1
|
Kumthip K, Khamrin P, Thongprachum A, Malasao R, Yodmeeklin A, Ushijima H, Maneekarn N. Diverse genotypes of norovirus genogroup I and II contamination in environmental water in Thailand during the COVID-19 outbreak from 2020 to 2022. Virol Sin 2024; 39:556-564. [PMID: 38823781 PMCID: PMC11401460 DOI: 10.1016/j.virs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Noroviruses (NoVs) are the most significant viral pathogens associated with waterborne and foodborne outbreaks of nonbacterial acute gastroenteritis in humans worldwide. This study aimed to investigate the prevalence and diversity of NoVs contaminated in the environmental water in Chiang Mai, Thailand. A total of 600 environmental water samples were collected from ten sampling sites in Chiang Mai from July 2020 to December 2022. The presence of NoV genogroups I (GI), GII, and GIV were examined using real-time RT-PCR assay. The genotype of the virus was determined by nucleotide sequencing and phylogenetic analysis. The results showed that NoV GI and GII were detected at 8.5% (51/600) and 11.7% (70/600) of the samples tested, respectively. However, NoV GIV was not detected in this study. NoV circulated throughout the year, with a higher detection rate during the winter season. Six NoV GI genotypes (GI.1-GI.6) and eight NoV GII genotypes (GII.2, GII.3, GII.7, GII.8, GII.10, GII.13, GII.17, and GII.21) were identified. Among 121 NoV strains detected, GII.17 was the most predominant genotype (24.8%, 30 strains), followed by GII.2 (21.5%, 26 strains), GI.3 (17.4%, 21 strains), and GI.4 (16.5%, 20 strains). Notably, NoV GII.3, GII.7, GII.8, and GII.10 were detected for the first time in water samples in this area. This study provides insight into the occurrence and seasonal pattern of NoV along with novel findings of NoV strains in environmental water in Thailand during the COVID-19 outbreak. Our findings emphasize the importance of further surveillance studies to monitor viral contamination in environmental water.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Aksara Thongprachum
- Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand; Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Rungnapa Malasao
- Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand; Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Ushijima H, Hoque SA, Akari Y, Pham NTK, Phan T, Nishimura S, Kobayashi M, Sugita K, Okitsu S, Komoto S, Thongprachum A, Khamrin P, Maneekarn N, Hayakawa S. Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan. Int J Mol Sci 2024; 25:3619. [PMID: 38612429 PMCID: PMC11011564 DOI: 10.3390/ijms25073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Norovirus (NoV) genogroup II, polymerase type P31, capsid genotype 4, Sydney_2012 variant (GII.P31/GII.4_Sydney_2012) has been circulating at high levels for over a decade, raising the question of whether this strain is undergoing molecular alterations without demonstrating a substantial phylogenetic difference. Here, we applied next-generation sequencing to learn more about the genetic diversity of 14 GII.P31/GII.4_Sydney_2012 strains that caused epidemics in a specific region of Japan, with 12 from Kyoto and 2 from Shizuoka, between 2012 and 2022, with an emphasis on amino acid (aa) differences in all three ORFs. We found numerous notable aa alterations in antigenic locations in the capsid region (ORF2) as well as in other ORFs. In all three ORFs, earlier strains (2013-2016) remained phylogenetically distinct from later strains (2019-2022). This research is expected to shed light on the evolutionary properties of dominating GII.P31/GII.4_Sydney_2012 strains, which could provide useful information for viral diarrhea prevention and treatment.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ngan Thi Kim Pham
- College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan;
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Kumiko Sugita
- Sugita Children Clinic, Ibaraki, Osaka 567-0035, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
3
|
Zamora-Figueroa A, Rosales RE, Fernández R, Ramírez V, Bastardo M, Farías A, Vizzi E. Detection and diversity of gastrointestinal viruses in wastewater from Caracas, Venezuela, 2021-2022. Virology 2024; 589:109913. [PMID: 37924728 DOI: 10.1016/j.virol.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.
