1
|
Shi X, Guo Q, Li X, Li T, Li T, Li T, Zhang P, Li Z, Liu H. Metabolic responses to starvation in the soft-shelled turtle (Pelodiscus sinensis) revealed by integrated metabolome and transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101486. [PMID: 40117751 DOI: 10.1016/j.cbd.2025.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Animals frequently suffer from starvation throughout their life cycle; however, the mobilization and utilization of energy sources can differ. To clarify the fundamental mechanisms underlying energy mobilization and metabolic adjustment in response to food deprivation in the soft-shelled turtle (Pelodiscus sinensis), eighty turtles (initial body weight, 51.81 ± 0.29 g) were subjected to starvation periods of 1 d, 4 d, 8 d, 16 d, and 32 d (referred to as S1, S4, S8, S16, and S32). The results showed that the greatest absolute loss in body composition occurred in moisture, followed by protein and lipid, respectively. Hepatic glycogen contents significantly decreased after 4 days of starvation and then remained stable. Notably, plasma glucose, cholesterol, and free fatty acid contents exhibited significant decreases from S8, while plasma triacylglycerol levels dramatically declined from S4. Gluconeogenesis-related genes (pepck, g6pase) were upregulated in the starving turtles to maintain glucose homeostasis. Comparative analyses between S32 and S1 groups identified a total of 6051 differential genes and 150 differential metabolites, highlighting three overlapping metabolic pathways: glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and taurine and hypotaurine metabolism. Integrative analyses further revealed increased levels of specific metabolites, including phosphatidylcholine, phosphatidylethanolamine, glycerophosphocholine, L-2-aminoethyl seryl phosphate, l-serine-phosphatidylethanolamine, adenyiosuccinate, 5-phosphoribosylamine, and taurine. These metabolites are vital for amino acid-driven gluconeogenesis, cell membrane stability, and mitigating cellular damage resulting from food deprivation. In conclusion, glucose homeostasis was maintained by enhancing gluconeogenesis in P. sinensis during extended periods of starvation, and the activation of lipid and amino acid metabolism represents an adaptive metabolic strategy employed by P. sinensis to cope with starvation conditions.
Collapse
Affiliation(s)
- Xueying Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qingqing Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiangce Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tongqing Li
- Hebei Fisheries Technology Extension Center, Shijiazhuang 050051, China
| | - Tao Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tianyu Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peiyu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Zhi Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Haiyan Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China.
| |
Collapse
|
2
|
Zhang W, Jiang Z, Ding M, Wang X, Huang A, Qiu L, Qi S. Novel neonicotinoid insecticide cycloxaprid exhibits sublethal toxicity to honeybee (Apis mellifera L.) workers by disturbing olfactory sensitivity and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136923. [PMID: 39706026 DOI: 10.1016/j.jhazmat.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The risk of neonicotinoid insecticides to honeybees is a global issue. Cycloxaprid (CYC) is a novel neonicotinoid insecticide with outstanding activities, good safety profiles, and no cross-resistance with other neonicotinoids. Information on the environmental risks of CYC is limited, especially its effects on honeybees. Herein, the acute and chronic toxicities of CYC on honeybees were evaluated, and the underlying mechanisms were explored via transcriptomics and molecular docking. The results indicate that CYC had high toxicity to honeybees, with a 48-h oral median lethal dose of 32.8 ng/bee. Over a 10-days of chronic exposure to CYC at sublethal concentration 30 μg/L, the honeybees showed significantly decreased survival rates and food consumption. Additionally, the sensitivity of honeybees to sucrose and odors and CO2 production was significantly reduced. Furthermore, molecular docking revealed that CYC has higher binding affinity than odors to odorant-binding proteins, and the olfactory and metabolism pathways gene expression was negatively affected at transcriptome level. These findings indicate that CYC at sublethal concentration can pose risks to honeybees by affecting their olfactory function and energy metabolic balance. Further study and consideration are needed to fully exploit the benefits of this pesticide.
