1
|
Atee F, Palanisamy SR, Marimuthu M, Thulasy S, Rajasekaran R, Natesan S. Biochemical basis of resistance toward maize insect pests of different feeding guild and their inter-guild interactions. PLANTA 2025; 261:129. [PMID: 40332612 DOI: 10.1007/s00425-025-04697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION Biochemical compounds and signaling molecules act as direct and indirect defenses against maize pests of different guilds and crucial for natural enemies' interactions. Maize (Zea mays L.) is an important multipurpose cereal crop that contributes to global feed and food demands and is persistently under the attack of several pests of different feeding guilds. However, concerns over the drawbacks of extensive pesticide use in natural ecosystems, including health hazards and the need for cost-effective pest control strategies, are growing. Wide opportunities are available to harness native plant resistance and natural enemies for insect pest management. In this context, it is critical to understand the biochemical basis of maize genotype resistance to insects from various feeding guilds as well as their inter-guild interactions. The critical role of various herbivore-induced plant volatiles (HIPVs) in mediating tritrophic interactions between maize plants, insect pests, and their natural enemies should be considered when developing strategies for pest management. This review synthesizes the important maize defense systems against different feeding guild pests, shedding light on recent progress and insights into the long-recognized maize defense compounds. In addition to the tritrophic interactions facilitated by HIPVs in the maize ecosystem, there has also been a focus on examining the impacts of inter-guild interactions resulting from damage caused by pests from varying feeding guilds on indirect defense systems mediated by maize plants.
Collapse
Affiliation(s)
- Feby Atee
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Srinivasan Thulasy
- Department of Millets, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ravikesavan Rajasekaran
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Senthil Natesan
- Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Bhardwaj P, Raigond B, Raigond P, Verma A, Verma G, Kochhar T, Patroti P, Das IK, Satyavathi CT. Antiviral activity of ribosome inactivating proteins for management of plant viral infection. Virology 2025; 603:110403. [PMID: 39894605 DOI: 10.1016/j.virol.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
In nature, plants exhibit various defense mechanisms to protect themselves from viral infection. Reported to harbor virus-inhibiting compounds like Ribosome inactivating proteins (RIPs). It's a matter of how we explore, identify, and utilize RIPs in managing a given stress. RIPs have been found to contain antiviral, anticancer, and neurotoxic effects and are used in various biomedical and agricultural fields. The expression of RIPs could be enhanced in plants to improve their defense against biotic and abiotic stresses. Identification of new RIPs and genetic sequencing led to the development of new phylogenetic theories. Studies on the interaction between RIPs and cells have increased the knowledge regarding the handling of exogenous proteins by cells. The review provides a brief historical preview, classification, mode of action, and broader applications with a special focus on managing plant viral diseases and concerns to mankind.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Baswaraj Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India.
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, 413255, Maharashtra, India
| | - Ambika Verma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Gaurav Verma
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Tarvinder Kochhar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Parashuram Patroti
- Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India
| | - I K Das
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| | - C Tara Satyavathi
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| |
Collapse
|
3
|
Zhang X, Li P, Tang Y, Mu YP, Liu J, Wang MY, Wang W, Mao YB. The proteomic landscape of fall armyworm oral secretion reveals its role in plant adaptation. PEST MANAGEMENT SCIENCE 2024; 80:4175-4185. [PMID: 38587094 DOI: 10.1002/ps.8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Pai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Ahmad I, Jimenez-Gasco MDM, Barbercheck ME. Water Stress and Black Cutworm Feeding Modulate Plant Response in Maize Colonized by Metarhizium robertsii. Pathogens 2024; 13:544. [PMID: 39057771 PMCID: PMC11280422 DOI: 10.3390/pathogens13070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Plants face many environmental challenges and have evolved different strategies to defend against stress. One strategy is the establishment of mutualistic associations with endophytic microorganisms