1
|
Corval ARDC, de Carvalho LAL, Mesquita E, Fiorotti J, Corrêa TA, Bório VS, Carneiro ADS, Pinheiro DG, Coelho IDS, Santos HA, Fernandes EKK, Angelo IDC, Bittencourt VREP, Golo PS. Transcriptional responses of Metarhizium pingshaense blastospores after UV-B irradiation. Front Microbiol 2024; 15:1507931. [PMID: 39703704 PMCID: PMC11656200 DOI: 10.3389/fmicb.2024.1507931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Metarhizium is widely known for its role as an arthropod biocontrol agent and plant bioinoculant. By using mass-production industrial methods, it is possible to produce large amounts of fungal single-celled propagules (including blastospores) to be applied in the field. However, in the environment, the solar ultraviolet components (particularly UV-B) can harm the fungus, negatively impacting its pathogenicity toward the arthropod pest. The present study is the first to use comparative genome-wide transcriptome analyses to unveil changes in gene expression between Metarhizium pingshaense blastospores exposed or not to UV-B. Relative blastospores culturability was calculated 72 h after UV-B exposure and exhibited 100% culturability. In total, 6.57% (n = 728) out of 11,076 predicted genes in M. pingshaense were differentially expressed after UV-B exposure: 320 genes (44%; 320/728) were upregulated and 408 (56%; 408/720) were downregulated in the UV-B exposed blastospores. Results unveiled differentially expressed gene sets related to fungal virulence, production of secondary metabolites, and DNA repair associated with UV damage; genes related to virulence factors were downregulated, and genes associated with nucleotide excision repair were upregulated. These findings illustrate critical aspects of Metarhizium blastospores strategies to overcome UV-B damage and survive solar radiation exposures in insulated fields.
Collapse
Affiliation(s)
- Amanda Rocha da Costa Corval
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Emily Mesquita
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jéssica Fiorotti
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Almeida Corrêa
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victória Silvestre Bório
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriani da Silva Carneiro
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Guariz Pinheiro
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Irene da Silva Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vânia R. E. P. Bittencourt
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Silva Golo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Feng MG. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:59-82. [PMID: 39389708 DOI: 10.1016/bs.aambs.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.
Collapse
Affiliation(s)
- Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
3
|
de Lima PPDABM, Fiorotti J, Paulino PG, Corval ARDC, Mesquita E, Corrêa TA, Lopes ADSC, Oliveira RJVD, Santos HA, Bittencourt VREP, Angelo IDC, Golo PS. Metarhizium pingshaense photolyase expression and virulence to Rhipicephalus microplus after UV-B exposure. J Basic Microbiol 2024; 64:94-105. [PMID: 37696778 DOI: 10.1002/jobm.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The current study examined the impact of ultraviolet (UV)-B radiation in Metarhizium pingshaense blastospores' photolyase expression and their virulence against Rhipicephalus microplus. Blastospores were exposed to UV under laboratory and field conditions. Ticks were treated topically with fungal suspension and exposed to UV-B in the laboratory for three consecutive days. The expression of cyclobutane pyrimidine dimmers (CPDs)-photolyase gene maphr1-2 in blastospores after UV exposure followed by white light exposure was accessed after 0, 8, 12, 24, 36, and 48 h. Average relative germination of blastospores 24 h after in vitro UV exposure was 8.4% lower than 48 h. Despite this, the relative germination of blastospores exposed to UV in the field 18 h (95.7 ± 0.3%) and 28 h (97.3 ± 0.8%) after exposure were not different (p > 0.05). Ticks treated with fungus and not exposed to UV exhibited 0% survival 10 days after the treatment, while fungus-treated ticks exposed to UV exhibited 50 ± 11.2% survival. Expression levels of maphr1-2 8, 12, and 24 h after UV-B exposure were not different from time zero. Maphr1-2 expression peak in M. pingshaense blastospores occurred 36 h after UV-B exposure, in the proposed conditions and times analyzed, suggesting repair mechanisms other than CPD-mediated-photoreactivation might be leading blastospores' germination from 0 to 24 h.