Collapse
Affiliation(s)
- Wei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mu Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China; Beijing University of Agriculture, Beijing 100096, China
| | - Xue Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Aidi Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
3
|
Brueggemann L, Singh P, Müller C. Life Stage- and Sex-Specific Sensitivity to Nutritional Stress in a Holometabolous Insect. Ecol Evol 2025; 15:e70764. [PMID: 39839333 PMCID: PMC11748456 DOI: 10.1002/ece3.70764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Over lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches. Moreover, there may be sex-specific differences due to distinct physiology. Larvae of the holometabolous turnip sawfly, Athalia rosae, consume leaves and flowers, while the adults take up nectar. We examined the effects of starvation experienced at different life stages on life-history, adult behavioural and metabolic traits to determine which stage may be more sensitive and how specific these traits respond. We exposed individuals to four nutritional regimes, either no, larval, adult starvation or starvation periods as larvae and adults. Larvae exposed to starvation had a prolonged development, and starved females reached a lower initial adult body mass than non-starved individuals. Males did not differ in initial adult body mass regardless of larval starvation, suggesting the ability to conform well to poor nutritional conditions. Adult behavioural activity was not significantly impacted by larval or adult starvation. Individuals starved as larvae had similar carbohydrate and lipid (i.e., fatty acid) contents as non-starved individuals, potentially due to building up energy reserves during development, while starvation during adulthood or at both stages led to reduced energy reserves in males. This study indicates that the sensitivity of a life stage to stress depends on the specific trait under consideration. Life-history traits were mainly affected by larval stress, while activity appeared to be more robust and metabolism mostly impacted by the adult conditions. Individuals differed in their ability to conform to the given environment, with the responses being life stage- and sex-specific.
Collapse
Affiliation(s)
- Leon Brueggemann
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Pragya Singh
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Caroline Müller
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| |
Collapse
|
4
|
Tang B, Han Y, Mao Q, Fu H, Luo Y, Hua L, Liu B, Hu G, Wang S, Desneux N, Duan H, Wu Y. Regulation of three novel pepper thiothiazolidinones on the fecundity of Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106033. [PMID: 39277359 DOI: 10.1016/j.pestbp.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Spodoptera frugiperda has emerged as a major invasive pest worldwide. The utilization of chemical pesticides not only poses numerous ecological concerns but also fosters resistance in S. frugiperda. In this study, we designed and synthesized three novel thiothiazolidinone compounds (6a, 7b, and 7e) and incorporated innovative thiothiazolidinone structural elements into the piperine skeleton. Treatment with compounds 6a and 7e resulted in the blackening and agglomeration of oviduct eggs within the ovaries of certain female moths, impeding the release of normal eggs. The levels of vitellogenin and vitellogenin receptor, along with three trehalase inhibitors, exhibited a dynamic equilibrium state, leading to no discernible change in egg production but a notable increase in the generation of low-hatching-rate egg fragments. Compared with the injection of 2%DMSO, the eclosion rate of 6a injection was significantly decreased, as followed the spawning time and longevity were prolonged or significantly prolonged in the trehalase inhibitors of 6a, 7b, and 7e. We aimed to investigate the regulatory impacts of three new pepper thiothiazolidinone compounds on the reproduction of S. frugiperda, and to authenticate the efficacy of novel alginase inhibitors in inhibiting the reproduction of S. frugiperda. This research endeavors to aid in the identification of efficient and steadfast trehalase inhibitors, thereby expediting the research and development of potent biological pesticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haoyu Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China.
| |
Collapse
|
5
|
Ma L, Xu C, Peng Y, Zhang J, Zhang W. Sublethal effects of halofenozide on larval development and detoxification in Phaedon brassicae (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1286-1295. [PMID: 37338416 DOI: 10.1093/jee/toad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
The brassica leaf beetle, Phaedon brassicae, is a serious defoliator of cruciferous crops. Halofenozide (Hal), an ecdysone agonist, is a new class of insect growth-regulating insecticide. Our preliminary experiment revealed the outstanding larval toxicity of Hal against P. brassicae. However, the metabolic degradation of this compound in insects remains unclear. In this study, oral administration of Hal at LC10 and LC25 caused severe separation of the cuticle and epidermis, leading to larval molting failure. Sublethal dose exposure also significantly reduced the larval respiration rate as well as their pupation rates and pupal weights. Conversely, the activities of the multifunctional oxidase, carboxylesterase (CarE), and glutathione S-transferase (GST) were significantly enhanced in Hal-treated larvae. Further analysis using RNA sequencing identified 64 differentially expressed detoxifying enzyme genes, including 31 P450s, 13 GSTs, and 20 CarEs. Among the 25 upregulated P450s, 22 genes were clustered into the CYP3 clan, and the other 3 genes belonged to the CYP4 clan. Meanwhile, 3 sigma class GSTs and 7 epsilon class GSTs were dramatically increased, accounting for the majority of the upregulated GSTs. Moreover, 16 of the 18 overexpressed CarEs were clustered into the coleopteran xenobiotic-metabolizing group. These results showed the augmented expression of detoxification genes in P. brassicae after exposed to sublethal dose of Hal, and helped to better understand the potential metabolic pathways that could contribute to the reduced sensitivity to Hal in this pest. Overall, a deep insight into the detoxification mechanisms would provide practical guidance for the field management of P. brassicae.
