1
|
Chen P, Ai H, Liu Z, Li C, Li B. The dual functions of a newly identified C-type lectin (TcCTL17) in the immunity and development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-14. [PMID: 40099412 DOI: 10.1017/s0007485324000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
C-type lectins (CTLs), a diverse family of pattern recognition receptors, are essential for immune recognition and pathogen clearance in invertebrates. TcCTL17 contains one carbohydrate recognition domain and three scavenger receptor Cys-rich domains. Spatial and temporal expression analysis revealed that TcCTL17 is highly expressed in early pupa, early adult stages, and the larval gut at 20 days. The recombinant TcCTL17 exhibited dose-dependent binding to lipopolysaccharides and peptidoglycans, Ca2+-dependent binding and agglutination of bacteria in vitro. Knocking down TcCTL17 before bacterial exposure reduced survival rates and increased bacterial loads in T. castaneum larvae, accompanied by decreased antimicrobial peptide expression and haemolymph phenoloxidase activity. Additionally, TcCTL17 RNA interference caused developmental abnormalities, affecting metamorphosis and fecundity, possibly by influencing the 20E, JH, and vitellogenin pathways. These findings underscore dual functions of TcCTL17 in immunity and development, making it a potential target for pest management.
Collapse
Affiliation(s)
- Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiping Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Preisegger L, Flecha JC, Ghilini F, Espin-Sánchez D, Prieto E, Oberti H, Abreo E, Huarte-Bonnet C, Pedrini N, Mannino MC. Visualizing Oral Infection Dynamics of Beauveria bassiana in the Gut of Tribolium castaneum. J Fungi (Basel) 2025; 11:101. [PMID: 39997394 PMCID: PMC11856336 DOI: 10.3390/jof11020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
The ability of entomopathogenic fungi, such as Beauveria bassiana, to infect insects by penetrating their cuticle is well documented. However, some insects have evolved mechanisms to combat fungal infections. The red flour beetle (Tribolium castaneum), a major pest causing significant economic losses in stored product environments globally, embeds antifungal compounds within its cuticle as a protective barrier. Previous reports have addressed the contributions of non-cuticular infection routes, noting an increase in mortality in beetles fed with conidia. In this study, we further explore the progression and dynamics of oral exposure in the gut of T. castaneum after feeding with an encapsulated B. bassiana conidia formulation. First, we characterized the formulation surface using atomic force microscopy, observing no significant topological differences between capsules containing and not containing conidia. Confocal microscopy confirmed uniform conidia distribution within the hydrogel matrix. Then, larvae and adult insects fed with the conidia-encapsulated formulation exhibited B. bassiana distributed throughout the alimentary canal, with a higher presence of conidia before the pyloric chamber. More conidia were found in the larval midgut and hindgut compared to adults, but no germinated conidia were observed in the epithelium. These results suggest that the presence of conidia obstructs the gut, impairing the insect's ability to ingest, process, and absorb nutrients. This disruption may weaken the host, increasing its susceptibility to infections and, ultimately, leading to death. By providing the first direct observation of fungal conidia within the alimentary canal of T. castaneum, this study highlights a novel aspect of fungal-host interaction and opens new avenues for advancing fungal-based pest control strategies by exploiting stage-specific vulnerabilities.
Collapse
Affiliation(s)
- Lautaro Preisegger
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| | - Juan Cruz Flecha
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| | - Fiorella Ghilini
- Instituto de Investigaciones Fisicoquìmicas Teóricas y Aplicadas (INIFTA), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 y 64 S/N, La Plata 1900, Argentina; (F.G.); (E.P.)
| | - Daysi Espin-Sánchez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| | - Eduardo Prieto
- Instituto de Investigaciones Fisicoquìmicas Teóricas y Aplicadas (INIFTA), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 y 64 S/N, La Plata 1900, Argentina; (F.G.); (E.P.)
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche (ICS-UNAJ), Avenida Calchaqui, Florencio Varela 6200, Argentina
| | - Héctor Oberti
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, Estación Experimental Wilson Ferreira Aldunate, Ruta 48 Km 10, Canelones 90000, Uruguay; (H.O.); (E.A.)
