1
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Pindiprolu SKSS, Singh MT, Magham SV, Kumar CSP, Dasari N, Gummadi R, Krishnamurthy PT. Nanocarrier-mediated modulation of cGAS-STING signaling pathway to disrupt tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03835-3. [PMID: 39907784 DOI: 10.1007/s00210-025-03835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The cGAS-STING signaling plays an important role in the immune response in a tumor microenvironment (TME) of triple-negative breast cancer (TNBC). The acute and controlled activation of cGAS-STING signaling results in tumor suppression, while chronic activation of cGAS-STING signaling results in immune-suppressive TME that could result in tumor survival. There is a need, therefore, to develop therapeutic strategies for harnessing tumor suppressive effects of cGAS-STING signaling while minimizing the risks associated with chronic activation. Combination therapies and nanocarriers-based delivery of cGAS-STING agonists have emerged as promising strategies in immunotherapy for controlled modulation of cGAS-STING signaling in cancer. These approaches aim to optimize the tumor suppressive effects of the cGAS-STING pathway while minimizing the challenges associated with modulators of cGAS-STING signaling. In the present review, we discuss recent advancements and strategies in combination therapies and nanocarrier-based delivery systems for effectively controlling cGAS-STING signaling in cancer immunotherapy. Further, we emphasized the significance of nanocarrier-based approaches for effective targeting of the cGAS-STING signaling, tackling resistance mechanisms, and overcoming key challenges like immune suppression, tumor heterogeneity, and off-target effects.
Collapse
Affiliation(s)
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, Vignan Pharmacy College, Vadlamudi, Guntur, India
| | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, Andhra Pradesh, India
| | | | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
3
|
Pei J, Kumarasamy RV, Jayaraman S, Kanniappan GV, Long Q, Palanisamy CP. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management. Ageing Res Rev 2025; 104:102665. [PMID: 39824363 DOI: 10.1016/j.arr.2025.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in nanotechnology have paved the way for quercetin-functionalized nanomaterials, offering solutions to these challenges. These nanostructures enhance quercetin's solubility, stability, and targeted brain delivery, thereby augmenting its therapeutic potential. In this review, nanocarriers (like liposomes, polymeric nanoparticles, and metal-based nanosystems) are explored for their potential application in optimizing quercetin delivery in AD management. It discusses the mechanisms by which these nanostructures enhance BBB penetration and exert neuroprotective effects. Furthermore, the review examines the outcomes of preclinical and in vitro studies, while addressing the challenges of scaling these approaches for clinical application. By merging the fields of nanotechnology and neurotherapeutics, the importance of quercetin-functionalized nanomaterials in advancing AD management strategies is underscored in this review.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Pro-cessing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guang-dong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Gopalakrishnan Velliyur Kanniappan
- Department of physiology, Saveetha Medical College & Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, PR China.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
5
|
Elawad MA, Ayaz M, Mosa OF, Usman A, Hamdoon AAE, Almawash S, Salim LHM, Ahmed A, Elkhalifa MEM. Polyphenols and Their Biogenic Nano-Formulations Targeting BACE1 as Anti-Amyloid Therapies; Meeting the Challenges of Bioavailability, Safety, and Specificity for the Treatment of Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2400525. [PMID: 39628325 DOI: 10.1002/mnfr.202400525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/06/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), a progressiveneurodegenerative condition is marked by extensive damage in the brain and dementia. Among the pathological hallmarks of AD is beta-amyloid (Aβ). Production of toxic Aβ oligomers production and accumulation in the brain is among the characteristic features of the disease. The abnormal accumulation Aβ is initiated by the catalytic degradation of Amyloid Precursor Proteins (APP) by Beta Amyloid Cleaving Enzyme 1 (BACE1) to generate insoluble amyloid plaques. The abnormal proteins are mitochondrial poison which disrupt the energy production and liberate excessive free radicals causing neuronal damage and mutations. Consequently, targeting Aβ-associated pathways has become a focus in the pursuit of developing effective AD treatments. An obstacle faced by many medications used to treat neurodegenerative diseases (NDs) is the restricted permeability across the blood-brain barrier (BBB). Unfortunately, no anti-amyloid drug is clinically approved till now. Recent advancements in nanotechnology have provided a possible solution for delivering medications to specific targets. By integrating natural products with nano-medicinal approaches, it is possible to develop novel and highly efficient therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Ahmed Elawad
