1
|
Chokejaroenrat C, Watcharatharapong T, T-Thienprasert J, Angkaew A, Poompoung T, Chinwong C, Chirasatienpon T, Sakulthaew C. Decomposition of microplastics using copper oxide/bismuth vanadate-based photocatalysts: Insight mechanisms and environmental impacts. MARINE POLLUTION BULLETIN 2024; 201:116205. [PMID: 38452629 DOI: 10.1016/j.marpolbul.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
To mitigate marine pollution, we improved the photo-Fenton reaction of modified nanoscale CuO/BiVO4 photocatalysts to resolve the challenge of efficient microplastic degradation in wastewater treatment. Material property analysis and computational results revealed that deposition of CuO onto BiVO4 nanocomposites improved photocatalytic activity by promoting an excess of electrons in CuO and surface charge transfer, resulting in an increased production of e--h+ for ROS generation via H2O2 activation. 1O2 was dominated and identified through quenching experiments, XPS analysis, and EPR. ROS generation increased via H2O2 activation, causing major surface abrasion and increased carbonyl and vinyl indices in microplastics. Treated water had minimal impact on Lycopersicon esculentum Mill. seedling growth but caused considerable mortality in cell lines and Moina macrocopa mortality at greater dosages due to their sensitivity to ions and H2O2 residuals. Overall, this treatment can effectively degrade microplastics, but the dilution of treated water is still needed before being discharged.
Collapse
Affiliation(s)
- C Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Watcharatharapong
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - J T-Thienprasert
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - A Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Poompoung
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - C Chinwong
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Chirasatienpon
- Department of Physical Education, Faculty of Education, Kasetsart University, Bangkok, Thailand
| | - C Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Bo LY, Pan ZQ, Zhang Q, Song CL, Ren J, Zhao XH. Activity Changes of the Peptic Lactoferrin Hydrolysate in Human Gastric Cancer AGS Cells in Response to Cu(II) or Mn(II) Addition. Foods 2023; 12:2662. [PMID: 37509754 PMCID: PMC10378690 DOI: 10.3390/foods12142662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lactoferrin is an interesting bioactive protein in milk and can interact with various metal ions of trace elements such as copper, iron, manganese, and others. In this study, a lactoferrin hydrolysate (LFH) was generated from commercial bovine lactoferrin by protease pepsin, fortified with Cu2+ (or Mn2+) at two levels of 0.64 and 1.28 (or 0.28 and 0.56) mg/g protein, respectively, and then measured for the resultant bioactivity changes in the well-differentiated human gastric cancer AGS cells. The assaying results indicated that the LFH and Cu/Mn-fortified products had long-term anti-proliferation on the cells, while the treated cells showed DNA fragmentation and increased apoptotic cell proportions. Regarding the control cells, the cells treated with the LFH and especially Cu/Mn-fortified LFH had remarkably up-regulated mRNA expression of caspase-3 and Bax by respective 1.21-3.23 and 2.23-2.83 folds, together with down-regulated mRNA expression Bcl-2 by 0.88-0.96 folds. Moreover, Western-blot assaying results also indicated that the cells exposed to the LFH and Cu/Mn-fortified LFH (especially Mn at higher level) for 24 h had an enhanced caspase-3 expression and increased ratio of Bax/Bcl-2. It can thus be concluded that the used Cu/Mn-addition to the LFH may lead to increased bioactivity in the AGS cells; to be more specific, the two metal ions at the used addition levels could endow LFH with a higher ability to cause cell apoptosis by activating caspase-3 and increasing the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Li-Ying Bo
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Zhi-Qin Pan
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Chun-Li Song
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Jian Ren
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
3
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Öztürk Gündüz E, Tasasız B, Gedik ME, Günaydın G, Okutan E. NI-BODIPY-GO Nanocomposites for Targeted PDT. ACS OMEGA 2023; 8:8320-8331. [PMID: 36910926 PMCID: PMC9996583 DOI: 10.1021/acsomega.2c06900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Three multifunctional targeted NI-BODIPYs (10-12) and GO-(10-12) nanocarriers were fabricated. NI-BODIPYs are designed to facilitate non-covalent interaction with graphene oxide (GO) and target toward cancer cells for specific recognition with glucose moieties while efficiently producing singlet oxygen. We probed detailed characterization, fundamental photophysical/photochemical properties, and interactions with GO of such triplet photosensitizers and nanocarriers. The effect of the formation of nanohybrids with GO on singlet oxygen formation as well as on the efficacies of the molecules in terms of in vitro killing of cancer cells was evaluated with K562 human chronic myelogenous leukemia cells. Amazingly, it was observed that GO exhibited favorable interactions with the NI-BODIPY dyads and promoted the formation of singlet oxygen, while not showing any dark toxicity.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| | - Berkan Tasasız
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| | - M. Emre Gedik
- Department
of Basic Oncology, Cancer Institute, Hacettepe
University, Çankaya, Ankara 06800, Turkey
| | - Gürcan Günaydın
- Department
of Basic Oncology, Cancer Institute, Hacettepe
University, Çankaya, Ankara 06800, Turkey
| | - Elif Okutan
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
5
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
6
|
Thakur SK, Ghosh R, Gaur KK, Guchhait P, Eswaran SV. Anti-Cancer Activity of Water Soluble Reduced Graphene Oxide-Aryl Aziridino-Manganese (II) Complex. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Graphene-based functional structures with large surface areas, ease of functionalization/modification, and photothermal features are currently very attractive for cancer nanotherapy applications. The reduced Graphene Oxide (rGO) structures having moderate cytotoxicity have been
used against human cancerous cells. We developed a water soluble rGO by heating with an aryl azide (a “green” reagent) followed by mild oxidation with aqueous alkaline KMnO4 yielding the c0lorless, water soluble rGO-arylaziridino-Mn (II) complex. The anti-cancer property
of the compound was tested in human monocytic U937 cell line, CT26 murine colon carcinoma cell line and 4T1 murine breast cancer cell lines. rGOarylaziridino-Mn (II) complex significantly induced apoptosis in the above cells in a concentration dependent manner in vitro, similar to an
effect of known anti-cancer drug Doxorubicin.