- Departamento de Biotecnología, Universidad ORT Uruguay, Montevideo 10129, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, Estación Experimental Wilson Ferreira Aldunate, Ruta 48 Km 10, Canelones 90000, Uruguay; (H.O.); (E.A.)
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| | - Maria Constanza Mannino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, La Plata 1900, Argentina; (L.P.); (J.C.F.); (D.E.-S.); (C.H.-B.)
| |
Collapse
|
3
|
Basu A, Tekade K, Singh A, Das PN, Prasad NG. Experimental evolution for improved postinfection survival selects for increased disease resistance in Drosophila melanogaster. Evolution 2024; 78:1831-1843. [PMID: 39212194 DOI: 10.1093/evolut/qpae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Disease resistance (defined as the host capacity to limit systemic infection intensity) and disease tolerance (defined as the host capacity to limit infection-induced damage) are 2 complementary defense strategies that help the hosts maximize their survival and fitness when infected with pathogens and parasites. In addition to the underlying physiological mechanisms, the existing theory postulates that these 2 strategies differ in terms of the conditions under which each strategy evolves in the host populations, their evolutionary dynamics, and the ecological and epidemiological consequences of their evolution. Here, we explored if one or both of these strategies evolve when host populations are subjected to selection for increased postinfection survival. We experimentally evolved Drosophila melanogaster populations, selecting for the flies that survived an infection with the entomopathogen Enterococcus faecalis. We found that the host populations evolved increased disease resistance in response to selection for increased survival. This was despite the physiological costs associated with increased resistance, the expression of which varied with the phase of infection. We did not find evidence of any change in disease tolerance in the evolved host populations.
Collapse
Affiliation(s)
- Aabeer Basu
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kimaya Tekade
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Aparajita Singh
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Paresh Nath Das
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Nagaraj Guru Prasad
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
4
|
Zhang BX, Liu FF, Liu F, Qi WX, Si YQ, Ren HY, Zhang CQ, Rao XJ. The fungal protease BbAorsin contributes to growth, conidiation, germination, virulence, and antiphytopathogenic activities in Beauveria bassiana (Hypocreales: Cordycipitaceae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105936. [PMID: 38879328 DOI: 10.1016/j.pestbp.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 07/02/2024]
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China; Department of Scientific Research, Chuzhou University, Chuzhou 239000, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Yan-Qin Si
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Cheng-Qi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China.
| |
Collapse
|
5
|
Smith TR, Koprivnikar J. Influences of compound age and identity in the effectiveness of insect quinone secretions against the fungus Beauveria bassiana. Parasitol Res 2024; 123:121. [PMID: 38308145 DOI: 10.1007/s00436-024-08145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Chemical defences against parasites and pathogens can be seen in a wide range of animal taxa, including insect pests such as the red flour beetle Tribolium castaneum. Antimicrobial quinone-based secretions can be used by these beetles to defend against various parasites, particularly the fungal entomopathogen Beauveria bassiana. While quinone secretions can inhibit B. bassiana growth, it is unknown how long they remain effective or how individual secretion compounds contribute to growth inhibition. Here, we tested each individual component of the quinone secretions (methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, and 1-pentadecene), as well as two mixed solutions that represent the composition range found in natural T. castaneum secretions, after aging for 0, 24, or 72 h. The two quinone compounds equally contributed to B. bassiana inhibition, but their efficacy was significantly reduced after 24 h, with no growth inhibition after 72 h. This indicates that quinones protect insects against B. bassiana for only a limited time, perhaps requiring constant secretion into the environment to effectively defend against this fungal threat. Future investigations may consider the extent to which quinone secretions are effective against other parasites, as well as how their ability to cause parasite damage changes with compound age.