which contribute to plant defense and promote plant growth. The fungal entomopathogen Metarhizium robertsii is also an endophyte that can provide plant-protective and growth-promoting benefits to the host plant. We conducted a greenhouse experiment in which we imposed stress from deficit and excess soil moisture and feeding by larval black cutworm (BCW), Agrotis ipsilon, to maize plants that were either inoculated or not inoculated with M. robertsii (Mr). We evaluated plant growth and defense indicators to determine the effects of the interaction between Mr, maize, BCW feeding, and water stress. There was a significant effect of water treatment, but no effect of Mr treatment, on plant chlorophyl, height, and dry biomass. There was no effect of water or Mr treatment on damage caused by BCW feeding. There was a significant effect of water treatment, but not Mr treatment, on the expression of bx7 and rip2 genes and on foliar content of abscisic acid (ABA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and gibberellin 19 (GA19), whereas GA53 was modulated by Mr treatment. Foliar content of GA19 and cis-Zeatin (cZ) was modulated by BCW feeding. In a redundancy analysis, plant phenology, plant nutrient content, and foliar DIMBOA and ABA content were most closely associated with water treatments. This study contributes toward understanding the sophisticated stress response signaling and endophytic mutualisms in crops.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maria del Mar Jimenez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Mary E. Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Iglesias R, Citores L, Gay CC, Ferreras JM. Antifungal Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2024; 16:192. [PMID: 38668617 PMCID: PMC11054410 DOI: 10.3390/toxins16040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Claudia C. Gay
- Laboratory of Protein Research, Institute of Basic and Applied Chemistry of Northeast Argentina (UNNE-CONICET), Faculty of Exact and Natural Sciences and Surveying, Av. Libertad 5470, Corrientes 3400, Argentina;
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| |
Collapse
|
6
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
7
|
Liu J, Wen D, Song X, Su P, Lou J, Yao D, Zhang C. Evolution and natural selection of ribosome-inactivating proteins in bacteria, fungi, and plants. Int J Biol Macromol 2023; 248:125929. [PMID: 37481176 DOI: 10.1016/j.ijbiomac.2023.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are found in bacteria, fungi, and plants, with a wide range of biological resistances such as anti-fungal, anti-viral, anti-insect, and anti-tumor. They can be roughly divided into proactive defense bacterial or fungal types and passive defense plant types. We identified 1592 RIP genes in bacteria, fungi, and plants. Approximately 88 % of the 764 bacterial RIPs were Shiga or Shiga-like toxins which were exotoxins and could rapidly enter cells to possess strong biotoxicity, and about 98 % of fungal RIPs were predicted as secreted proteins. RIPs were not detected in non-seed plants such as algae, bryophytes, and ferns. However, we found RIPs in some flowering and non-flowering seed plants. The existence of plant RIPs might be related to the structure of seeds or fruits, which might be associated with whether seeds are easy to survive and spread. The evolutionary characteristics of RIPs were different between dicotyledons and monocotyledons. In addition, we also found that RIP2 genes might emerge very early and be plant-specific. Some plant RIP1 genes might evolve from RIP2 genes. This study provides new insights into the evolution of RIPs.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China; ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Jianfeng Lou
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Danqing Yao
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| |
Collapse
|
8
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
9
|
Schlaak L, Weise C, Kuropka B, Weng A. Sapovaccarin-S1 and -S2, Two Type I RIP Isoforms from the Seeds of Saponaria vaccaria L. Toxins (Basel) 2022; 14:toxins14070449. [PMID: 35878187 PMCID: PMC9324600 DOI: 10.3390/toxins14070449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Type I ribosome-inactivating proteins (RIPs) are plant toxins that inhibit protein synthesis by exerting rRNA N-glycosylase activity (EC 3.2.2.22). Due to the lack of a cell-binding domain, type I RIPs are not target cell-specific. However once linked to antibodies, so called immunotoxins, they are promising candidates for targeted anti-cancer therapy. In this study, sapovaccarin-S1 and -S2, two newly identified type I RIP isoforms differing in only one amino acid, were isolated from the seeds of Saponaria vaccaria L. Sapovaccarin-S1 and -S2 were purified using ammonium sulfate precipitation and subsequent cation exchange chromatography. The determined molecular masses of 28,763 Da and 28,793 Da are in the mass range typical for type I RIPs and the identified amino acid sequences are homologous to known type I RIPs such as dianthin 30 and saporin-S6 (79% sequence identity each). Sapovaccarin-S1 and -S2 showed adenine-releasing activity and induced cell death in Huh-7 cells. In comparison to other type I RIPs, sapovaccarin-S1 and -S2 exhibited a higher thermostability as shown by nano-differential scanning calorimetry. These results suggest that sapovaccarin-S1 and -S2 would be optimal candidates for targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Louisa Schlaak
