1
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Prekas P, Terblanche JS, Hahn DA, Papadopoulos NT. Age and mating status have complex but modest effects on the critical thermal limits of adult Mediterranean fruit flies from geographically divergent populations. J Therm Biol 2024; 126:104013. [PMID: 39586117 DOI: 10.1016/j.jtherbio.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Collapse
Affiliation(s)
- Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Panagiota Koskinioti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Kostas D Zarpas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Paraschos Prekas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
2
|
Hafker P, Thompson LM, Walter JA, Parry D, Grayson KL. Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect. INSECT SCIENCE 2024; 31:1930-1942. [PMID: 38516807 PMCID: PMC11632292 DOI: 10.1111/1744-7917.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.
Collapse
Affiliation(s)
- Petra Hafker
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of EntomologyCornell UniversityIthacaNYUSA
| | - Lily M. Thompson
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSCUSA
| | - Jonathan A. Walter
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Dylan Parry
- Department of Environmental Biology, State University of New YorkCollege of Environmental Science and ForestrySyracuseNYUSA
| | | |
Collapse
|
3
|
Moraiti CA, Verykouki E, Papadopoulos NT. Chill coma recovery of Ceratitis capitata adults across the Northern Hemisphere. Sci Rep 2022; 12:17555. [PMID: 36266456 PMCID: PMC9585097 DOI: 10.1038/s41598-022-21340-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), is an invasive pest, that is currently expanding its geographic distribution from the Mediterranean coasts to more temperate areas of Europe. Given that low temperature is a primary determinant of insect species' range boundaries especially in the Northern Hemisphere with pronounced seasonality, we used chill coma recovery time for assessing latitudinal clines in basal chill tolerance of C. capitata adults. We selected six populations obtained from areas with broad climatic variability based on the main bioclimatic variables of temperature and precipitation, spanning a latitudinal range of about 19° from Middle East to Central Europe. Adults were exposed to 0 °C for 4 h, and time to regain the typical standing position of a fly at 25 °C were recorded. The post-stress survival after a period of 8 days was also recorded. Results revealed that adults from Israel and Austria were less chill tolerant than those from Greece, resulting in curvilinear trends with latitude. Analysis of macroclimatic conditions revealed combined effects of latitude (as a proxy of photoperiod) and macroclimatic conditions on chill coma recovery time. Nonetheless, there was not a deleterious effect on post-recovery survival, except for flies obtained from the northern most point (Vienna, Austria). Overall, it seems that evolutionary patterns of basal chill coma recovery time of C. capitata adults are driven mainly by local climatic variability.
Collapse
Affiliation(s)
- Cleopatra A Moraiti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446, Volos, Magnesia, Greece
| | - Eleni Verykouki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446, Volos, Magnesia, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446, Volos, Magnesia, Greece.
| |
Collapse
|
4
|
Bujan J, Ollier S, Villalta I, Devers S, Cerdá X, Amor F, Dahbi A, Bertelsmeier C, Boulay R. Can thermoregulatory traits and evolutionary history predict climatic niches of thermal specialists? DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jelena Bujan
- Department of Ecology and Evolution, Biophore University of Lausanne Lausanne Switzerland
| | - Sébastien Ollier
- Department of Ecology, Systematics and Evolution University Paris‐Saclay CNRS AgroParisTech Orsay France
| | - Irene Villalta
- Institute of Insect Biology University François Rabelais of Tours Tours France
| | - Séverine Devers
- Institute of Insect Biology University François Rabelais of Tours Tours France
| | - Xim Cerdá
- Department of Ecology, Systematics and Evolution University Paris‐Saclay CNRS AgroParisTech Orsay France
- Estación Biológica de Doñana CSIC Sevilla Spain
| | | | - Abdallah Dahbi
- Department of Biology Polydisciplinary Faculty of Safi Cadi Ayyad University Safi Morocco
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore University of Lausanne Lausanne Switzerland
| | - Raphaël Boulay
- Institute of Insect Biology University François Rabelais of Tours Tours France
| |
Collapse
|
5
|
Khazan ES, Haggard J, Ríos‐Málaver IC, Shirk P, Scheffers BR. Disentangling drivers of thermal physiology: Community‐wide cold shock recovery of butterflies under natural conditions. Biotropica 2021. [DOI: 10.1111/btp.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Emily S. Khazan
- School of Natural Resources and Environment University of Florida Gainesville Florida USA
| | - Jaime Haggard
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | | | - Philip Shirk
- Department of Biology University of Florida Gainesville Florida USA
| | - Brett R. Scheffers
- School of Natural Resources and Environment University of Florida Gainesville Florida USA
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
6
|
Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae. INSECTS 2021; 12:insects12111013. [PMID: 34821813 PMCID: PMC8622974 DOI: 10.3390/insects12111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Augmentative biological control relies on the more or less frequent/abundant releases of biological control agents (BCAs) that have to be adapted to their short-term local environment including (micro-)climatic conditions. Thermal biology of BCAs is thus a key component for their success. The extent to which thermal tolerance indices may be relevant predictors of the field efficiency is however still poorly documented. Within this frame, we investigated the intraspecific variability for the ability to move at low temperatures in the minute wasp, Trichogramma cacoeciae. We collected, molecularly characterized, and compared for their thermal tolerance indices numerous strains originating from three contrasting geographic areas. Our findings evidenced both a geographic differentiation between strains for one of the thermal tolerance indices and a positive correlation between two of them, demonstrating the existence of an intraspecific variability. Abstract Temperature is a main driver of the ecology and evolution of ectotherms. In particular, the ability to move at sub-lethal low temperatures can be described through three thermal tolerance indices—critical thermal minimum (CTmin), chill coma temperature (CCT), and activity recovery (AR). Although these indices have proven relevant for inter-specific comparisons, little is known about their intraspecific variability as well as possible genetic correlations between them. We thus investigated these two topics (intraspecific variability and genetic correlations between thermal tolerance indices) using the minute wasp, Trichogramma cacoeciae. Strains from T. cacoeciae were sampled across three geographic regions in France—two bioclimatic zones along a sharp altitudinal cline in a Mediterranean context (meso-Mediterranean at low elevations and supra-Mediterranean at higher elevations) and a more northwestern area characterized by continental or mountainous climates. Our results evidenced a significant effect of both the longitude and the severity of the cold during winter months on CCT. Results were however counter-intuitive since the strains from the two bioclimatic zones characterized by more severe winters (northwestern area and supra-Mediterranean) exhibited opposite patterns. In addition, a strong positive correlation was observed between CCT and CTmin. Neither strain differentiation nor the covariations between traits seem to be linked with the molecular diversity observed on the part of the mitochondrial marker COI.