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18800 Dir (L), Chakdara, KP, Pakistan
| | - Osama F Mosa
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Assad Usman
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18800 Dir (L), Chakdara, KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, 11911, Kingdom of Saudi Arabia
| | - Liga Hasan Mohammed Salim
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Alshebli Ahmed
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
7
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
10
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
12
|
Attia MS, Yahya A, Monaem NA, Sabry SA. Mesoporous silica nanoparticles: Their potential as drug delivery carriers and nanoscavengers in Alzheimer's and Parkinson's diseases. Saudi Pharm J 2023; 31:417-432. [PMID: 37026045 PMCID: PMC10071366 DOI: 10.1016/j.jsps.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Worldwide, populations face significant burdens from neurodegenerative disorders (NDDs), especially Alzheimer's and Parkinson's diseases. Although there are many proposed etiologies for neurodegenerative disorders, including genetic and environmental factors, the exact pathogenesis for these disorders is not fully understood. Most patients with NDDs are given lifelong treatment to improve their quality of life. There are myriad treatments for NDDs; however, these agents are limited by their side effects and difficulty in passing the blood-brain barrier (BBB). Furthermore, the central nervous system (CNS) active pharmaceuticals could offer symptomatic relief for the patient's condition without providing a complete cure or prevention by targeting the disease's cause. Recently, Mesoporous silica nanoparticles (MSNs) have gained interest in treating NDDs since their physicochemical properties and inherent ability to pass BBB make them possible drug carriers for several drugs for NDDs treatment. This paper provides insight into the pathogenesis and treatment of NDDs, along with the recent advances in applying MSNs as fibril scavengers. Moreover, the application of MSNs-based formulations in enhancing or sustaining drug release rate, and brain targeting via their responsive release properties, besides the neurotoxicity of MSNs, have been reviewed.
Collapse
Affiliation(s)
- Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Corresponding author.
| | - Ahmed Yahya
- Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Nada Abdel Monaem
- Department of chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Yun YJ, Park BH, Hou J, Oh JP, Han JH, Kim SC. Ginsenoside F1 Protects the Brain against Amyloid Beta-Induced Toxicity by Regulating IDE and NEP. Life (Basel) 2022; 12:58. [PMID: 35054451 PMCID: PMC8779788 DOI: 10.3390/life12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ginsenoside F1, the metabolite of Rg1, is one of the most important constituents of Panax ginseng. Although the effects of ginsenosides on amyloid beta (Aβ) aggregation in the brain are known, the role of ginsenoside F1 remains unclear. Here, we investigated the protective effect of ginsenoside F1 against Aβ aggregation in vivo and in vitro. Treatment with 2.5 μM ginsenoside F1 reduced Aβ-induced cytotoxicity by decreasing Aβ aggregation in mouse neuroblastoma neuro-2a (N2a) and human neuroblastoma SH-SY5Y neuronal cell lines. Western blotting, real-time PCR, and siRNA analysis revealed an increased level of insulin-degrading enzyme (IDE) and neprilysin (NEP). Furthermore, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis confirmed that ginsenoside F1 could pass the blood-brain barrier within 2 h after administration. Immunostaining results indicate that ginsenoside F1 reduces Aβ plaques in the hippocampus of APPswe/PSEN1dE9 (APP/PS1) double-transgenic Alzheimer's disease (AD) mice. Consistently, increased levels of IDE and NEP protein and mRNA were observed after the 8-week administration of 10 mg/kg/d ginsenoside F1. These data indicate that ginsenoside F1 is a promising therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yee-Jin Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Bong-Hwan Park
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jung-Pyo Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| |
Collapse
|
15
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2021; 22:ijms22169082. [PMID: 34445784 PMCID: PMC8396516 DOI: 10.3390/ijms22169082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease's cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson's and Alzheimer's diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.