Collapse
Affiliation(s)
- Timothy R Smith
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
6
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Mannino MC, Davyt-Colo B, Huarte-Bonnet C, Diambra L, Pedrini N. Transcriptomic landscape of the interaction between the entomopathogenic fungus Beauveria bassiana and its tolerant host Tribolium castaneum revealed by dual RNA-seq. Sci Rep 2023; 13:16506. [PMID: 37783781 PMCID: PMC10545715 DOI: 10.1038/s41598-023-43889-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Entomopathogenic fungi such as Beauveria bassiana are the only insect pathogens able to start the infection process by penetrating through the host cuticle. However, some insects try to avoid fungal infection by embedding their cuticle with antifungal compounds. This is the case of the red flour beetle Tribolium castaneum, which generates economical loss of great significance in stored product environments worldwide. In this study, T. castaneum adults were fed during different time periods (from 3 to 72 h) on B. bassiana conidia-covered corn kernels. The progression of fungal infection was monitored using the dual RNA-seq technique to reconstruct the temporal transcriptomic profile and to perform gene enrichment analyses in both interacting organisms. After mapping the total reads with the B. bassiana genome, 904 genes were identified during this process. The more expressed fungal genes were related to carbon catabolite repression, cation binding, peptidase inhibition, redox processes, and stress response. Several immune-related genes from Toll, IMD, and JNK pathways, as well as genes related to chitin modification, were found to be differentially expressed in fungus-exposed T. castaneum. This study represents the first dual transcriptomic approach to help understand the interaction between the entomopathogenic fungus B. bassiana and its tolerant host T. castaneum.
Collapse
Affiliation(s)
- María Constanza Mannino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Belén Davyt-Colo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genómicos (CREG), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Boulevard 120 1459, 1900, La Plata, Argentina
- CONICET, La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
8
|
Zhu G, Ding W, Zhao H, Xue M, Chu P, Jiang L. Effects of the Entomopathogenic Fungus Mucor hiemalis BO-1 on the Physical Functions and Transcriptional Signatures of Bradysia odoriphaga Larvae. INSECTS 2023; 14:162. [PMID: 36835731 PMCID: PMC9964685 DOI: 10.3390/insects14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Mucor hiemalis BO-1 is an entomopathogenic fungus that infects Bradysia odoriphaga, a destructive root maggot. M. hiemalis BO-1 possesses stronger pathogenicity to the larvae than to other stages of B. odoriphaga, and provides satisfactory field control. However, the physiological response of B. odoriphaga larvae to infection and the infection mechanism of M. hiemalis are unknown. We detected some physiological indicators of diseased B. odoriphaga larvae infected by M. hiemalis BO-1. These included changes in consumption, nutrient contents, and digestive and antioxidant enzymes. We performed transcriptome analysis of diseased B. odoriphaga larvae, and found that M. hiemalis BO-1 showed acute toxicity to B. odoriphaga larvae and was as toxic as some chemical pesticides. The food consumption of diseased B. odoriphaga after inoculation with M. hiemalis spores decreased significantly, and there was a significant decrease in total protein, lipid, and carbohydrates in diseased larvae. Key digestive enzymes (protease, α-amylase, lipase, and cellulase) were significantly inhibited during infection. Peroxidase maintained high activity, and the activity of other antioxidant enzymes (catalase, superoxide dismutase, and glutathione S-transferases) first increased and then decreased. Combined with the transcriptional signatures of diseased B. odoriphaga larvae, M. hiemalis BO-1 infection resulted in decreased food consumption, reduced digestive enzyme activity, and altered energy metabolism and material accumulation. Infection was also accompanied by fluctuations in immune function, such as cytochrome P450 and the Toll pathway. Therefore, our results laid a basis for the further study of the interactions between M. hiemalis BO-1 and B. odoriphaga and promoted the genetic improvement of entomopathogenic fungi.