Collapse
|
7
|
Aguado S, Clusella-Trullas S. Intra-specific variation of thermal performance, skin reflectance and body size partially co-vary with climate in a lizard. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Thermal adaptation theory posits that variation of thermal traits such as those affecting thermal budgets and the performance of ectotherms should be associated with climate gradients. Under a simple scenario, thermal traits should also co-vary to shape optimal thermal phenotypes under a particular climate. However, geographical variation and covariation of thermal traits can result from other sources of selection and a wide range of other mechanisms. Here, we explore variation and covariation of skin reflectance (melanization), body size and thermal performance traits among three populations of the lizard Cordylus cordylus, a species endemic to South Africa. We also examine relationships between skin reflectance and substrate reflectance, body size and crevice size to test alternative hypotheses. We found partial support for predictions of thermal adaptation to climate regimes for body size, melanization and chill-coma recovery time. Darker lizards also performed optimally at higher temperatures than lighter coloured lizards but there was limited individual covariation between morphological and performance traits. Despite partial support for thermal adaptation, the complex interactions between sex and body size and between substrate reflectance and size underlying skin reflectance emphasized the importance of testing multiple hypotheses when exploring drivers of thermal trait variation within species.
Collapse
Affiliation(s)
- Sara Aguado
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), Oviedo, Spain
| | | |
Collapse
|
8
|
Oyen KJ, Jardine LE, Parsons ZM, Herndon JD, Strange JP, Lozier JD, Dillon ME. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J Comp Physiol B 2021; 191:843-854. [PMID: 34173046 DOI: 10.1007/s00360-021-01385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of performance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been measured in bumble bees (genus Bombus) but may provide insights regarding recent changes in their distributions. We measured CCRT of Bombus vosnesenskii workers reared in common garden laboratory conditions from queens collected across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown in wild-caught Bombus, we predict that variability in CCRT may be strongly influenced by plasticity.
Collapse
Affiliation(s)
- K Jeannet Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Laura E Jardine
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biology, Oklahoma City University, Oklahoma City, OK, USA
| | - Zachary M Parsons
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA
| | - James D Herndon
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA
| | - James P Strange
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA.,Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.
| |
Collapse
|
9
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
10
|
Broitman BR, Lagos NA, Opitz T, Figueroa D, Maldonado K, Ricote N, Lardies MA. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J Anim Ecol 2021; 90:1961-1972. [PMID: 33942301 DOI: 10.1111/1365-2656.13514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Our understanding of the plastic and evolutionary potential of ectothermic organisms and their populational impacts in the face of rapid global change remains limited. Studies attempting on the relationship between the magnitude of thermal variability across latitude and the degree of phenotypic plasticity exhibited by marine ectotherms are inconclusive. We state that the latter arises from the narrow range of thermal variability captured by the limited span of the latitudinal gradients studied to date. Using a mechanistic ecophysiological approach and a satellite-based assessment of the relevant environmental variables (i.e. temperature and food availability), we studied individuals of the intertidal barnacle Jehlius cirratus from seven local populations widely spread along the Humboldt current system that spanning two biogeographic regions. At the same time, we synthesized published information on the local abundance of our study species across a total of 76 sites representing 20° of latitude, and spanning from 18 to 42°S. We examined the effects of latitude and environmental variability on metabolic rate plasticity, thermal tolerance (thermal breadth and thermal safety margins) and their impacts on the abundance of this widespread marine invertebrate. We demonstrate that the phenotypic plasticity of metabolic rate in J. cirratus populations is not related to latitude. In turn, thermal breadth is explained by the temperature variability each population experiences. Furthermore, we found clinal variation with a poleward decrease of the critical thermal minimum, suggesting that episodic extreme low temperatures represent a ubiquitous selective force on the lower thermal limit for ectotherms. Across our study gradient, plasticity patterns indicate that populations at the equatorial extreme are more vulnerable to a warming climate, while populations located in the biogeographic transitional zone (i.e. high environmental heterogeneity), on the centre of the gradient, display higher levels of phenotypic plasticity and may represent a genetic buffer for the effects of ocean warming. Together, our results suggest the existence of a fitness trade-off involving the metabolic cost of plasticity and population density that is evident only across the vast latitudinal gradient examined.