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-838-51265
| |
Collapse
|
10
|
Mishra V, Mishra R, Shamra RS. Ribosome inactivating proteins - An unfathomed biomolecule for developing multi-stress tolerant transgenic plants. Int J Biol Macromol 2022; 210:107-122. [PMID: 35525494 DOI: 10.1016/j.ijbiomac.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022]
Abstract
Transgenic crops would serve as a tool to overcome the forthcoming crisis in food security and environmental safety posed by degrading land and changing global climate. Commercial transgenic crops developed so far focus on single stress; however, sustaining crop yield to ensure food security requires transgenics tolerant to multiple environmental stresses. Here we argue and demonstrate the untapped potential of ribosome inactivating proteins (RIPs), translation inhibitors, as potential transgenes in developing transgenics to combat multiple stresses in the environment. Plant RIPs target the fundamental processes of the cell with very high specificity to the infecting pests. While controlling pathogens, RIPs also cause ectopic expression of pathogenesis-related proteins and trigger systemic acquired resistance. On the other hand, during abiotic stress, RIPs show antioxidant activity and trigger both enzyme-dependent and enzyme-independent metabolic pathways, alleviating abiotic stress such as drought, salinity, temperature, etc. RIPs express in response to specific environmental signals; therefore, their expression obviates additional physiological load on the transgenic plants instead of the constitutive expression. Based on evidence from its biological significance, ecological roles, laboratory- and controlled-environment success of its transgenics, and ethical merits, we unravel the potential of RIPs in developing transgenic plants showing co-tolerance to multiple environmental stresses.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India.
| | - Ruchi Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Jesus and Mary College, University of Delhi, Chanakyapuri, Delhi 110021, India.
| | - Radhey Shyam Shamra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Borges ACP, Piassão JFG, Albani SM, Albertoni EF, Martins MC, Cansian RL, Valduga AT, Hepp LU, Mielniczki-Pereira AA. Multiple metals and agricultural use affects oxidative stress biomarkers in freshwater Aegla crabs. BRAZ J BIOL 2021; 82:e230147. [PMID: 33729329 DOI: 10.1590/1519-6984.230147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Metals and agrochemicals are among the main aquatic contaminants, being able to trigger oxidative stress in exposed organisms. The objective of this work was to evaluate the correlation between the level of oxidative stress biomarkers in Aegla crabs (Crustacea, Anomura) with (i) the set of metals present in the streams sediment and (ii) with land uses of three hydrographic basins. The study was carried out in streams (≤ 2nd order) of hydrographic basins in southern Brazil (Basins of Rio Suzana, Rio Ligeirinho-Leãozinho and Rio Dourado). In these streams were quantified the land uses and Cu, Cr, Cd, Fe, Mn and Zn concentrations in the sediment. The enzymes Catalase (CAT) and Glutathione Reductase (GR), as well as the level of membrane lipid peroxidation (TBARS), were analyzed in adult females. The PCA analysis showed that the distribution of metals was different between the basins. Cd, Cr and Fe were correlated positively with CAT and negatively with TBARS and GR. The Dourado basin had the lowest concentrations of these three metals and the highest levels of TBARS. However, in Dourado basin there is predominance of agriculture land use, and TBARS was positively correlated with agricultural land use. Besides in Dourado basin, GR activity was higher than in the others basins, indicating a compensatory response in relation to CAT inhibition. The basins of Suzana and Ligeirinho-Leãozinho rivers had lower TBARS values, which may be due to the induction of CAT in response to metals accumulated in sediment. In summary, this work indicates that in the basins with a higher concentration of toxic metals there is an adaptive response of CAT induction, which reduces TBARS in Aegla. On the other hand, in the basin with lower metallic contamination, TBARS occurrence was primarily influenced by agricultural land use.