Collapse
Affiliation(s)
- Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Rita E Rosales
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Viviana Ramírez
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Marjorie Bastardo
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Alba Farías
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
4
|
Hoque SA, Saito H, Akino W, Kotaki T, Okitsu S, Onda Y, Kobayashi T, Hossian T, Khamrin P, Motomura K, Maneekarn N, Hayakawa S, Ushijima H. The Emergence and Widespread Circulation of Enteric Viruses Throughout the COVID-19 Pandemic: A Wastewater-Based Evidence. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:342-354. [PMID: 37898959 DOI: 10.1007/s12560-023-09566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023]
Abstract
Growing evidence shed light on the importance of wastewater-based epidemiology (WBE) during the pandemic, when the patients rarely visited the clinics despite the fact that the infections were still prevalent in the community as before. The abundance of infections in the community poses a constant threat of the emergence of new epidemic strains. Herein, we investigated enteric viruses in raw sewage water (SW) from Japan's Tohoku region and compared them to those from the Kansai region to better understand the circulating strains and their distribution across communities during the COVID-19 pandemic. Raw SW was collected between 2019 and 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major AGE viruses by RT-PCR. Sequence-based analyses were used to assess genotypes and evolutionary relationships. The most commonly detected enteric virus was rotavirus A (RVA) at 63.8%, followed by astrovirus (AstV) at 61.1%, norovirus (NoV) GII and adenovirus (AdV) at 33.3%, sapovirus (SV) at 25.0%, enterovirus (EV) at 19.4%, and NoV GI at 13.9%. The highest prevalence (46.0%) was found in the spring. Importantly, enteric viruses did not decline during the pandemic. Rather, several strains like NoV GII.2, DS-1-like human G3 (equine) RVA, MLB1 AstV, and different F41 HAdV emerged throughout the pandemic and spread widely over the Tohoku and Kansai regions. Tohoku's detection rate remained lower than that of the Kansai area (36 vs 58%). This study provides evidence for the emergence and spread of enteric viruses during the pandemic.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectual Research Center for Public Health and Environment, Akita, Japan
| | - Wakako Akino
- Department of Microbiology, Akita Prefectual Research Center for Public Health and Environment, Akita, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tania Hossian
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
5
|
Hoque SA, Pham NTK, Onda-Shimizu Y, Nishimura S, Sugita K, Kobayashi M, Islam MT, Okitsu S, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Sapovirus infections in Japan before and after the emergence of the COVID-19 pandemic: An alarming update. J Med Virol 2023; 95:e29023. [PMID: 37543991 DOI: 10.1002/jmv.29023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
An increasing trend of sapovirus (SaV) infections in Japanese children during 2009-2019, particularly after the introduction of the voluntary rotavirus (RV)-vaccination program has been observed. Herein, we investigated the epidemiological situation of SaV infections from 2019 to 2022 when people adopted a precautionary lifestyle due to the emergence of the COVID-19 pandemic, and RV vaccines had been implemented as routine vaccines. Stool samples were collected from children who attended outpatient clinics with acute gastroenteritis and analyzed by reverse transcriptase-polymerase chain reaction to determine viral etiology. Among 961 stool samples, 80 (8.3%) were positive for SaV: 2019-2020 (6.5%), 2020-2021 (0%), and 2021-2022 (12.8%). The trend of SaV infection in Japanese children yet remained upward with statistical significance (p = 0.000). The major genotype was GI.1 (75%) which caused a large outbreak in Kyoto between December 2021 and February 2022. Phylogenetic, gene sequence and deduced amino acid sequence analyses suggested that these GI.1 strains detected in the outbreak and other places during 2021-2022 or 2019-2020 remained genetically identical and widely spread. This study reveals that SaV infection is increasing among Japanese children which is a grave concern and demands immediate attention to be paid before SaV attains a serious public health problem.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ngan Thi Kim Pham
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Onda-Shimizu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichi Nishimura
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Kumiko Sugita
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | - Masaaki Kobayashi
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | | | - Shoko Okitsu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Satoshi Hayakawa
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Okitsu S, Khamrin P, Hikita T, Shimizu-Onda Y, Thongprachum A, Hayakawa S, Maneekarn N, Ushijima H. Molecular Epidemiology of Classic, MLB, and VA Astroviruses in Children with Acute Gastroenteritis, 2014-2021: Emergence of MLB3 Strain in Japan. Microbiol Spectr 2023; 11:e0070023. [PMID: 37140393 PMCID: PMC10269582 DOI: 10.1128/spectrum.00700-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Human astroviruses (HAstVs) are important causative pathogens of acute gastroenteritis (AGE) in children worldwide. MLB and VA HAstVs, which are genetically distinct from the previously known classic HAstVs, have been detected since 2008. To investigate the role of HAstVs in AGE, we conducted molecular detection and characterization of HAstVs circulating in children with AGE in Japan from 2014 to 2021. Out of 2,841 stool samples, HAstVs were detected in 130 (4.6%). MLB1 was the predominant genotype detected (45.4%), followed by HAstV1 (39.2%), MLB2 (7.4%), VA2 (3.1%), HAstV3 (2.3%), HAstV4, HAstV5, and MLB3 (0.8% each). The results demonstrated that HAstV infection in pediatric patients in Japan was dominated by the two major genotypes MLB1 and HAstV1, with a small proportion of other genotypes. The overall infection rates of MLB and VA HAstVs were higher than those of classic HAstVs. The HAstV1 strains detected in this study belonged solely to lineage 1a. The rare MLB3 genotype was detected for the first time in Japan. All three HAstV3 strains belonged to lineage 3c based on the ORF2 nucleotide sequence and were shown to be recombinant strains. IMPORTANCE HAstVs are one of the pathogens of viral AGE and are considered the third most common viral agents of AGE after rotavirus and norovirus. HAstVs are also suspected to be the causative agents of encephalitis or meningitis in immunocompromised patients and elderly persons. However, little is known about the epidemiology of HAstVs in Japan, especially that of MLBs and VA HAstVs. This study demonstrated epidemiological features and molecular characterization of human astroviruses encompassing a 7-year study period in Japan. This study highlights the genetic diversity of HAstV circulating in pediatric patients with acute AGE in Japan.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | | | - Yuko Shimizu-Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Aksara Thongprachum
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Hoque SA, Kotaki T, Pham NTK, Onda Y, Okitsu S, Sato S, Yuki Y, Kobayashi T, Maneekarn N, Kiyono H, Hayakawa S, Ushijima H. Genotype Diversity of Enteric Viruses in Wastewater Amid the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:176-191. [PMID: 37058225 PMCID: PMC10103036 DOI: 10.1007/s12560-023-09553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 06/13/2023]
Abstract
Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Research Institute of Disaster Medicine, Institute for Global Prominent Research, Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, USA
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|