Collapse
Affiliation(s)
- Long Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Changxia Xu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Carrión PJA, Desai N, Brennan JJ, Fifer JE, Siggers T, Davies SW, Gilmore TD. Starvation decreases immunity and immune regulatory factor NF-κB in the starlet sea anemone Nematostella vectensis. Commun Biol 2023; 6:698. [PMID: 37420095 PMCID: PMC10329013 DOI: 10.1038/s42003-023-05084-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Lack of proper nutrition has important consequences for the physiology of all organisms, and nutritional status can affect immunity, based on many studies in terrestrial animals. Here we show a positive correlation between nutrition and immunity in the sea anemone Nematostella vectensis. Gene expression profiling of adult anemones shows downregulation of genes involved in nutrient metabolism, cellular respiration, and immunity in starved animals. Starved adult anemones also have reduced protein levels and activity of immunity transcription factor NF-κB. Starved juvenile anemones have increased sensitivity to bacterial infection and also have lower NF-κB protein levels, as compared to fed controls. Weighted Gene Correlation Network Analysis (WGCNA) is used to identify significantly correlated gene networks that were downregulated with starvation. These experiments demonstrate a correlation between nutrition and immunity in an early diverged marine metazoan, and the results have implications for the survival of marine organisms as they encounter changing environments.
Collapse
Affiliation(s)
| | - Niharika Desai
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Joseph J Brennan
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Pfizer, Inc., 1 Portland St, Cambridge, MA, 02139, USA
| | - James E Fifer
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Cassone BJ, Grove HC, Kurchaba N, Geronimo P, LeMoine CMR. Fat on plastic: Metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127862. [PMID: 34872037 DOI: 10.1016/j.jhazmat.2021.127862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The caterpillar larvae of the greater wax moth (Galleria mellonella) are avid plastivores, as when provided a diet of low-density polyethylene (LDPE) they actively feed on it. Recent work has highlighted the importance of their microbiome in the putative biodegradation of this plastic polymer, though the impact of plastic metabolism on the insect host is less clear. In the present study, we undertook an integrative approach spanning all levels of biological organization to explore the effects of a plastic diet on the metabolic physiology of this animal model of plastic biodegradation. We demonstrate that an LDPE diet is not sufficient to maintain optimal larval growth and survival. In addition, we confirm that plastic fed waxworms retain their fat body lipid stores in a manner proportional to their individual polyethylene consumption suggesting a direct effect of LDPE biodegradation. At the functional level, the oxidative capacity of the fat body of LDPE-fed larvae is maintained reflecting unaltered metabolic function of the tissue. Finally, metabolomic analyses confirmed fat body lipid stores maintenance in LDPE-fed worms, but uncovered various other nutritional deficiencies. Overall, this work unveils novel insights in the complex interplay between LDPE biodegradation and the metabolic physiology of this model plastivore.
Collapse
Affiliation(s)
- Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada.
| | - Harald C Grove
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | - Nicholas Kurchaba
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | - Paola Geronimo
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | | |
Collapse
|
8
|
Paul SC, Singh P, Dennis AB, Müller C. Intergenerational Effects of Early Life Starvation on Life-History, Consumption, and Transcriptome of a Holometabolous Insect. Am Nat 2022; 199:E229-E243. [DOI: 10.1086/719397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhao Z, Zhang X, Zhao F, Zhou Z, Zhao F, Wang J, Liu T, Yang X, Zhang X, Li Z. Stress responses of the intestinal digestion, antioxidant status, microbiota and non-specific immunity in Songpu mirror carp (Cyprinus carpio L.) under starvation. FISH & SHELLFISH IMMUNOLOGY 2022; 120:411-420. [PMID: 34915148 DOI: 10.1016/j.fsi.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Songpu mirror carp, Cyprinus carpio L., is a new variety of common carp that has become an economically important freshwater fish in China. However, it remains unknown how its metabolism is regulated under starvation. Here, we investigated how intestinal digestion, antioxidant status, microbiota and immune activities were affected under starvation stress. The feeding regimes were designed as follows: ST0 comprised fish allowed to feed continuously; ST1 comprised fish starved for 1 week; ST2 comprised fish starved for 2 weeks; ST3 comprised fish starved for 3 weeks; ST4 comprised fish starved for 4 weeks. Our results showed a significant decrease in the level of intestinal amylase, lipase, and protease activities in the group ST4 (P < 0.05). Compared with the control group, intestinal antioxidant enzyme activities were significantly increased during short-term starvation. The gene expression levels of interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-alpha (TNF-α) were elevated in the groups ST3 and ST4. We also detected the reduction in the expression levels of interleukin 10 (IL-10) and transforming growth factor β (TGF-β2) compared with those of the group ST0. Notably, the gut microbial composition was dominated by Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The relative abundance of the dominant microbial phyla changed significantly under starvation stress. Taken together, our results suggest that starvation can induce the change of intestinal digestion, non-specific immunity and microbiota in Songpu mirror carp, and provide new insights into its habitat selection and adaptation to environmental changes.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China.