Collapse
Affiliation(s)
- A C P Borges
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - J F G Piassão
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - S M Albani
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - E F Albertoni
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, RS, Brasil
| | - M C Martins
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - R L Cansian
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - A T Valduga
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - L U Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| | - A A Mielniczki-Pereira
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI, Departamento de Ciências Biológicas, Erechim, RS, Brasil
| |
Collapse
|
12
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
13
|
Zhu F, Zhu P, Xu F, Che Y, Ma Y, Ji Z. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2020; 21:1212-1226. [PMID: 32713165 PMCID: PMC7411664 DOI: 10.1111/mpp.12974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 05/21/2023]
Abstract
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Fei Xu
- Applied Biotechnology CenterWuhan Institute of BioengineeringWuhanChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yi‐Ming Ma
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
14
|
De Zaeytijd J, Chen P, Scheys F, Subramanyam K, Dubiel M, De Schutter K, Smagghe G, Van Damme EJ. Involvement of OsRIP1, a ribosome-inactivating protein from rice, in plant defense against Nilaparvata lugens. PHYTOCHEMISTRY 2020; 170:112190. [PMID: 31731237 DOI: 10.1016/j.phytochem.2019.112190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Rice is the most important staple food in the world, but rice production is challenged by several biotic stress factors like viruses, bacteria, fungi and pest insects. One of the most notorious pest insects is Nilaparvata lugens, commonly known as the brown planthopper, which feeds on rice phloem sap and can cause serious damage to rice fields. In order to protect themselves, plants express a wide array of defense proteins such as ribosome-inactivating proteins (RIPs). This study shows that the expression of 'OsRIP1' is highly induced in rice plants infested with N. lugens, with transcript levels more than 100-fold upregulated in infested plants compared to non-infested plants. Furthermore, recombinant OsRIP1 was toxic for brown planthoppers when administered through liquid artificial diet. OsRIP1 inactivated insect ribosomes in vitro, suggesting that its toxicity relates to the enzymatic activity of OsRIP1. Over-expression of OsRIP1 in transgenic rice plants did not affect the performance of insects reared on these plants, most likely due to insufficient concentrations of OsRIP1 in the phloem. The data obtained in this research indicate that OsRIP1 can play a role in plant defense against herbivorous insects.
Collapse
Affiliation(s)
- Jeroen De Zaeytijd
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pengyu Chen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kondeti Subramanyam
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Malgorzata Dubiel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Els Jm Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
15
|
Mateos M, Silva NO, Ramirez P, Higareda-Alvear VM, Aramayo R, Erickson JW. Effect of heritable symbionts on maternally-derived embryo transcripts. Sci Rep 2019; 9:8847. [PMID: 31222094 PMCID: PMC6586653 DOI: 10.1038/s41598-019-45371-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
Maternally-transmitted endosymbiotic bacteria are ubiquitous in insects. Among other influential phenotypes, many heritable symbionts of arthropods are notorious for manipulating host reproduction through one of four reproductive syndromes, which are generally exerted during early developmental stages of the host: male feminization; parthenogenesis induction; male killing; and cytoplasmic incompatibility (CI). Major advances have been achieved in understanding mechanisms and identifying symbiont factors involved in reproductive manipulation, particularly male killing and cytoplasmic incompatibility. Nonetheless, whether cytoplasmically-transmitted bacteria influence the maternally-loaded components of the egg or early embryo has not been examined. In the present study, we investigated whether heritable endosymbionts that cause different reproductive phenotypes in Drosophila melanogaster influence the mRNA transcriptome of early embryos. We used mRNA-seq to evaluate differential expression in Drosophila embryos lacking endosymbionts (control) to those harbouring the male-killing Spiroplasma poulsonii strain MSRO-Br, the CI-inducing Wolbachia strain wMel, or Spiroplasma poulsonii strain Hyd1; a strain that lacks a reproductive phenotype and is naturally associated with Drosophila hydei. We found no consistent evidence of influence of symbiont on mRNA composition of early embryos, suggesting that the reproductive manipulation mechanism does not involve alteration of maternally-loaded transcripts. In addition, we capitalized on several available mRNA-seq datasets derived from Spiroplasma-infected Drosophila melanogaster embryos, to search for signals of depurination of rRNA, consistent with the activity of Ribosome Inactivating Proteins (RIPs) encoded by Spiroplasma poulsonii. We found small but statistically significant signals of depurination of Drosophila rRNA in the Spiroplasma treatments (both strains), but not in the symbiont-free control or Wolbachia treatment, consistent with the action of RIPs. The depurination signal was slightly stronger in the treatment with the male-killing strain. This result supports a recent report that RIP-induced damage contributes to male embryo death.