Collapse
|
17
|
Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021; 4:74-95. [PMID: 33615162 PMCID: PMC7887745 DOI: 10.1021/acsptsci.0c00224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by the continuous decline of the cognitive abilities manifested due to the accumulation of large aggregates of amyloid-beta 42 (Aβ42), the formation of neurofibrillary tangles of hyper-phosphorylated forms of microtubule-associated tau protein, which may lead to many alterations at the cellular and systemic level. The current therapeutic strategies primarily focus on alleviating pathological symptoms rather than providing a possible cure. AD is one of the highly studied but least understood neurological problems and remains an unresolved condition of human brain degeneration. Over the years, multiple naturally derived small molecules, including plant products, microbial isolates, and some metabolic byproducts, have been projected as supplements reducing the risk or possible treatment of the disease. However, unfortunately, none has met the expected success. One major challenge for most medications is their ability to cross the blood-brain barrier (BBB). In past decades, nanotechnology-based interventions have offered an alternative platform to address the problem of the successful delivery of the drugs to the specific targets. Interestingly, the exciting interface of natural products and nanomedicine is delivering promising results in AD treatment. The potential applications of flavonoids, the plant-derived compounds best known for their antioxidant activities, and their amalgamation with nanomedicinal approaches may lead to highly effective therapeutic strategies for treating well-known neurodegenerative diseases. In the present review, we explore the possibilities and recent developments on an exciting combination of flavonoids and nanoparticles in AD.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur, Bihar, India 844102
| | - Arun Upadhyay
- Department
of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India 305817
| |
Collapse
|
18
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Alkahtane AA, Alghamdi HA, Almutairi B, Khan MM, Hasnain MS, Abdel-Daim MM, Alghamdi WM, Alkahtani S. Inhibition of human amylin aggregation by Flavonoid Chrysin: An in-silico and in-vitro approach. Int J Med Sci 2021; 18:199-206. [PMID: 33390788 PMCID: PMC7738956 DOI: 10.7150/ijms.51382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Islet amyloid polypeptide (amylin), consecrated by the pancreatic β-cells with insulin, has a significant role to play in maintaining homeostasis of islet cell hormones. Alzheimer's disease is the predominant source of dementia. However, its etiology remains uncertain; it appears that type 2 diabetes mellitus and other prediabetic states of insulin resistance contribute to the intermittent Alzheimer's disease presence. Amylin is abnormally elevated in Type II diabetes patients, accumulated into amylin aggregates, and ultimately causes apoptosis of the β-cells, and till date, its mechanism remains unclear. Several flavonoids have inhibitory effects on amylin amyloidosis, but its inhibition mechanisms are unknown. Screening a collection of traditional compounds revealed the flavone Chrysin, a potential lead compound. Chrysin inhibits amyloid aggregate formation according to Thioflavin T binding, turbidimetry assay. We report results of molecular interaction analysis of Chrysin with amylin which shows potent binding affinity against amylin. Pharmacokinetics and Drug likeness studies of Chrysin also suggest that it is a potential lead compound. Therefore, Chrysin prevented amylin aggregation.
Collapse
Affiliation(s)
- Abdullah A Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamzah A Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha - 244236, U.P., India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wadha M Alghamdi
- Medical Services at the Ministry of Interior, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Abstract
Alzheimer's disease (AD) is a form of dementia with high impact worldwide, accounting with more than 46 million cases. It is estimated that the number of patients will be four times higher in 2050. The initial symptoms of AD are almost imperceptible and typically involve lapses of memory in recent events. However, the available medicines still focus on controlling the symptoms and do not cure the disease. Regarding the advances in the discovery of new treatments for this devastating disease, natural compounds are gaining increasing relevance in the treatment of AD. Nevertheless, they present some limiting characteristics such as the low bioavailability and the low ability to cross the blood-brain barrier (BBB) that hinder the development of effective therapies. To overcome these issues, the delivery of natural products by targeting nanocarriers has aroused a great interest, improving the therapeutic activity of these molecules. In this article, a review of the research progress on drug delivery systems (DDS) to improve the therapeutic activity of natural compounds with neuroprotective effects for AD is presented. Graphical abstract.
Collapse
|
21
|
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 2020; 213:111271. [PMID: 33069945 DOI: 10.1016/j.jinorgbio.2020.111271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer's disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
Collapse
|
22
|
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci 2020; 21:E6070. [PMID: 32842530 PMCID: PMC7503838 DOI: 10.3390/ijms21176070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders are the most devastating and challenging diseases associated with the central nervous system (CNS). The blood-brain barrier (BBB) maintains homeostasis of the brain and contributes towards the maintenance of a very delicate microenvironment, impairing the transport of many therapeutics into the CNS and making the management of common neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebrovascular diseases (CVDs) and traumatic brain injury (TBI), exceptionally complicated. Nanoparticle (NP) technology offers a platform for the design of tissue-specific drug carrying systems owing to its versatile and modifiable nature. The prospect of being able to design NPs capable of successfully crossing the BBB, and maintaining a high drug bioavailability in neural parenchyma, has spurred much interest in the field of nanomedicine. NPs, which also come in an array of forms including polymeric NPs, solid lipid nanoparticles (SLNs), quantum dots and liposomes, have the flexibility of being conjugated with various macromolecules, such as surfactants to confer the physical or chemical property desired. These nanodelivery strategies represent potential novel and minimally invasive approaches to the treatment and diagnosis of these neurological disorders. Most of the strategies revolve around the ability of the NPs to cross the BBB via various influx mechanisms, such as adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT), targeting specific biomarkers or lesions unique to that pathological condition, thereby ensuring high tissue-specific targeting and minimizing off-target side effects. In this article, insights into common neurological disorders and challenges of delivering CNS drugs due to the presence of BBB is provided, before an in-depth review of nanoparticle-based theranostic strategies.