Collapse
Affiliation(s)
- Bernardo R Broitman
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile.,Instituto Milenio de Socio-Ecología Costera 'SECOS', Santiago, Chile
| | - Nelson A Lagos
- Instituto Milenio de Socio-Ecología Costera 'SECOS', Santiago, Chile.,Facultad de Ciencias, Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile
| | - Tania Opitz
- Dirección de Investigación y Publicaciones, Providencia, Universidad Finis Terrae, Santiago, Chile
| | - Daniela Figueroa
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile.,Fundación Educación y Ciencia, Santiago, Chile
| | - Karin Maldonado
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile
| | - Natalia Ricote
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile
| | - Marco A Lardies
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile.,Instituto Milenio de Socio-Ecología Costera 'SECOS', Santiago, Chile
| |
Collapse
|
11
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
12
|
Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet 2020; 21:135. [PMID: 33339509 PMCID: PMC7747409 DOI: 10.1186/s12863-020-00935-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.
Collapse
|
13
|
Tonione MA, Cho SM, Richmond G, Irian C, Tsutsui ND. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis. Ecol Evol 2020; 10:4749-4761. [PMID: 32551058 PMCID: PMC7297759 DOI: 10.1002/ece3.6229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - So Mi Cho
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Preventive MedicineYonsei University College of MedicineSeoulKorea
| | - Gary Richmond
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Family Health Care NursingUCSF School of NursingSan FranciscoCAUSA
| | - Christian Irian
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| |
Collapse
|
14
|
Taucare-Ríos A, Veloso C, Canals M, Bustamante RO. Daily thermal preference variation of the sand recluse spider Sicarius thomisoides (Araneae: Sicariidae). J Therm Biol 2020; 87:102465. [PMID: 31999600 DOI: 10.1016/j.jtherbio.2019.102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Preferential temperature as a physiological feature is crucial for spiders, since it determines the selection of key habitats for their survival and reproduction. In this work, we study the daily and geographical variation of the preferential temperature of the spider Sicarius thomisoides subjected to different degrees of daily thermal oscillation in their habitats. Preferred temperatures differ between coastal and inland populations, but in both cases, there is a marked bimodality in the daily pattern of temperature preference, with two peaks per day that would be given by the changes in the hours of activity. These nocturnal spiders select higher temperatures in the evening (active period) and select lower temperatures during late morning (resting period). In laboratory, spiders have preferred temperatures that differ from those found in their habitats, so they must tolerate or compensate non-preferred temperatures by active thermoregulation in natural conditions.
Collapse
Affiliation(s)
- Andrés Taucare-Ríos
- Facultad de Ciencias, Universidad Arturo Prat, Casilla 121, Iquique, Chile; Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Casilla 121, Iquique, Chile.
| | - Claudio Veloso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Chile
| | - Mauricio Canals
- Departamento de Medicina & Programa de Salud Ambiental, ESP, Facultad de Medicina, Universidad de Chile, Chile
| | - Ramiro O Bustamante
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Chile; Instituto de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Antoł A, Rojek W, Singh S, Piekarski D, Czarnoleski M. Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance. PLoS One 2019; 14:e0220647. [PMID: 31369635 PMCID: PMC6675064 DOI: 10.1371/journal.pone.0220647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
Environmental temperatures and oxygen availability are important for the balance between oxygen supply and demand. Terrestrial organisms are generally perceived to be less limited by access to oxygen than their aquatic counterparts. Nevertheless, even terrestrial environments can be deficient in oxygen, especially for organisms occurring in soil, litter, wood, rotten fruit or at high elevations. While isopods are the best adapted to a terrestrial lifestyle among crustaceans, many species, including woodlice, occupy environmental gradients of temperature and oxygen. To investigate whether mismatches between oxygen supply and demand can result in a loss of performance in a terrestrial organism, we studied the effects of atmospheric oxygen concentration on the thermal performance of the common rough woodlouse (Porcellio scaber). We compared the thermal preference, thermal sensitivity of running speed, and tolerance to extreme temperatures of woodlice exposed to one of two oxygen concentrations (21% - normoxia, 7% - hypoxia). Under hypoxia, P. scaber preferred microhabitats with temperatures that were on average 3°C lower than those preferred under normoxia. The running speed tended to reach its maximum at a lower temperature under hypoxia than under normoxia (25.13°C vs 28.87°C, respectively, although p was equal to 0.09), and normoxic woodlice ran approximately 1.5-fold faster than hypoxic woodlice at the point of maximum speed. Heat tolerance was significantly lower under hypoxia (38.9°C) than under normoxia (40.7°C), but there was no difference in cold tolerance (5.81°C under normoxia and 5.44°C under hypoxia). Overall, our results indicate that environmental gradients of temperature and oxygen may shape the physiological performance of terrestrial ectotherms, likely via their effects on the balance between oxygen supply and demand, which may have fitness consequences for these organisms in nature.
Collapse
Affiliation(s)
- Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
- * E-mail:
| | - Wiktoria Rojek
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Sanjeev Singh
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Damian Piekarski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| |
Collapse
|
16
|
Changes in life history characteristics of Porcellio laevis (Isopoda: Oniscidea) along a cadmium pollution gradient in Sfax (Central Tunisia). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): Implications for microhabitat selection. J Therm Biol 2018; 78:298-303. [PMID: 30509651 DOI: 10.1016/j.jtherbio.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 02/05/2023]
Abstract
Temperature is one of the most important environmental variables for organisms, especially for ectothermic animals. In fact, ectotherms must move within a relatively narrow range of temperatures where they are able to maximize their performance. We assessed the thermal ecology of female sand spiders (Sicarius thomisoides) in Chile from separate populations along an environmental gradient and different macro habitats (coast vs. inland locations). The parameters of thermal performance curves do not vary between populations, with an average optimum temperature (T°opt) of 25.33 ± 2.65 °C, and a CT min and CT max of 6.56 ± 1.72 °C and 44.23 ± 4.92 °C, respectively. Our results show that the thermal niche in laboratory is conserved and does not vary along an environmental gradient coinciding with the temperatures selected by female spiders in their microhabitats.
