1
|
Wang L, Liu P, Wu Y, Pei H, Cao X. Inhibitory effect of Lonicera japonica flos on Streptococcus mutans biofilm and mechanism exploration through metabolomic and transcriptomic analyses. Front Microbiol 2024; 15:1435503. [PMID: 39027105 PMCID: PMC11256199 DOI: 10.3389/fmicb.2024.1435503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Streptococcus mutans was the primary pathogenic organism responsible for dental caries. Lonicera japonica flos (LJF) is a traditional herb in Asia and Europe and consumed as a tea beverage for thousands of years. Methods The inhibitory effect and mechanism of LJF on biofilm formation by S. mutans was investigated. The active extracts of LJF were validated for their inhibitory activity by examining changes in surface properties such as adherence, hydrophobicity, auto-aggregation abilities, and exopolysaccharides (EPS) production, including water-soluble glucan and water-insoluble glucan. Results and discussion LJF primarily inhibited biofilm formation through the reduction of EPS production, resulting in alterations in cell surface characteristics and growth retardation in biofilm formation cycles. Integrated transcriptomic and untargeted metabolomics analyses revealed that EPS production was modulated through two-component systems (TCS), quorum sensing (QS), and phosphotransferase system (PTS) pathways under LJF stress conditions. The sensing histidine kinase VicK was identified as an important target protein, as LJF caused its dysregulated expression and blocked the sensing of autoinducer II (AI-2). This led to the inhibition of response regulator transcriptional factors, down-regulated glycosyltransferase (Gtf) activity, and decreased production of water-insoluble glucans (WIG) and water-soluble glucans (WSG). This is the first exploration of the inhibitory effect and mechanism of LJF on S. mutans, providing a theoretical basis for the application of LJF in functional food, oral health care, and related areas.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Cao
- Beijing Technology and Business University, Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
2
|
Ellepola K, Bhatt L, Chen L, Han C, Jahanbazi F, Klie RF, Lagunas Vargas F, Mao Y, Novakovsky K, Sapkota B, Pesavento RP. Nanoceria Aggregate Formulation Promotes Buffer Stability, Cell Clustering, and Reduction of Adherent Biofilm in Streptococcus mutans. ACS Biomater Sci Eng 2023; 9:4686-4697. [PMID: 37450411 DOI: 10.1021/acsbiomaterials.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Streptococcus mutans is one of the key etiological factors in tooth-borne biofilm development that leads to dental caries in the presence of fermentable sugars. We previously reported on the ability of acid-stabilized nanoceria (CeO2-NP) produced by the hydrolysis of ceric salts to limit biofilm adherence of S. mutans via non-bactericidal mechanism(s). Herein, we report a chondroitin sulfate A (CSA) formulation (CeO2-NP-CSA) comprising nanoceria aggregates that promotes resistance to bulk precipitation under a range of conditions with retention of the biofilm-inhibiting activity, allowing for a more thorough mechanistic study of its bioactivity. The principal mechanism of reduced in vitro biofilm adherence of S. mutans by CeO2-NP-CSA is the production of nonadherent cell clusters. Additionally, dose-dependent in vitro human cell toxicity studies demonstrated no additional toxicity beyond that of equimolar doses of sodium fluoride, currently utilized in many oral health products. This study represents a unique approach and use of a nanoceria aggregate formulation with implications for promoting oral health and dental caries prevention as an adjunctive treatment.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lopa Bhatt
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Chen Han
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Forough Jahanbazi
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Francisco Lagunas Vargas
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Kirill Novakovsky
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Bibash Sapkota
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
4
|
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases. Biomedicines 2021; 9:biomedicines9101435. [PMID: 34680553 PMCID: PMC8533418 DOI: 10.3390/biomedicines9101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogenic oral biofilms are now recognized as a key virulence factor in many microorganisms that cause the heavy burden of oral infectious diseases. Recently, new investigations in the nanotechnology field have propelled the development of novel biomaterials and approaches to control bacterial biofilms, either independently or in combination with other substances such as drugs, bioactive molecules, and photosensitizers used in antimicrobial photodynamic therapy (aPDT) to target different cells. Moreover, nanoparticles (NPs) showed some interesting capacity to reverse microbial dysbiosis, which is a major problem in oral biofilm formation. This review provides a perspective on oral bacterial biofilms targeted with NP-mediated treatment approaches. The first section aims to investigate the effect of NPs targeting oral bacterial biofilms. The second part of this review focuses on the application of NPs in aPDT and drug delivery systems.
Collapse
|
5
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
6
|
Cavitt TB, Carlisle JG, Dodds AR, Faulkner RA, Garfield TC, Ghebranious VN, Hendley PR, Henry EB, Holt CJ, Lowe JR, Lowry JA, Oskin DS, Patel PR, Smith D, Wei W. Thermodynamic Surface Analyses to Inform Biofilm Resistance. iScience 2020; 23:101702. [PMID: 33205020 PMCID: PMC7649285 DOI: 10.1016/j.isci.2020.101702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/01/2022] Open
Abstract
Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.
Collapse
Affiliation(s)
- T. Brian Cavitt
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jasmine G. Carlisle
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Alexandra R. Dodds
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Rebecca A. Faulkner
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Tyson C. Garfield
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Verena N. Ghebranious
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Phillip R. Hendley
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Emily B. Henry
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Charles J. Holt
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jordan R. Lowe
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jacob A. Lowry
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - D. Spencer Oskin
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Pooja R. Patel
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Devin Smith
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Wenting Wei
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| |
Collapse
|