Collapse
Affiliation(s)
- Tao Ming Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Dinesh Tarini
- Government Kilpauk Medical College, The Tamilnadu Dr MGR Medical University, Chennai, Tamilnadu 600032, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| |
Collapse
|
23
|
Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020; 27:3888-3905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles are one of the most commonly used systems for imaging or therapeutic drug delivery. Exosomes are nanovesicular carriers that transport cargo for intercellular communication. These nanovesicles are linked to the pathology of some major diseases, in some cases with a central role in their progression. The use of these carriers to transport therapeutic drugs is a recent and promising approach to treat diseases such as cancer and Alzheimer disease. The physiological production of these structures is limited impairing its collection and subsequent purification. These drawbacks inspired the search for mimetic alternatives. The collection of exosome-like nanoparticles from plants can be a good alternative, since they are easier to extract and do not have the drawbacks of those produced in animal cells. Both natural and synthetic exosome-like nanoparticles, produced from serial extrusion of cells or by bottom up synthesis, are currently some of the most promising, biocompatible, high efficiency systems for drug delivery.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Teixeira
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
24
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB, Ligabue R. New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110662. [PMID: 32204090 DOI: 10.1016/j.msec.2020.110662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Interest in nanostructures such as titanate nanotubes (TNT) has grown notably in recent years due to their biocompatibility and economic viability, making them promising for application in the biomedical field. Quercetin (Qc) has shown great potential as a chemopreventive agent and has been widely studied for the treatment of diseases such as bladder cancer. Motivated by the possibilities of developing a new hybrid nanostructure with potential in biomedical applications, this study aimed to investigate the incorporation of quercetin in sodium (NaTNT) and zinc (ZnTNT) titanate nanotubes, and characterize the nanostructures formed. Qc release testing was also performed and cytotoxicity in Vero and T24 cell lines evaluated by the MTT assay. The effect of TNTs on T24 bladder cancer cell radiosensitivity was also assessed, using cell proliferation and a clonogenic assay. The TNT nanostructures were synthesized and characterized by FESEM, EDS, TEM, FTIR, XRD and TGA. The results showed that the nanostructures have a tubular structure and that the exchange of Na+ ions for Zn2+ and incorporation of quercetin did not alter this morphology. In addition, interaction between Zn and Qc increased the thermal stability of the nanostructures. The release test showed that maximum Qc delivery occurred after 24 h and the presence of Zn controlled its release. Biological assays indicated that the NaTNTQc and ZnTNTQc nanostructures decreased the viability of T24 cells after 48 h at high concentrations. Furthermore, the clonogenic assay showed that NaTNT, NaTNTQc, ZnTNT and ZnTNTQc combined with 5 Gy reduced the formation of polyclonal colonies of T24 cells after 48 h. The results suggest that the nanostructures synthesized in this study interfere in cell proliferation and can therefore be a powerful tool in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Luisa Alban
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Wesley Formentin Monteiro
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernando Mendonça Diz
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Gabriela Messias Miranda
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Carolina Majolo Scheid
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Eduardo Rosa Zotti
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernanda Bueno Morrone
- School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Rosane Ligabue
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil; School of Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil.
| |
Collapse
|
26
|
Hashemian M, Ghasemi-Kasman M, Ghasemi S, Akbari A, Moalem-Banhangi M, Zare L, Ahmadian SR. Fabrication and evaluation of novel quercetin-conjugated Fe 3O 4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine 2019; 14:6481-6495. [PMID: 31496698 PMCID: PMC6698168 DOI: 10.2147/ijn.s218317] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the numerous pharmacological activities of quercetin, its biomedical application has been hampered, because of poor water solubility and low oral bioavailability. In the present study, we fabricated a novel form of quercetin-conjugated Fe3O4-β-cyclodextrin (βCD) nanoparticles (NPs), and the effect of these prepared NPs was evaluated in a chronic model of epilepsy. METHODS Quercetin-loaded NPs were prepared using an iron oxide core coated with βCD and pluronic F68 polymer. The chronic model of epilepsy was developed by intraperitoneal injection of pentylenetetrazole (PTZ) at dose of 36.5 mg/kg every second day. Quercetin or its nanoformulation at doses of 25 or 50 mg/kg were administered intraperitoneally 10 days before PTZ injections and their applications continued 1 hour before each PTZ injection. Immunostaining was performed to evaluate the neuronal density and astrocyte activation of hippocampi. RESULTS Our data showed successful fabrication of quercetin onto Fe3O4-βCD NPs. In comparison to free quercetin, quercetin NPs markedly reduced seizure behavior, neuronal loss, and astrocyte activation in a PTZ-induced kindling model. CONCLUSION Overall, quercetin-Fe3O4-βCD NPs might be regarded as an ideal therapeutic approach in epilepsy disorder.