Collapse
|
18
|
Osores SJA, Ruz GA, Opitz T, Lardies MA. Discovering divergence in the thermal physiology of intertidal crabs along latitudinal gradients using an integrated approach with machine learning. J Therm Biol 2018; 78:140-150. [PMID: 30509630 DOI: 10.1016/j.jtherbio.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
In intertidal marine crustaceans, phenotypic variation in physiological and life-history traits is pervasive along latitudinal clines. However, organisms have complex phenotypes, and their traits do not vary independently but rather interact differentially between them, effect that is caused by genetic and/or environmental forces. We evaluated the geographic variation in phenotypic integration of three marine crab species that inhabit different vertical thermal microhabitats of the intertidal zone. We studied seven populations of each species along a latitudinal gradient that spans more than 3000 km of the Chilean coast. Specifically we measured nine physiological traits that are highly related to thermal physiology. Of the nine traits, we selected four that contributed significantly to the observed geographical variation among populations; this variation was then evaluated using mixed linear models and an integrative approach employing machine learning. The results indicate that patterns of physiological variation depend on species vertical microhabitat, which may be subject to chronic or acute environmental variation. The species that inhabit the high- intertidal sites (i.e., exposed to chronic variation) better tolerated thermal stress compared with populations that inhabit the lower intertidal. While those in the low-intertidal only face conditions of acute thermal variation, using to a greater extent the plasticity to face these events. Our main results reflect that (1) species that inhabit the high-intertidal maintain a greater integration between their physiological traits and present lower plasticity than those that inhabit the low-intertidal. (2) Inverse relationship that exists between phenotypic plasticity and phenotypic integration of the physiological traits identified, which could help optimize energy resources. In general, the study of multiple physiological traits provides a more accurate picture of how the thermal traits of organisms vary along temperature gradients especially when exposed to conditions close to tolerance limits.
Collapse
Affiliation(s)
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES-UC), Santiago, Chile
| | - Tania Opitz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Marco A Lardies
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
19
|
Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). INSECTS 2018; 9:insects9040144. [PMID: 30347706 PMCID: PMC6316201 DOI: 10.3390/insects9040144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population’s origin, as the best predictor—winter minimum temperature—explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species.
Collapse
|
20
|
Klockmann M, Wallmeyer L, Fischer K. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies. INSECT SCIENCE 2018; 25:894-904. [PMID: 28294575 DOI: 10.1111/1744-7917.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change.
Collapse
Affiliation(s)
- Michael Klockmann
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Leonard Wallmeyer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Reim E, Blesinger S, Förster L, Fischer K. Successful despite poor flight performance: range expansion is associated with enhanced exploratory behaviour and fast development. J Evol Biol 2018; 31:1165-1179. [PMID: 29845691 DOI: 10.1111/jeb.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
Abstract
Anthropogenic interference forces species to respond to changing environmental conditions. One possible response is dispersal and concomitant range shifts, allowing individuals to escape unfavourable conditions or to track the shifting climate niche. Range expansions depend on both dispersal capacity and the ability to establish populations beyond the former range. We here compare well-established core populations with recently established edge populations in the currently northward expanding butterfly Lycaena tityrus. Edge populations were characterized by shorter development times and smaller size, a higher sensitivity to high temperature and an enhanced exploratory behaviour. The differences between core and edge populations found suggest adaptation to local climates and an enhanced dispersal ability in edge populations. In particular, enhanced exploratory behaviour may be advantageous in all steps of the dispersal process and may have facilitated the current range expansion. This study describes differences associated with a current range expansion, knowledge which might be useful for a better understanding of species responses to environmental change. We further report on variation between males and females in morphology and flight behaviour, with males showing a longer flight endurance and more pronounced exploratory behaviour than females.
Collapse
Affiliation(s)
- Elisabeth Reim
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Simone Blesinger
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Lisa Förster
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
22
|
Lecheta MC, Corrêa RC, Moura MO. Climate Shapes the Geographic Distribution of the Blowfly Sarconesia chlorogaster (Diptera: Calliphoridae): An Environmental Niche Modeling Approach. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1051-1059. [PMID: 28981671 DOI: 10.1093/ee/nvx124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 06/07/2023]
Abstract
For all species, abiotic factors directly affect performance, survival and reproduction, and consequently, their geographic distribution. Species distribution models (SDMs) are important tools to predict the influence of abiotic factors in species distributions and has been more applied over the years. However, these models can be built under different algorithms and using different methods to select environmental predictors, which can lead to different results. Five different algorithms and two sets of environmental predictors were compared to predict the geographic distribution of the blowfly Sarconesia chlorogaster (Wiedemann) (Diptera: Calliphoridae). This species has several occurrence points and a considerable amount of biological data available, which makes S. chlorogaster a good model system to compare environmental predictors. Two sets of environmental predictors (mainly derived from temperature and humidity) were built, and the set based on the influence of abiotic variables on the ecophysiology of S. chlorogaster showed better results than the principal component analysis (PCA) approach using 19 climatic variables. We also employed five modeling algorithms-Envelope Score, Mahalanobis Distance, GARP, Support Vector Machines, and Maxent-and the latter two showed the best performances. The results indicate that temperature is the main factor shaping geographic distribution of S. chlorogaster through its effect on fitness. Furthermore, we showed that this species is mainly distributed in south, southeastern, and some northwestern and southwestern sites of South America. In addition, our results also predicted suitable areas in Ecuador and Colombia, countries without previous records.