Collapse
Affiliation(s)
- Guodong Zhu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Wenjuan Ding
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Pengfei Chu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Liwei Jiang
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
9
|
Duarte S, Magro A, Tomás J, Hilário C, Ferreira RB, Carvalho MO. Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. INSECTS 2022; 13:868. [PMID: 36292816 PMCID: PMC9603965 DOI: 10.3390/insects13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Tribolium castaneum (Herbst) adults produce 1,4-benzoquinone (BQ), methyl-1,4-benzoquinone (MBQ), and ethyl-1,4-benzoquinone (EBQ). These components are chemical defenses used as repellents and irritants, and BQ has a negative impact on the growth of some fungal species. In this work, the inhibitory and/or lethal effects of these benzoquinones on the development of six fungi identified in maize, namely Aspergillus flavus, A. fumigatus, A. niger, Fusarium sp., Penicillium sp., and Trichoderma sp., were evaluated. Ten-day-long disk diffusion trials were performed using benzoquinones. The experiments simulated the activity of BQ (B1) or "EBQ + MBQ" (B2) released by 40-day-old insect adults (n = 200), considering a total average release of 45 µg per adult. Inhibition halos imposed by benzoquinones on fungal growth showed a significant effect when compared with the controls (water and solvent). Mycelial growth was decreased for all fungi, with the level of response depending on the fungal species. B1 and B2 displayed an inhibitory effect against all fungi, but Trichoderma sp. and A. niger showed rapid recoveries. B2 showed a lethal effect on Penicillium sp. The inhibitory and lethal activities of benzoquinones released by T. castaneum adults may contribute to regulate fungal growth, and understanding their interaction is important to develop innovative control strategies.
Collapse
Affiliation(s)
- Sónia Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food, TERRA—Laboratory for Sustainable Land Use and Ecosystem Services, Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
10
|
Ahlawat N, Maggu K, Jigisha, Arun MG, Meena A, Agarwala A, Prasad NG. No major cost of evolved survivorship in Drosophila melanogaster populations coevolving with Pseudomonas entomophila. Proc Biol Sci 2022; 289:20220532. [PMID: 35506222 PMCID: PMC9065972 DOI: 10.1098/rspb.2022.0532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rapid exaggeration of host and pathogen traits via arms race dynamics is one possible outcome of host-pathogen coevolution. However, the exaggerated traits are expected to incur costs in terms of resource investment in other life-history traits. The current study investigated the costs associated with evolved traits in a host-pathogen coevolution system. We used the Drosophila melanogaster (host)-Pseudomonas entomophila (pathogen) system to experimentally derive two selection regimes, one where the host and pathogen both coevolved, and the other, where only the host evolved against a non-evolving pathogen. After 17 generations of selection, we found that hosts from both selected populations had better post-infection survivorship than controls. Even though the coevolving populations tended to have better survivorship post-infection, we found no clear evidence that the two selection regimes were significantly different from each other. There was weak evidence for the coevolving pathogens being more virulent than the ancestral pathogen. We found no major cost of increased post-infection survivorship. The costs were not different between the coevolving hosts and the hosts evolving against a non-evolving pathogen. We found no evolved costs in the coevolving pathogens. Thus, our results suggest that increased host immunity and pathogen virulence may not be costly.
Collapse
Affiliation(s)
- Neetika Ahlawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Komal Maggu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Evolutionary and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Jigisha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Abhishek Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Evolutionary and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Amisha Agarwala
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
11
|
Duarte S, Magro A, Tomás J, Hilário C, Alvito P, Ferreira RB, Carvalho MO. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. INSECTS 2021; 12:insects12080730. [PMID: 34442296 PMCID: PMC8396807 DOI: 10.3390/insects12080730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary It is important to hold cereals in storage conditions that exclude insect pests such as the red flour beetle and fungi, especially mycotoxin-producing ones (as a few strains of Aspergillus flavus). This work aims to investigate the interaction between these two organisms when thriving in maize flour. It was observed that when both organisms were together, the mycotoxins detected in maize flour were far higher than when the fungi were on their own, suggesting that the presence of insects may contribute positively to fungi development and mycotoxin production. The insects in contact with the fungi were almost all dead at the end of the trials, suggesting a negative effect of the fungi growth on the insects. Both organisms interacted when in contact. This is the first study on this issue, although further investigation would benefit from clarification on the mechanisms leading to the nature of the detected interactions. Abstract Tribolium castaneum is one of the most common insect pests of stored products. Its presence makes cereals more susceptible to the spread of the fungi Aspergillus flavus, which may produce mycotoxins. The aim of this work was to evaluate the influence of T. castaneum adults on the development of a mycotoxigenic A. flavus strain in maize flour as well as the influence of this fungus on the insects. Maize flour was exposed to T. castaneum, spores of A. flavus or to both. The results revealed an interaction between T. castaneum and A. flavus as the flour exposed to both organisms was totally colonized by the fungus whereas almost all the insects were killed. Aflatoxin B1 (AFB1) revealed a significantly higher concentration in the flour inoculated with both organisms (18.8 µg/kg), being lower when exposed only to A. flavus, suggesting that the presence of insects may trigger fungal development and enhance mycotoxin production. The ability of these organisms to thrive under the same conditions and the chemical compounds they release makes the interaction between them a subject of great importance to maintain the safety of stored maize. This is the first work evaluating the interaction between T. castaneum and A. flavus mycotoxin production.