Collapse
Affiliation(s)
- Mona Hashemian
- Student Research Committee, Babol University of Medical Sciences
, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Atefeh Akbari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | | - Leila Zare
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | |
Collapse
|
27
|
Enhanced Protection of Biological Membranes during Lipid Peroxidation: Study of the Interactions between Flavonoid Loaded Mesoporous Silica Nanoparticles and Model Cell Membranes. Int J Mol Sci 2019; 20:ijms20112709. [PMID: 31159465 PMCID: PMC6600359 DOI: 10.3390/ijms20112709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Flavonoids, polyphenols with anti-oxidative activity have high potential as novel therapeutics for neurodegenerative disease, but their applicability is rendered by their poor water solubility and chemical instability under physiological conditions. In this study, this is overcome by delivering flavonoids to model cell membranes (unsaturated DOPC) using prepared and characterized biodegradable mesoporous silica nanoparticles, MSNs. Quercetin, myricetin and myricitrin have been investigated in order to determine the relationship between flavonoid structure and protective activity towards oxidative stress, i.e., lipid peroxidation induced by the addition of hydrogen peroxide and/or Cu2+ ions. Among investigated flavonoids, quercetin showed the most enhanced and prolonged protective anti-oxidative activity. The nanomechanical (Young modulus) measurement of the MSNs treated DOPC membranes during lipid peroxidation confirmed attenuated membrane damage. By applying a combination of experimental techniques (atomic force microscopy—AFM, force spectroscopy, electrophoretic light scattering—ES and dynamic light scattering—DLS), this work generated detailed knowledge about the effects of flavonoid loaded MSNs on the elasticity of model membranes, especially under oxidative stress conditions. Results from this study will pave the way towards the development of innovative and improved markers for oxidative stress-associated neurological disorders. In addition, the obtained could be extended to designing effective delivery systems of other high potential bioactive molecules with an aim to improve human health in general.
Collapse
|
28
|
Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF. Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomedicine 2018; 13:8473-8485. [PMID: 30587972 PMCID: PMC6294069 DOI: 10.2147/ijn.s179484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, the most common causes of dementia is a multifactorial pathology categorized by a complex etiology. Numerous nutraceuticals have been clinically evaluated, but some of the trials failed. However, natural compounds have some limitations due to their poor bioavailability, ineffective capability to cross the blood-brain barrier, or less therapeutic effects on AD. To overcome these disadvantages, nanoparticle-conjugated natural products could promote the bioavailability and enhance the therapeutic efficacy of AD when compared with a naked drug. This application generates and implements new prospect for drug discovery in neurodegenerative diseases. In this article, we confer AD pathology, review natural products in clinical trials, and ascertain the importance of nanomedicine coupled with natural compounds for AD.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Shin-Han Yang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Li-Wei Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| |
Collapse
|
29
|
Jeong JS, Piao Y, Kang S, Son M, Kang YC, Du XF, Ryu J, Cho YW, Jiang HH, Oh MS, Hong SP, Oh YJ, Pak YK. Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson's disease. Sci Rep 2018; 8:15953. [PMID: 30374025 PMCID: PMC6206089 DOI: 10.1038/s41598-018-34240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Moutan cortex, Angelica Dahurica root, and Bupleurum root are traditional herbal medicines used in Asian countries to treat various diseases caused by oxidative stress or inflammation. Parkinson's disease (PD) has been associated with mitochondrial dysfunction, but no effective treatment for mitochondrial dysfunction has yet been identified. In this study we investigated the neuroprotective effects of the triple herbal extract DA-9805 in experimental models of PD. DA-9805 was prepared by extracting three dried plant materials (Moutan cortex, Angelica Dahurica root, and Bupleurum root in a 1:1:1 mixture) with 90% ethanol on a stirring plate for 24 h at room temperature and fingerprinted using high-performance liquid chromatography. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP+), which both exert neurotoxic effects on dopaminergic neurons by inhibiting mitochondrial oxidative phosphorylation (OXPHOS) complex I, were used to make experimental models of PD. In MPP+-treated SH-SY5Y cells, DA-9805 ameliorated the suppression of tyrosine hydroxylase expression and mitochondrial damage on OXPHOS complex 1 activity, mitochondrial membrane potential, reactive oxygen species (ROS) generation, and oxygen consumption rate. In the MPTP-induced subacute PD model mice, oral administration of DA-9805 recovered dopamine content as well as bradykinesia, as determined by the rotarod test. DA-9805 protected against neuronal damage in the substantia nigra pars compacta (SNpc) and striatum. In both in vitro and in vivo models of PD, DA-9805 normalized the phosphorylation of AKT at S473 and T308 on the insulin signaling pathway and the expression of mitochondria-related genes. These results demonstrate that the triple herbal extract DA-9805 showed neuroprotective effects via alleviating mitochondria damage in experimental models of PD. We propose that DA-9805 may be a suitable candidate for disease-modifying therapeutics for PD.