Collapse
Affiliation(s)
- Melise Cristine Lecheta
- Departamento de Zoologia, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, s/n, Caixa Postal 19020, Curitiba, PR 81531-980, Brazil
| | - Rodrigo César Corrêa
- F.L.I.E.S Facility, Department of Entomology, Texas A&M University, College Station, 370 Olsen Blvd, TX 77843
| | - Mauricio Osvaldo Moura
- Departamento de Zoologia, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, s/n, Caixa Postal 19020, Curitiba, PR 81531-980, Brazil
| |
Collapse
|
23
|
The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum. Naturwissenschaften 2016; 103:20. [DOI: 10.1007/s00114-016-1344-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/26/2022]
|
24
|
Wallace GT, Kim TL, Neufeld CJ. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod. CONSERVATION PHYSIOLOGY 2014; 2:cou041. [PMID: 27293662 PMCID: PMC4732475 DOI: 10.1093/conphys/cou041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 06/06/2023]
Abstract
Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.
Collapse
Affiliation(s)
- Gemma T. Wallace
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Biology Department, Whitman College, Walla Walla, WA 99362, USA
| | - Tiffany L. Kim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Environmental Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Christopher J. Neufeld
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Quest University Canada, Squamish, BC, Canada VB8 0N8
| |
Collapse
|
25
|
Ashoff M, Schmitt T. Are Different Allozyme Genotypes of the ButterflyPolyommatus coridonAdapted to Resist Cold and Heat Shocks? ANN ZOOL FENN 2014. [DOI: 10.5735/086.051.0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
McGaughran A, Sommer RJ. Natural variation in cold tolerance in the nematode Pristionchus pacificus: the role of genotype and environment. Biol Open 2014; 3:832-8. [PMID: 25150278 PMCID: PMC4163660 DOI: 10.1242/bio.20148888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/21/2014] [Indexed: 12/05/2022] Open
Abstract
Low temperature is a primary determinant of growth and survival among organisms and almost all animals need to withstand temperature fluctuations in their surroundings. We used the hermaphroditic nematode Pristionchus pacificus to examine variation in cold tolerance in samples collected from 18 widespread locations. Samples were challenged by exposure to both direct and gradual low temperature after culture in the laboratory at 20°C. A short-term acclimation treatment was also applied to assess cold tolerance following a pre-exposure cold treatment. Finally, genotype-by-environment (G × E) analysis was performed on a subset of samples cultured at two additional temperatures (15°C and 25°C). P. pacificus displayed a high degree of natural variation in cold tolerance, corresponding to the presence of three distinct phenotypic classes among samples: cold tolerant, non-cold tolerant, cold tolerant plastic. Survival of gradual cold exposure was significantly higher than survival of direct exposure to low temperature and a cold exposure pre-treatment significantly enhanced cold tolerance in some samples. By focusing on a sub-set of well-sampled locations from tropical La Réunion Island, we found evidence of significant effects of genotype and environment on cold tolerance, and we also showed that, within the different Réunion locations sampled, all three phenotypic classes are generally well represented. Taken together, our results show that P. pacificus exhibits a highly plastic tolerance to cold exposure that may be partly driven by differential trait sensitivity in diverse environments.
Collapse
Affiliation(s)
- Angela McGaughran
- Present address: CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Canberra ACT 2601, Australia. Present address: University of Melbourne, Department of Genetics/Bio21 Institute, 30 Flemington Road, Melbourne VIC 3031, Australia.
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany Present address: CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Canberra ACT 2601, Australia. Present address: University of Melbourne, Department of Genetics/Bio21 Institute, 30 Flemington Road, Melbourne VIC 3031, Australia
| |
Collapse
|
27
|
Fitness costs associated with different frequencies and magnitudes of temperature change in the butterfly Bicyclus anynana. J Therm Biol 2014; 41:88-94. [DOI: 10.1016/j.jtherbio.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/17/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
|
28
|
Gilbert L, Aungier J, Tomkins JL. Climate of origin affects tick (Ixodes ricinus) host-seeking behavior in response to temperature: implications for resilience to climate change? Ecol Evol 2014; 4:1186-98. [PMID: 24772293 PMCID: PMC3997332 DOI: 10.1002/ece3.1014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/09/2014] [Accepted: 02/07/2014] [Indexed: 11/10/2022] Open
Abstract
Climate warming is changing distributions and phenologies of many organisms and may also impact on vectors of disease-causing pathogens. In Europe, the tick Ixodes ricinus is the primary vector of medically important pathogens (e.g., Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis). How might climate change affect I. ricinus host-seeking behavior (questing)? We hypothesize that, in order to maximize survival, I. ricinus have adapted their questing in response to temperature in accordance with local climates. We predicted that ticks from cooler climates quest at cooler temperatures than those from warmer climates. This would suggest that I. ricinus can adapt and therefore have the potential to be resilient to climate change. I. ricinus were collected from a cline of climates using a latitudinal gradient (northeast Scotland, North Wales, South England, and central France). Under laboratory conditions, ticks were subjected to temperature increases of 1°C per day, from 6 to 15°C. The proportion of ticks questing was recorded five times per temperature (i.e., per day). The theoretical potential to quest was then estimated for each population over the year for future climate change projections. As predicted, more ticks from cooler climates quested at lower temperatures than did ticks from warmer climates. The proportion of ticks questing was strongly associated with key climate parameters from each location. Our projections, based on temperature alone, suggested that populations could advance their activity season by a month under climate change, which has implications for exposure periods of hosts to tick-borne pathogens. Our findings suggest that I. ricinus have adapted their behavior in response to climate, implying some potential to adapt to climate change. Predictive models of I. ricinus dynamics and disease risk over continental scales would benefit from knowledge of these differences between populations.
