ,
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Shadi Geravandi
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| |
Collapse
|