Collapse
Affiliation(s)
- Jin Seok Jeong
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Ying Piao
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Emergency, Yanbian University Hospital, Yanji City, Jilin Province, 133000, China
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Minuk Son
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Young Cheol Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Xiao Fei Du
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Korea
| | - Jayoung Ryu
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Korea
| | | | - Hai-Hua Jiang
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Young J Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
30
|
Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103:1018-1027. [DOI: 10.1016/j.biopha.2018.04.126] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
|
31
|
Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7043213. [PMID: 29861833 PMCID: PMC5971291 DOI: 10.1155/2018/7043213] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
Alzheimer's and Parkinson's diseases are considered the most common neurodegenerative disorders, representing a major focus of neuroscience research to understanding the cellular alterations and pathophysiological mechanisms involved. Several natural products, including flavonoids, are considered able to cross the blood-brain barrier and are known for their central nervous system-related activity. Therefore, studies are being conducted with these chemical constituents to analyze their activities in slowing down the progression of neurodegenerative diseases. The present systematic review summarizes the pharmacological effects of flavonoids in animal models for Alzheimer's and Parkinson's diseases. A PRISMA model for systematic review was utilized for this search. The research was conducted in the following databases: PubMed, Web of Science, BIREME, and Science Direct. Based on the inclusion criteria, 31 articles were selected and discussed in this review. The studies listed revealed that the main targets of action for Alzheimer's disease therapy were reduction of reactive oxygen species and amyloid beta-protein production, while for Parkinson's disease reduction of the cellular oxidative potential and the activation of mechanisms of neuronal death. Results showed that a variety of flavonoids is being studied and can be promising for the development of new drugs to treat neurodegenerative diseases. Moreover, it was possible to verify that there is a lack of translational research and clinical evidence of these promising compounds.
Collapse
|
32
|
Lee JY, Shin K, Seo H, Jun H, Hirai ANS, Lee JW, Nam YS, Kim JW. Tailored layer-by-layer deposition of silica reinforced polyelectrolyte layers on polymer microcapsules for enhanced antioxidant cargo retention. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Chatziathanasiadou MV, Geromichalou EG, Sayyad N, Vrettos EI, Katsikoudi A, Stylos E, Bellou S, Geromichalos GD, Tzakos AG. Amplifying and broadening the cytotoxic profile of quercetin in cancer cell lines through bioconjugation. Amino Acids 2017; 50:279-291. [DOI: 10.1007/s00726-017-2514-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
|
34
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
35
|
Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92:569-579. [DOI: 10.1016/j.biopha.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
|
36
|
An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology 2016; 18:131-147. [PMID: 27853905 DOI: 10.1007/s10522-016-9668-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
An Ayurvedic polyherbal extract (PHE) comprising six herbs viz. Berberis aristata, Cyperus rotundus, Cedrus deodara, Emblica officinalis, Terminalia chebula and Terminalia bellirica is mentioned as an effective anti-hyperglycemic agent in 'Charaka Samhita', the classical text of Ayurveda. Previously, antidiabetic drug metformin was found to elicit antiaging effects and PHE was also found to exhibit antidiabetic effects in humans. Therefore, we screened it for its in vivo antioxidant antiaging effect on stress and lifespan using human homologous Caenorhabditis elegans model system. The effect on aging is evaluated by studying effect of PHE on mean survival in worms. The stress modulatory potential was assessed by quantification of intracellular ROS level, autofluorescent age pigment lipofuscin, oxidative and thermal stress assays. Additionally, stress response was quantified using gene reporter assays. The 0.01 µg/ml dose of PHE was able to enhance mean lifespan by 16.09% (P < 0.0001) in C. elegans. Furthermore, PHE treated worms demonstrated oxidative stress resistance in both wild type and stress hypersensitive mev-1 mutant along with upregulation of stress response genes sod-3 and gst-4. The delayed aging under stress can be attributed to its direct reactive oxygen species-scavenging activity and regulation of some age associated genes like daf-2, daf-16, skn-1, sod-3 and gst-4 in wild-type worms. Additonally, PHE delayed age related paralysis phenotype in CL4176 transgenic worms. Altogether, our results suggest PHE significantly improves the oxidative stress and life span in C. elegans. Overall the present study suggests this polyherbal formulation might play important role in regultaing aging and related complications like diabetes.