Collapse
Affiliation(s)
- Lucy Gilbert
- James Hutton Institute Macaulay Drive, Craigiebuckler, Aberdeen, AB15 8QH, U.K
| | - Jennifer Aungier
- Institute of Biological and Environmental Sciences, Zoology Building, University of Aberdeen Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia Crawley, 6009, Western Australia, Australia
| |
Collapse
|
29
|
Gaitán-Espitia JD, Bacigalupe LD, Opitz T, Lagos NA, Timmermann T, Lardies MA. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J Exp Biol 2014; 217:4379-86. [DOI: 10.1242/jeb.108217] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Environmental temperature has profound implications on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produces physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we have studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus exhibit a lack of differences in the limits of their thermal performance curves and a negative correlation of their optimal temperatures with latitude. Additionally, our findings showed that high latitude populations of P. violaceus exhibited broader thermal tolerances, which is consistent with the Climatic Variability Hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean warming scenarios projected by the IPCC for the end of the twenty-first century.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco A. Lardies
- Universidad Adolfo Ibañez, Chile; Interdisciplinary Center for Aquaculture Research, Chile
| |
Collapse
|
30
|
Gaitán-Espitia JD, Belén Arias M, Lardies MA, Nespolo RF. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum. PLoS One 2013; 8:e70662. [PMID: 23940617 PMCID: PMC3734266 DOI: 10.1371/journal.pone.0070662] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better") and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.
Collapse
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - María Belén Arias
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
| | - Marco A. Lardies
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
- Departamento de Ciencias, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
31
|
Coccia C, Calosi P, Boyero L, Green AJ, Bilton DT. Does ecophysiology determine invasion success? A comparison between the invasive boatman Trichocorixa verticalis verticalis and the native Sigara lateralis (Hemiptera, Corixidae) in South-West Spain. PLoS One 2013; 8:e63105. [PMID: 23690984 PMCID: PMC3656867 DOI: 10.1371/journal.pone.0063105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Trichocorixa verticalis verticalis, a native of North America, is the only alien corixid identified in Europe. First detected in 1997 in southern Portugal, it has spread into south-west Spain including Doñana National Park. Its impact on native taxa in the same area is unclear, but it is the dominant species in several permanent, saline wetlands. METHODOLOGY/PRINCIPAL FINDINGS We investigated whether the ecophysiology of this alien species favours its spread in the Iberian Peninsula and its relative success in saline areas. We compared physiological responses to heating (Critical Thermal maximum), cooling (Critical Thermal minimum) and freezing (Super Cooling Point) in the native Sigara lateralis and introduced T. v. verticalis acclimated to different temperatures and salinities. The larger S. lateralis generally outperformed T. v. verticalis and appeared to possess a broader thermal tolerance range. In both taxa, CTmax was highest in animals exposed to a combination of high conductivities and relatively low acclimation temperatures. However, CTmax was generally higher in T. v. verticalis and lower in S. lateralis when acclimated at higher temperatures. CTmin were lower (greater tolerance to cold) after acclimation to high conductivities in T. v. verticalis, and following acclimation to low conductivities in S. lateralis. Both acclimation temperature and conductivity influenced corixids' freezing tolerance; however, only in T. v. verticalis did SCP decrease after exposure to both high temperature and conductivity. T. v. verticalis showed a higher range of mean responses over all treatments. CONCLUSIONS Whilst the native S. lateralis may have a broader thermal range, the alien species performs particularly well at higher salinities and temperatures and this ability may facilitate its invasion in Mediterranean areas. The greater plasticity of T. v. verticalis may further facilitate its spread in the future, as it may be more able to respond to climate shifts than the native species.
Collapse
Affiliation(s)
- Cristina Coccia
- Department of Wetland Ecology, Estación Biológica de Doñana-EBD, CSIC, Seville, Spain.
| | | | | | | | | |
Collapse
|
32
|
Karl I, Stoks R, Bauerfeind SS, Dierks A, Franke K, Fischer K. No trade-off between growth rate and temperature stress resistance in four insect species. PLoS One 2013; 8:e62434. [PMID: 23638084 PMCID: PMC3640073 DOI: 10.1371/journal.pone.0062434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Although fast growth seems to be generally favored by natural selection, growth rates are rarely maximized in nature. Consequently, fast growth is predicted to carry costs resulting in intrinsic trade-offs. Disentangling such trade-offs is of great ecological importance in order to fully understand the prospects and limitations of growth rate variation. A recent study provided evidence for a hitherto unknown cost of fast growth, namely reduced cold stress resistance. Such relationships could be especially important under climate change. Against this background we here investigate the relationships between individual larval growth rate and adult heat as well as cold stress resistance, using eleven data sets from four different insect species (three butterfly species: Bicyclus anynana, Lycaena tityrus, Pieris napi; one Dipteran species: Protophormia terraenovae). Despite using different species (and partly different populations within species) and an array of experimental manipulations (e.g. different temperatures, photoperiods, feeding regimes, inbreeding levels), we were not able to provide any consistent evidence for trade-offs between fast growth and temperature stress resistance in these four insect species.