Collapse
Affiliation(s)
- Mariana Mateos
- Department Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA.
| | - Nadisha O Silva
- Department Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
- Department Biology, Texas A&M University, College Station, TX, USA
| | - Paulino Ramirez
- Department Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| | - Victor M Higareda-Alvear
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rodolfo Aramayo
- Department Biology, Texas A&M University, College Station, TX, USA
| | - James W Erickson
- Department Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
da Silva Ferreira R, Napoleão TH, Silva-Lucca RA, Silva MCC, Paiva PMG, Oliva MLV. The effects of Enterolobium contortisiliquum serine protease inhibitor on the survival of the termite Nasutitermes corniger, and its use as affinity adsorbent to purify termite proteases. PEST MANAGEMENT SCIENCE 2019; 75:632-638. [PMID: 30051588 DOI: 10.1002/ps.5154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The immobilization of Enterolobium contortisiliquum protease inhibitor, EcTI-Sepharose, as an affinity chromatography matrix is a powerful biotechnological tool to purify targets from Nasutitermes corniger in the investigation of insecticidal properties of natural compounds.
Collapse
|
17
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
18
|
Borges ACP, Piassão JFG, Paula MO, Sepp S, Bez CFS, Hepp LU, Valduga AT, Pereira AAM, Cansian RL. Characterization of oxidative stress biomarkers in a freshwater anomuran crab. BRAZ J BIOL 2017; 78:61-67. [PMID: 28614422 DOI: 10.1590/1519-6984.04816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022] Open
Abstract
In general, environmental responses at level of populations or communities are preceded by alterations at lower biological levels which can be efficiently detected by the analysis of biomarkers. We analyzed the oxidative biomarkers TBARS and Catalase in Aegla singularis, a freshwater crustacean highly sensitive to environmental changes. The objective was to address if are differences in these biomarkers related to the gender as well if they are influenced by seasonal or water physicochemical variables. The results showed differences in biomarkers profile related to the gender. In female crabs were not sensitive to seasonal variations throughout the study period. However, in males the biomarkers evaluated were higher in the winter as compared to remaining seasons and showed tendency of negative correlation with water temperature and pH. This study highlights that gender, seasonal variations and physicochemical variables can influence oxidative stress biomarkers in A. singularis. Female crabs probably are better suited as a model for biomarker application in environmental studies, because their insensibility to seasonal variations can facilitate the observations of responses related specifically to environmental disturbances.