Collapse
|
37
|
Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 2016; 84:892-908. [PMID: 27756054 DOI: 10.1016/j.biopha.2016.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Quercetin, a ubiquitous flavonoid that is widely distributed in plants is classified as a cognitive enhancer in traditional and oriental medicine. The protective effects of quercetin for the treatment of neurodegenerative disorders and cerebrovascular diseases have been demonstrated in both in vitro and in vivo studies. The free radical scavenging activity of quercetin has been well-documented, wherein quercetin has been observed to exhibit protective effects against oxidative stress mediated neuronal damage by modulating the expression of NRF-2 dependent antioxidant responsive elements, and attenuation of neuroinflammation by suppressing NF-κB signal transducer and activator of transcription-1 (STAT-1). Several in vitro and in vivo studies have also shown that quercetin destabilizes and enhances the clearance of abnormal protein such as beta- amyloid peptide and hyperphosphorlyated tau, the key pathological hallmarks of Alzheimer's disease. Quercetin enhances neurogenesis and neuronal longevity by modulating a broad number of kinase signaling cascades such as phophoinositide 3- kinase (P13-kinase), AKT/PKB tyrosine kinase and Protein kinase C (PKC). Quercetin has also been well reported for its ability to reverse cognitive impairment and memory enhancement during aging. The current review focuses on summarizing the recent findings on the neuroprotective effect of quercetin, its mechanism of action and its possible roles in the prevention of neurological disorders.
Collapse
Affiliation(s)
- Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Ebabe Elle R, Rahmani S, Lauret C, Morena M, Bidel LPR, Boulahtouf A, Balaguer P, Cristol JP, Durand JO, Charnay C, Badia E. Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Mol Pharm 2016; 13:2647-60. [PMID: 27367273 DOI: 10.1021/acs.molpharmaceut.6b00190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) were covalently coated with antioxidant molecules, namely, caffeic acid (MSN-CAF) or rutin (MSN-RUT), in order to diminish the impact of oxidative stress induced after transfection into cells, thus generating safer carriers used for either drug delivery or other applications. Two cellular models involved in the entry of NPs in the body were used for this purpose: the intestinal Caco-2 and the epidermal HaCaT cell lines. Rutin gave the best results in terms of antioxidant capacities preservation during coupling procedures, cellular toxicity alleviation, and decrease of ROS level after 24 h incubation of cells with grafted nanoparticles. These protective effects of rutin were found more pronounced in HaCaT than in Caco-2 cells, indicating some cellular specificity toward defense against oxidative stress. In order to gain more insight about the Nrf2 response, a stable transfected HaCaT cell line bearing repeats of the antioxidant response element (ARE) in front of a luciferase reporter gene was generated. In this cell line, both tBHQ and quercetin (Nrf2 agonists), but not rutin, were able to induce, in a dose-dependent fashion, the luciferase response. Interestingly, at high concentration, MSN-RUT was able to induce a strong Nrf2 protective response in HaCaT cells, accompanied by a comparable induction of HO-1 mRNA. The level of these responses was again less important in Caco-2 cells. To conclude, in keratinocyte cell line, the coupling of rutin to silica nanoparticles was beneficial in term of ROS reduction, cellular viability, and protective effects mediated through the activation of the Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Raymond Ebabe Elle
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Saher Rahmani
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Céline Lauret
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Marion Morena
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Luc Philippe Régis Bidel
- INRA, UMR AGAP, Centre de Recherche de Montpellier , 2 Place Pierre Viala-Bât. 21, 34060 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; ICM Val d'Aurelle Paul Lamarque , Montpellier F-34298, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; ICM Val d'Aurelle Paul Lamarque , Montpellier F-34298, France
| | - Jean-Paul Cristol
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Eric Badia
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| |
Collapse
|
40
|
Catauro M, Bollino F, Nocera P, Piccolella S, Pacifico S. Entrapping quercetin in silica/polyethylene glycol hybrid materials: Chemical characterization and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:205-212. [PMID: 27524014 DOI: 10.1016/j.msec.2016.05.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 11/26/2022]
Abstract
Sol-gel synthesis was exploited to entrap quercetin, a natural occurring antioxidant polyphenol, in silica-based hybrid materials, which differed in their polyethylene glycol (PEG) content (6, 12, 24 and 50wt%). The materials obtained, whose nano-composite nature was ascertained by Scanning Electron Microscopy (SEM), were chemically characterized by Fourier Transform InfraRed (FT-IR) and UV-Vis spectroscopies. The results prove that a reaction between the polymer and the drug occurred. Bioactivity tests showed their ability to induce hydroxyapatite nucleation on the sample surfaces. The direct contact method was applied to screen the cytotoxicity of the synthetized materials towards fibroblast NIH 3T3 cells, commonly used for in vitro biocompatibility studies, and three nervous system cell lines (neuroblastoma SH-SY5Y, glioma U251, and pheochromocytoma PC12 cell lines), adopted as models in oxidative stress related studies. Using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay NIH 3T3 proliferation was assessed and the morphology was not compromised by direct exposure to the materials. Analogously, PC-12, and U-251 cell lines were not affected by new materials. SH-SY5Y appeared to be the most sensitive cell line with cytotoxic effects of 20-35%.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa, Italy.