Collapse
Affiliation(s)
- Isabell Karl
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium
| | | | - Anneke Dierks
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
| | - Kristin Franke
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
- * E-mail: Klaus.
| |
Collapse
|
33
|
Franke K, Dierks A, Fischer K. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly. BMC Evol Biol 2012; 12:235. [PMID: 23217138 PMCID: PMC3538507 DOI: 10.1186/1471-2148-12-235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/27/2012] [Indexed: 11/27/2022] Open
Abstract
Background Organisms may respond to environmental change by means of genetic adaptation, phenotypic plasticity or both, which may result in genotype-environment interactions (G x E) if genotypes differ in their phenotypic response. We here specifically target the latter source of variation (i.e. G x E) by comparing plastic responses among lines of the tropical butterfly Bicyclus anynana that had been selected for increased cold tolerance and according controls. Our main aim here was to test the hypothesis that directional selection on cold tolerance will interfere with plastic capacities. Results Plastic responses to temperature and feeding treatments were strong, with e.g. higher compared to lower temperatures reducing cold tolerance, longevity, pupal mass, and development time. We report a number of statistically significant genotype-environment interactions (i.e. interactions between selection regime and environmental variables), but most of these were not consistent across treatment groups. We found some evidence though for larger plastic responses to different rearing temperatures in the selection compared to the control lines, while plastic responses to different adult temperatures and feeding treatments were overall very similar across selection regimes. Conclusion Our results indicate that plastic capacities are not always constrained by directional selection (on cold tolerance) and therefore genetic changes in trait means, but may operate independently.
Collapse
Affiliation(s)
- Kristin Franke
- Department of Animal Ecology, Zoological Institute and Museum, University of Greifswald, J,-S, Bachstraße 11/12, D-17489, Greifswald, Germany
| | | | | |
Collapse
|
34
|
Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci U S A 2012. [PMID: 23184963 DOI: 10.1073/pnas.1212788109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na(+) and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not understood for any insect. Using a combination of gravimetric methods and atomic absorption spectroscopy, we demonstrate that recovery from chill-coma involves a reestablishment of hemolymph ion content and volume driven by removal of Na(+) and water from the gut. Recovery is associated with a transient elevation of metabolic rate, the time span of which increases with increasing cold exposure duration and closely matches the duration of complete osmotic recovery. Thus, complete recovery from chill-coma is metabolically costly and encompasses a longer period than is required for the recovery of muscle potentials and movement. These findings provide evidence that physiological mechanisms of hemolymph ion content and volume regulation, such as ion-motive ATPase activity, are instrumental in chill-coma recovery and may underlie natural variation in insect cold tolerance.
Collapse
|
35
|
Pelini SL, Diamond SE, Maclean H, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR. Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecol Evol 2012; 2:3009-15. [PMID: 23301168 PMCID: PMC3538996 DOI: 10.1002/ece3.407] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/06/2022] Open
Abstract
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co-occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.
Collapse
Affiliation(s)
- Shannon L Pelini
- Harvard Forest, Harvard University Petersham, Massachusetts, 01366 ; Department of Biological Sciences, Bowling Green State University Bowling Green, Ohio, 43403
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Belén Arias M, Josefina Poupin M, Lardies MA. Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Hazell SP, Bale JS. Low temperature thresholds: are chill coma and CT(min) synonymous? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1085-1089. [PMID: 21510951 DOI: 10.1016/j.jinsphys.2011.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
The effects of sub-lethal low temperatures on insect physiology and behaviour are important determinants of insect activity including foraging, mating, and predation avoidance. A substantial body of research seeks to relate the temperatures at which these activities are compromised to both, climatic conditions at species range limits and underlying physiological processes. The interpretation of this research is complicated by confusion in the names and definition of the responses measured and their associated temperature thresholds. The development of the nomenclature and explanations of the underlying physiological causes are reviewed in order to elucidate the correct sequence of responses/thresholds and associated terminologies. The results of this analysis indicate that: (1) chill coma is a clearly defined, reversible physiological state characterised by the absence of electrophysiological activity. (2) The onset of chill coma begins when low temperatures begin to impair insect behaviour and physiology, and is punctuated by a series of behavioural and/or physiological thresholds or responses. These include the temperatures at which (i) spontaneous movements cease, (ii) coordination is lost to the degree that locomotion becomes impossible, and (iii) chill coma is entered. (3) Confusion has arisen because (a) the term 'onset of chill coma' has been used to describe all three of these responses/thresholds and (b) the term CT(min) has entered the insect literature from the vertebrate literature. These issues are discussed and a potential solution is proposed to provide clarity and consistency in the future literature.
Collapse
Affiliation(s)
- Steaphan P Hazell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
39
|
ZHAN JIASUI, McDONALD BRUCEA. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol Ecol 2011; 20:1689-701. [DOI: 10.1111/j.1365-294x.2011.05023.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 2011; 166:23-33. [PMID: 21286923 DOI: 10.1007/s00442-011-1917-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/10/2011] [Indexed: 01/05/2023]
|
41
|
Macmillan HA, Sinclair BJ. Mechanisms underlying insect chill-coma. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:12-20. [PMID: 20969872 DOI: 10.1016/j.jinsphys.2010.10.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
At their critical thermal minimum (CT(min)) insects enter chill-coma, a reversible state where neuromuscular transmission and movement cease. The physiological mechanisms responsible for the insect CT(min) remain poorly understood despite the regular use of chill-coma onset and recovery as a means to assess evolved or acquired variation in low temperature tolerance. In this review, we summarize the use of chill-coma as a metric of thermal tolerance to date, and synthesise current knowledge on the nature and plasticity of lower thermal limits to present probable physiological mechanisms of cold-induced failure. Chill-coma is likely to be driven by an inability to maintain ionic homeostasis through the effects of temperature on ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane, leading to a loss of nerve and muscle excitability.