Collapse
Affiliation(s)
- A C P Borges
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - J F G Piassão
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - M O Paula
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - S Sepp
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - C F S Bez
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - L U Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - A T Valduga
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | | | - R L Cansian
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| |
Collapse
|
19
|
Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016; 21:molecules21121627. [PMID: 27898041 PMCID: PMC6273060 DOI: 10.3390/molecules21121627] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
20
|
Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, Sha O, Shaw PC, Chan WY. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 2015; 99:9847-63. [PMID: 26394859 DOI: 10.1007/s00253-015-6941-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK, Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Pang Chui Shaw
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
21
|
Olombrada M, Martínez-del-Pozo Á, Medina P, Budia F, Gavilanes JG, García-Ortega L. Fungal ribotoxins: Natural protein-based weapons against insects. Toxicon 2014; 83:69-74. [DOI: 10.1016/j.toxicon.2014.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
22
|
Chuang WP, Herde M, Ray S, Castano-Duque L, Howe GA, Luthe DS. Caterpillar attack triggers accumulation of the toxic maize protein RIP2. THE NEW PHYTOLOGIST 2014; 201:928-939. [PMID: 24304477 DOI: 10.1111/nph.12581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/26/2013] [Indexed: 05/13/2023]
Abstract
Some plant-derived anti-herbivore defensive proteins are induced by insect feeding, resist digestion in the caterpillar gut and are eliminated in the frass. We have identified several maize proteins in fall armyworm (Spodoptera frugiperda) frass that potentially play a role in herbivore defense. Furthermore, the toxicity of one of these proteins, ribosome-inactivating protein 2 (RIP2), was assessed and factors regulating its accumulation were determined. To understand factors regulating RIP2 protein accumulation, maize (Zea mays) plants were infested with fall armyworm larvae or treated with exogenous hormones. The toxicity of recombinant RIP2 protein against fall armyworm was tested. The results show that RIP2 protein is synthesized as an inactive proenzyme that can be processed in the caterpillar gut. Also, caterpillar feeding, but not mechanical wounding, induced foliar RIP2 protein accumulation. Quantitative real-time PCR indicated that RIP2 transcripts were rapidly induced (1 h) and immunoblot analysis indicated that RIP2 protein accumulated soon after attack and was present in the leaf for up to 4 d after caterpillar removal. Several phytohormones, including methyl jasmonate, ethylene, and abscisic acid, regulated RIP2 protein expression. Furthermore, bioassays of purified recombinant RIP2 protein against fall armyworm significantly retarded caterpillar growth. We conclude that the toxic protein RIP2 is induced by caterpillar feeding and is one of a potential suite of proteins that defend maize against chewing herbivores.
Collapse
Affiliation(s)
- Wen-Po Chuang
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marco Herde
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Swayamjit Ray
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lina Castano-Duque
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gregg A Howe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Dawn S Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Loss-Morais G, Turchetto-Zolet AC, Etges M, Cagliari A, Körbes AP, Maraschin FDS, Margis-Pinheiro M, Margis R. Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development. Genet Mol Biol 2013; 36:74-86. [PMID: 23569411 PMCID: PMC3615529 DOI: 10.1590/s1415-47572013005000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/21/2012] [Indexed: 01/26/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes that inhibit protein synthesis after depurination of a specific adenine in rRNA. The RIP family members are classified as type I RIPs that contain an RNA-N-glycosidase domain and type II RIPs that contain a lectin domain (B chain) in addition to the glycosidase domain (A chain). In this work, we identified 30 new plant RIPs and characterized 18 Ricinus communis RIPs. Phylogenetic and functional divergence analyses indicated that the emergence of type I and II RIPs probably occurred before the monocot/eudicot split. We also report the expression profiles of 18 castor bean genes, including those for ricin and agglutinin, in five seed stages as assessed by quantitative PCR. Ricin and agglutinin were the most expressed RIPs in developing seeds although eight other RIPs were also expressed. All of the RIP genes were most highly expressed in the stages in which the endosperm was fully expanded. Although the reason for the large expansion of RIP genes in castor beans remains to be established, the differential expression patterns of the type I and type II members reinforce the existence of biological functions other than defense against predators and herbivory.
Collapse
Affiliation(s)
- Guilherme Loss-Morais
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gifoni JM, Oliveira JTA, Oliveira HD, Batista AB, Pereira ML, Gomes AS, Oliveira HP, Grangeiro TB, Vasconcelos IM. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers 2012. [DOI: 10.1002/bip.22068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|