| | - Flavia Bollino
- Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa, Italy
| | - Paola Nocera
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
41
|
Halevas E, Nday CM, Salifoglou A. Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. J Inorg Biochem 2016; 163:240-249. [PMID: 27301643 DOI: 10.1016/j.jinorgbio.2016.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 02/01/2023]
Abstract
Morphological alterations compromising inter-neuronal connectivity may be directly linked to learning-memory deficits in Central Nervous System neurodegenerative processes. Cu(II)-mediated oxidative stress plays a pivotal role in regulating redox reactions generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), known contributors to Alzheimer's disease (AD) pathology. The antioxidant properties of flavonoid catechin have been well-documented in neurodegenerative processes. However, the impact that catechin encapsulation in nanoparticles may have on neuronal survival and morphological lesions has been poorly demonstrated. To investigate potential effects of nano-encapsulated catechin on neuronal survival and morphological aberrations in primary rat hippocampal neurons, poly(ethyleneglycol) (PEG) and cetyltrimethylammonium bromide (CTAB)-modified silica nanoparticles were synthesized. Catechin was loaded on silica nanoparticles in a concentration-dependent fashion, and release studies were carried out. Further physicochemical characterization of the new nano-materials included elemental analysis, particle size, z-potential, FT-IR, Brunauer-Emmett-Teller (BET), thermogravimetric (TGA), and scanning electron microscopy (SEM) analysis in order to optimize material composition linked to the delivery of loaded catechin in the hippocampal cellular milieu. The findings reveal that, under Cu(II)-induced oxidative stress, the loading ability of the PEGylated/CTAB silica nanoparticles was concentration-dependent, based on their catechin release profile. The overall bio-activity profile of the new hybrid nanoparticles a) denoted their enhanced protective activity against oxidative stress and hippocampal cell survival compared to previously reported quercetin, b) revealed that morphological lesions affecting neuronal integrity can be counterbalanced at high copper concentrations, and c) warrants in-depth perusal of molecular events underlying neuronal function and degeneration, collectively linked to preventive nanotechnology in neurodegeneration.
Collapse
Affiliation(s)
- E Halevas
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C M Nday
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
42
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
43
|
Tefas LR, Tomuţă I, Achim M, Vlase L. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. ACTA ACUST UNITED AC 2015; 88:214-23. [PMID: 26528074 PMCID: PMC4576773 DOI: 10.15386/cjmed-418] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
Background and aims Quercetin is a flavonoid with good antioxidant activity, and exhibits various important pharmacological effects. The aim of the present work was to study the influence of formulation factors on the physicochemical properties of quercetin-loaded polymeric nanoparticles in order to optimize the formulation. Materials and methods The nanoparticles were prepared by the nanoprecipitation method. A 3-factor, 3-level Box-Behnken design was employed in this study considering poly(D,L-lactic-co-glycolic) acid (PLGA) concentration, polyvinyl alcohol (PVA) concentration and the stirring speed as independent variables. The responses were particle size, polydispersity index, zeta potential and encapsulation efficiency. Results The PLGA concentration seemed to be the most important factor influencing quercetin-nanoparticle characteristics. Increasing PLGA concentration led to an increase in particle size, as well as encapsulation efficiency. On the other hand, it exhibited a negative influence on the polydispersity index and zeta potential. The PVA concentration and the stirring speed had only a slight influence on particle size and polydispersity index. However, PVA concentration had an important negative effect on the encapsulation efficiency. Based on the results obtained, an optimized formulation was prepared, and the experimental values were comparable to the predicted ones. Conclusions The overall results indicated that PLGA concentration was the main factor influencing particle size, while entrapment efficiency was predominantly affected by the PVA concentration.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Tomuţă
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|