| | - Xianbo Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Fei Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Zhou Zhou
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Feng Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Jinle Wang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Ting Liu
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Xing Yang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Xiaoping Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Zhengyou Li
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| |
Collapse
|
10
|
Miao J, Guo P, Li H, Wei C, Liu Q, Gong Z, Duan Y, Li T, Jiang Y, Feng H, Wu Y. Low Barometric Pressure Enhances Tethered-Flight Performance and Reproductive of the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:620-626. [PMID: 33449074 DOI: 10.1093/jee/toaa291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Barometric pressure is an important factor influencing several insect traits. Most studies have been conducted on the behavior of insects in relation to rapid and slight changes in pressure magnitudes or short-term pressure trends, but there is little information on the effect of long-term and large pressure variations on insect traits. Here, we assessed the effects of static low barometric pressure on the tethered flight, lifespan and reproductive performance of Mythimna separata (Walker), a long-distance migratory insect, using an apparatus simulating low barometric pressure at altitudes of 500 m above sea level. We found that both the flight distance and flight duration of M. separata moths were significantly longer under low barometric pressure conditions. Exposure to low barometric pressure conditions for 24 and 48 h significantly shortened the lifespan of female moths but had no influence on male moths. The ovaries of female moths developed earlier, and the preoviposition and oviposition periods were significantly shortened under low atmospheric pressure. Moreover, low atmospheric pressure reduced the respiration rate of female moths. However, there was an increase in the respiration rate of female moths after being returned to standard barometric pressure conditions. Our results show that the behavior and physiological traits of insects are affected by the low-pressure environment during migration. The low barometric pressure conditions at high altitudes is one of important factors accelerating reproductive behavior of M. separata after migration.
Collapse
Affiliation(s)
- Jin Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Pei Guo
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Huiling Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | | | - Qihang Liu
- Henan Institute of Science and Technology, Xinxiang, P. R. China
| | - Zhongjun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Yun Duan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Yueli Jiang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Hongqiang Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| |
Collapse
|
11
|
Zhang W, Ma L, Liu X, Peng Y, Liang G, Xiao H. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2021; 77:1328-1338. [PMID: 33078511 DOI: 10.1002/ps.6146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In holometabolous insects, the major developmental transitions - larval molting and pupation - are triggered by a pulse of 20-hydroxyecdysone (20E) and coordinated by juvenile hormone. Methoxyfenozide (MF), an ecdysteroid agonist, represents a new class of insect growth regulators and is effective against lepidopteran pests. Fushi-tarazu factor 1 (FTZ-F1) is an ecdysone-inducible transcription factor. To date, the effect of MF on 20E-response genes remains unclear, and we speculate the involvement of FTZ-F1 in MF's growth regulating effect. RESULTS MF at LC25 and LC10 caused severe ecdysis failure in Helicoverpa armigera, extended their larval duration, lowered their pupal weight, and reduced the respiratory, pupation and emergence rates. Furthermore, sublethal doses of MF inhibited ecdysteroidogenesis and lowered the intrinsic 20E titer, but showed an inductive effect on 20E-response genes including HaFTZ-F1. HaFTZ-F1, predominantly expressed in larval epidermis, was markedly upregulated before or right after larval ecdysis, and maintained a high level in prepupal stage. Knockdown of HaFTZ-F1 in 4th-instar larvae severely impaired larval ecdysis, whereas its knockdown in final-instar larvae caused abnormal pupation. Moreover, knocking down HaFTZ-F1 downregulated three critical ecdysteroidogenesis genes, lowered 20E titer, and suppressed the expression of 20E receptors and 20E-response genes. The introduction of 20E into HaFTZ-F1-RNAi larvae partly relieved the negative effects on the 20E-induced signaling cascade. CONCLUSION Our findings reveal the adverse effects of sublethal doses of MF on the development of H. armigera and elucidate the resulting perturbations on the 20E-induced signaling cascade; we propose that HaFTZ-F1 regulates ecdysis and pupation by mediating 20E titer and its signaling pathway. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiangya Liu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|