Collapse
Affiliation(s)
- Sujeet Kumar Thakur
- TERI School of Advanced Studies, Vasant Kunj, Institutional Area, New Delhi 110070, India
| | - Riya Ghosh
- Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | | |
Collapse
|
7
|
Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019; 12:E163. [PMID: 31671658 PMCID: PMC6958374 DOI: 10.3390/ph12040163] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O2. In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: 1) The use of O2 vehicle; 2) the modification of the tumour microenvironment (TME); 3) combining other therapies with PDT; 4) hypoxia-independent PDT; 5) hypoxia-dependent PDT and 6) fractional PDT.
Collapse
Affiliation(s)
- Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | | | - Amina Ben-Mihoub
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Noémie Thomas
- Biologie, Signaux et Systèmes en Cancérologie et Neurosciences, CRAN, UMR 7039, Université de Lorraine, CNRS, 54000 Nancy, France.
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| |
Collapse
|
8
|
Du X, Zhang P, Fu H, Ahsan HM, Gao J, Chen Q. Smart mitochondrial-targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity. Int J Pharm 2019; 555:346-355. [DOI: 10.1016/j.ijpharm.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
9
|
Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LY, Kiew LV, Lee HB. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review. Photochem Photobiol Sci 2018; 17:1691-1708. [PMID: 29845993 DOI: 10.1039/c8pp00113h] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BODIPYs are photosensitizers activatable by light to generate highly reactive singlet oxygen (1O2) from molecular oxygen, leading to tissue damage in the photoirradiated region. Despite their extraordinary photophysical characteristics, they are not featured in clinical photodynamic therapy. This review discusses the recent advances in the design and/or modifications of BODIPYs since 2013, to improve their potential in photodynamic cancer therapy and related areas.
Collapse
Affiliation(s)
- Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management & Science University, 40100 Shah Alam, Selangor, Malaysia.
| | - Shie Yin Ng
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Siew Hui Voon
- Project Leadership, Clinical Operations, R&D Solutions, IQVIA, 50480 Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Sadak AE, Gören AC, Bozdemir ÖA, Saraçoğlu N. Synthesis of Novel meso-
Indole- and meso-
Triazatruxene-BODIPY Dyes. ChemistrySelect 2017. [DOI: 10.1002/slct.201701897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ali Enis Sadak
- Department of Chemistry; Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
- TUBITAK-INM, TUBITAK Settlement of Gebze Baris District; Dr. Zeki Acar Street No: 1 Gebze / Kocaeli 41470 Turkey
| | - Ahmet C. Gören
- TUBITAK-INM, TUBITAK Settlement of Gebze Baris District; Dr. Zeki Acar Street No: 1 Gebze / Kocaeli 41470 Turkey
| | - Özgür Altan Bozdemir
- Department of Chemistry; Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| | - Nurullah Saraçoğlu
- Department of Chemistry; Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| |
Collapse
|
11
|
Lu WL, Lan YQ, Xiao KJ, Xu QM, Qu LL, Chen QY, Huang T, Gao J, Zhao Y. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer. J Mater Chem B 2017; 5:1275-1283. [DOI: 10.1039/c6tb02575g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypoxia promotes not only the metastasis of tumors but also therapeutic resistance.
Collapse
Affiliation(s)
- Wen-Long Lu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ya-Quan Lan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ke-Jing Xiao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qin-Mei Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School
- Southeast University
| | - Ling-Ling Qu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Tao Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jing Gao
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
12
|
Boison D, Lu WL, Xu QM, Yang H, Huang T, Chen QY, Gao J, Zhao Y. A mitochondria targeting Mn nanoassembly of BODIPY for LDH-A, mitochondria modulated therapy and bimodal imaging of cancer. Colloids Surf B Biointerfaces 2016; 147:387-396. [DOI: 10.1016/j.colsurfb.2016.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
|
13
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Xu C, Tang QJ. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis Photodyn Ther 2016; 15:53-8. [PMID: 27181460 DOI: 10.1016/j.pdpdt.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of PaH at the concentration of 5μM and energy density of 10.8J/cm(2). Our findings demonstrated that PaH as a naturally occurring photosensitizer has potential in photodynamic therapy on colon adenocarcinoma.
Collapse
Affiliation(s)
- Juan Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Na Zhang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Qing-Juan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.
| |
Collapse
|