Collapse
Affiliation(s)
- Sónia Duarte
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- Correspondence:
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Paula Alvito
- National Health Institute Dr. Ricardo Jorge (INSA), 1600-609 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Boavida Ferreira
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
12
|
Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 2021; 159:105122. [PMID: 34352375 DOI: 10.1016/j.micpath.2021.105122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Global food security is threatened by insect pests of economically important crops. Chemical pesticides have been used frequently for the last few decades to manage insect pests throughout the world. However, these chemicals are hazardous for human health as well as the ecosystem. In addition, several pests have evolved resistance to many chemicals. Finding environment friendly alternatives lead the researchers to introduce biocontrol agents such as entomopathogenic fungi (EPF). These fungi include various genera that can infect and kill insects efficiently. Moreover, EPFs have considerable host specificity with a mild effect on non-target organisms and can be produced in bulk quantity quickly. However, insights into the biology of EPF and mechanism of action are of prime significance for their efficient utilization as a biocontrol agent. This review focuses on EPF-mediated insect management by explaining particular EPF strains and their general mode of action. We have comprehensively discussed which criteria should be used for the selection of pertinent EPF, and which aspects can impact the EPF efficiency. Finally, we have outlined various advantages of EPF and their limitations. The article summarizes the prospects related to EPF utilization as biocontrol agents. We hope that future strategies for the management of insects will be safer for our planet.
Collapse
|
13
|
Ahlawat N, Geeta Arun M, Maggu K, Prasad NG. Enemies make you stronger: Coevolution between fruit fly host and bacterial pathogen increases postinfection survivorship in the host. Ecol Evol 2021; 11:9563-9574. [PMID: 34306643 PMCID: PMC8293768 DOI: 10.1002/ece3.7774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one-sided adaptation. In addition, our results also show that the coevolving host-pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.
Collapse
Affiliation(s)
- Neetika Ahlawat
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Manas Geeta Arun
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Komal Maggu
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Nagaraj Guru Prasad
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| |
Collapse
|
14
|
Sawada M, Sano T, Hanakawa K, Sirasoonthorn P, Oi T, Miura K. Benzoquinone synthesis-related genes of Tribolium castaneum confer the robust antifungal host defense to the adult beetles through the inhibition of conidial germination on the body surface. J Invertebr Pathol 2019; 169:107298. [PMID: 31805286 DOI: 10.1016/j.jip.2019.107298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Insects fight against invading microbial pathogens through various immune-related measures that comprise 'internal', 'external' as well as 'social' immunities. The defenses by external immunity associated with the cuticular integument are supposed to be of particular importance in repelling entomopathogenic fungi that infect host insects transcutaneously. Among such integument-related defenses, external secretions of benzoquinone derivatives typical of tenebrionid beetles have been suggested to play important roles in the antimicrobial defenses. In the present study, by utilizing the experimental infection system composed of the red flour beetle Tribolium castaneum and generalist ascomycete entomopathogens Beauveria bassiana and Metarhizium anisopliae, we performed the functional assays of the three T. castaneum genes whose involvement in benzoquinone synthesis in the adults has been reported, namely GT39, GT62 and GT63. Observations by scanning electron microcopy (SEM) revealed that the conidia of the two fungal species did not germinate on the wild-type adult body surface but did on the pupae. The expression analyses demonstrated that the levels of GT39 and GT62 mRNA increased from middle pupae and reached high in early adults while GT63 did not show a clear adult-biased expression pattern. The RNA interference-based knockdown of any of the three genes in pupae resulted in the adults compromised to the infection of the both fungal species. SEM observations revealed that the gene silencing allowed the conidial germination on the body surface of the knockdown beetles, thereby impairing the robust antifungal defense of adult beetles. Thus, we have provided direct experimental evidence for the functional importance in vivo of these benzoquinone synthesis-related genes that support the antifungal defense of tenebrionid beetles.