Collapse
Affiliation(s)
- Heath A Macmillan
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | | |
Collapse
|
42
|
Fischer K, Dierks A, Franke K, Geister TL, Liszka M, Winter S, Pflicke C. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 2010; 5:e15284. [PMID: 21187968 PMCID: PMC3004918 DOI: 10.1371/journal.pone.0015284] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background The ability to withstand thermal stress is considered to be of crucial importance for individual fitness and species' survival. Thus, organisms need to employ effective mechanisms to ensure survival under stressful thermal conditions, among which phenotypic plasticity is considered a particularly quick and effective one. Methodology/Principal Findings In a series of experiments we here investigate phenotypic adjustment in temperature stress resistance following environmental manipulations in the butterfly Bicyclus anynana. Cooler compared to warmer acclimation temperatures generally increased cold but decreased heat stress resistance and vice versa. In contrast, short-time hardening responses revealed more complex patterns, with, e.g., cold stress resistance being highest at intermediate hardening temperatures. Adult food stress had a negative effect on heat but not on cold stress resistance. Additionally, larval feeding treatment showed interactive effects with adult feeding for heat but not for cold stress resistance, indicating that nitrogenous larval resources may set an upper limit to performance under heat stress. In contrast to expectations, cold resistance slightly increased during the first eight days of adult life. Light cycle had marginal effects on temperature stress resistance only, with cold resistance tending to be higher during daytime and thus active periods. Conclusions/Significance Our results highlight that temperature-induced plasticity provides an effective tool to quickly and strongly modulate temperature stress resistance, and that such responses are readily reversible. However, resistance traits are not only affected by ambient temperature, but also by, e.g., food availability and age, making their measurement challenging. The latter effects are largely underexplored and deserve more future attention. Owing to their magnitude, plastic responses in thermal tolerance should be incorporated into models trying to forecast effects of global change on extant biodiversity.
Collapse
Affiliation(s)
- Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:822-30. [PMID: 20197070 DOI: 10.1016/j.jinsphys.2010.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/13/2010] [Accepted: 02/15/2010] [Indexed: 05/25/2023]
Abstract
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 degrees C vs. 20-30% at 25 and 29 degrees C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.
Collapse
Affiliation(s)
- M W Lachenicht
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | |
Collapse
|
44
|
Lalouette L, Vernon P, Amat H, Renault D. Ageing and thermal performance in the sub-Antarctic wingless fly Anatalanta aptera (Diptera: Sphaeroceridae): older is better. Biol Lett 2009; 6:346-9. [PMID: 19934216 DOI: 10.1098/rsbl.2009.0873] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senescence is a progressive biological process expressed in behavioural, morphological, physiological, biochemical and cellular age-related changes. Age-associated alterations in activity are regularly found in insects when examining whole-organism senescence over the adult lifespan. In addition, overall stress resistance usually decreases with senescence. In the present study, we measured the critical thermal minimum (CT(min)) and the subsequent recovery period over the lifespan of the sub-Antarctic wingless fly, Anatalanta aptera. Experiments were conducted on males and females in seven age groups: newly emerged, 1.5-, 5-, 7-, 13-, 15- and 18-month-old adults. Surprisingly, CT(min) decreased significantly with ageing in A. aptera, from -3.8 +/- 0.5 degrees C just after the emergence to -5.6 +/- 0.7 degrees C in the 18-month-old flies. The subsequent recovery period remained similar between the seven groups tested. Our unexpected results contradict the previous data collected in other insects. We have demonstrated for the first time that ageing may improve rather than impair locomotor activity during unfavourable thermal conditions. It raises questions and challenges the literature dealing with ageing. These fascinating results also question the underpinning mechanisms involved in the improvement of the thermal performance with ageing in A. aptera.
Collapse
Affiliation(s)
- L Lalouette
- Université de Rennes 1, UMR CNRS 6553, 263 avenue du Gal Leclerc, 35042 Rennes, France
| | | | | | | |
Collapse
|
45
|
Pétillon J, Montaigne W, Renault D. Hypoxic coma as a strategy to survive inundation in a salt-marsh inhabiting spider. Biol Lett 2009; 5:442-5. [PMID: 19411268 PMCID: PMC2781913 DOI: 10.1098/rsbl.2009.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/27/2009] [Indexed: 02/07/2023] Open
Abstract
Spiders constitute a major arthropod group in regularly inundated habitats. Some species survive a flooding period under water. We compared survival during both submersion and a recovery period after submersion, in three stenotopic lycosids: two salt-marsh species Arctosa fulvolineata and Pardosa purbeckensis, and a forest spider Pardosa lugubris. Both activity and survival rates were determined under controlled laboratory conditions by individually surveying 120 females kept submerged in sea water. We found significant differences between the three species, with the two salt-marsh spiders exhibiting higher survival abilities. To our knowledge, this study reports for the first time the existence of a hypoxic coma caused by submersion, which is most pronounced in A. fulvolineata, the salt-marsh spider known to overcome tidal inundation under water. Its ability to fall into that coma can therefore be considered a physiological adaptation to its regularly inundated habitat.
Collapse
|
46
|
Karl I, Fischer K. Altitudinal and environmental variation in lifespan in the Copper butterflyLycaena tityrus. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01607.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Steigenga MJ, Fischer K. Fitness consequences of variation in developmental temperature in a butterfly. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Boyles JG, Aubrey DP, Hickman CR, Murray KL, Timpone JC, Ops CH. Variation in physiological response of red imported fire ants (Solenopsis invicta) to small-scale thermal heterogeneity. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2008.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Karl I, Schmitt T, Fischer K. Phosphoglucose isomerase genotype affects life-history traits and cold stress resistance in a Copper butterfly. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01438.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Ragland GJ, Kingsolver JG. EVOLUTION OF THERMOTOLERANCE IN SEASONAL ENVIRONMENTS: THE EFFECTS OF ANNUAL TEMPERATURE VARIATION AND LIFE-HISTORY TIMING IN WYEOMYIA SMITHII. Evolution 2008; 62:1345-57. [DOI: 10.1111/j.1558-5646.2008.00367.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|