Collapse
Affiliation(s)
- Mitsuki Sawada
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takuma Sano
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kento Hanakawa
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Patchara Sirasoonthorn
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takao Oi
- Laboratory of Plant Physiology and Morphology, Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N. Is the Insect Cuticle the only Entry Gate for Fungal Infection? Insights into Alternative Modes of Action of Entomopathogenic Fungi. J Fungi (Basel) 2019; 5:E33. [PMID: 31014042 PMCID: PMC6616882 DOI: 10.3390/jof5020033] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Entomopathogenic fungi are the only insect pathogens able to infect their host by adhesion to the surface and penetration through the cuticle. Although the possibility of fungal infection per os was described almost a century ago, there is an information gap of several decades regarding this topic, which was poorly explored due to the continuous elucidation of cuticular infection processes that lead to insect death by mycosis. Recently, with the advent of next-generation sequencing technologies, the genomes of the main entomopathogenic fungi became available, and many fungal genes potentially useful for oral infection were described. Among the entomopathogenic Hypocreales that have been sequenced, Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Cordycipitaceae) is the main candidate to explore this pathway since it has a major number of shared genes with other non-fungal pathogens that infect orally, such as Bacillus thuringiensis Berliner (Bacillales: Bacillaceae). This finding gives B. bassiana a potential advantage over other entomopathogenic fungi: the possibility to infect through both routes, oral and cuticular. In this review, we explore all known entry gates for entomopathogenic fungi, with emphasis on the infection per os. We also set out the fungal infection process in a more integral approach, as a need to exploit its full potential for insect control, considering all of its virulence factors and the conditions needed to improve its virulence against insect that might offer some resistance to the common infection through the cuticle.
Collapse
Affiliation(s)
- M Constanza Mannino
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Belén Davyt-Colo
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
16
|
Tabunoki H, Dittmer NT, Gorman MJ, Kanost MR. Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum. BMC Res Notes 2019; 12:7. [PMID: 30616595 PMCID: PMC6323729 DOI: 10.1186/s13104-018-4041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Hemolymph plays many important roles in the physiology of an insect throughout its lifetime; however, for small-bodied insects, studies are lacking because of the difficulties encountered while collecting hemolymph. The objective of our study was to develop a method to collect hemolymph plasma from various stages of Tribolium castaneum and to evaluate phenoloxidase activity in the plasma samples. We first designed a procedure for easily and quickly collecting clear hemolymph plasma from T. castaneum. Results By using this method, we collected approximately 5 µl plasma from 30 individuals at the larval, pupal or adult stages. And then, we studied the expression of phenoloxidase by performing western blot analysis of the plasma samples and found that phenoloxidase is present in hemolymph in each developmental stage. We also measured phenoloxidase activity in control plasma and plasma treated with Gram-positive bacteria, Micrococcus luteus. Phenoloxidase activity was greater in some of the M. luteus-treated plasma samples compared with control samples. Thus, we developed a method to collect hemolymph plasma that is suitable for studies of phenoloxidase activity. Electronic supplementary material The online version of this article (10.1186/s13104-018-4041-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan. .,Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA.
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| |
Collapse
|
17
|
Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution. INSECTS 2018; 9:insects9010028. [PMID: 29495405 PMCID: PMC5872293 DOI: 10.3390/insects9010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/26/2022]
Abstract
Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonasentomophila in the red flour beetle Triboliumcastaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveriabassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T.castaneum that evolved with B.bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P.entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B.bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T.castaneum as a consequence of its coevolutionary interactions with B.bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B.bassiana results in resistance to B. thuringiensis, but not P.entomophila implies that B. thuringiensis and B.bassiana may share mechanisms of infection or toxicity not shared by P.entomophila. This supports previous suggestions that B.bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally.
Collapse
|