Collapse
Affiliation(s)
- Pamella Pryscila de A B M de Lima
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Jessica Fiorotti
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto SP, Brazil
| | - Patrícia G Paulino
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Amanda R da C Corval
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Emily Mesquita
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Thaís A Corrêa
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Adriani da S C Lopes
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Rafael José V de Oliveira
- Laboratório de Bioprocessos, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, Pernambuco, Brazil
| | - Huarrisson A Santos
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Vânia R E P Bittencourt
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Isabele da C Angelo
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Patrícia S Golo
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Licona-Juárez KC, Andrade EP, Medina HR, Oliveira JNS, Sosa-Gómez DR, Rangel DEN. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Fungal Biol 2023; 127:1250-1258. [PMID: 37495315 DOI: 10.1016/j.funbio.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/28/2023]
Abstract
Soybean, corn, and cotton crops are afflicted by several noctuid pests and the development of bioinsecticides could help control these pests. The fungus Metarhizium rileyi has the greatest potential because its epizootics decimate caterpillar populations in the absence of insecticide applications. However, insect-pathogenic fungi when used for insect control in agriculture have low survival mainly due to the deleterious effects of ultraviolet radiation and heat from solar radiation. In this study, fourteen isolates of M. rileyi were studied and compared with isolates ARSEF 324 and ARSEF 2575 of Metarhizium acridum and Metarhizium robertsii, respectively, whose sensitivity to UV-B radiation had previously been studied. Conidia were exposed at room temperature (ca. 26 °C) to 847.90 mWm-2 of Quaite-weighted UV-B using two fluorescent lamps. The plates containing the conidial suspensions were irradiated for 1, 2, and 3 h, providing doses of 3.05, 6.10, and 9.16 kJ m2, respectively. A wide variability in conidial UV-B tolerance was found among the fourteen isolates of M. rileyi. Isolate CNPSo-Mr 150 was the most tolerant isolate (germination above 80% after 2 h exposure), which was comparable to ARSEF 324 (germination above 90% after 2 h exposure), the most tolerant Metarhizium species. The least tolerant isolates were CNPSo-Mr 141, CNPSo-Mr 142, CNPSo-Mr 156, and CNPSo-Mr 597. Nine M. rileyi isolates exhibited similar tolerance to UV-B radiation as ARSEF 2575 (germination above 50% after 2 h exposure). In conclusion, the majority of M. rileyi isolates studied can endure 1 or 2 h of UV-B radiation exposure. However, after 3 h of exposure, the germination of all studied isolates reduced below 40%, except for CNPSo-Mr 150 and ARSEF 324.
Collapse
Affiliation(s)
- Karla Cecilia Licona-Juárez
- Universidade Brasil, São Paulo, SP, 08230-030, Brazil; Laboratorio de Biología Molecular, Tecnológico Nacional de México, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | - Humberto R Medina
- Laboratorio de Biología Molecular, Tecnológico Nacional de México, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | | | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, UTFPR, Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
5
|
Yu L, Xu SY, Tong SM, Ying SH, Feng MG. Optional strategies for low-risk and non-risk applications of fungal pesticides to avoid solar ultraviolet damage. PEST MANAGEMENT SCIENCE 2022; 78:4660-4667. [PMID: 35864789 DOI: 10.1002/ps.7086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Solar ultraviolet (UV) irradiation is harmful to formulated conidia as active ingredients of fungal pesticides and hence restrains their field application in sunny days of summer, a season requiring frequent pest controls. This conflict makes it necessary to explore optimal strategies for the application of fungal pesticides to suppress pest populations but avoid solar UV damage during summer. RESULTS The conidia of Beauveria bassiana, a wide-spectrum fungal pesticide, were tolerable to UVB (major solar UV wavelengths) damage of ≤0.5 J cm-2 . The damage of this upper limit caused a loss of conidial viability and infectivity if not photoreactivated by light exposure after irradiation. Intriguingly, the light exposure resulted in a high photoreactivation rate of UVB-inactivated conidia and an insignificant or marginal difference in insecticidal activity between normal conidia and those photoreactivated. Modeling analysis of solar UVB intensity recorded hourly over the daylight of five sunny summer days from 5:00 am to 7:00 pm at 30° 17'57'' N and 120°5'7'' E revealed a variation of daily accumulated UVB dose from 2.07 to 2.78 J cm-2 , which was far beyond the upper limit. A more tolerable dose of ~0.2 J cm-2 appeared between 3:00 pm and 5:00 pm, and no harmful dose accumulated between 5:00 pm and 7:00 pm. CONCLUSION Fungal UVB tolerance, fungal photoreactivation capability and the daily accumulation pattern of solar UV irradiation are based to propose an optional strategy for low-risk or non-risk application of fungal pesticides after 3:00 or 5:00 pm during summer. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
8
|
Brancini GTP, Bachmann L, Braga GÚL. Timing and duration of light exposure during conidia development determine tolerance to ultraviolet radiation. FEMS Microbiol Lett 2021; 368:6402900. [PMID: 34665247 DOI: 10.1093/femsle/fnab133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Metarhizium is an important genus of soil-inhabiting fungi that are used for the biological control of insects. The efficiency of biocontrol is dependent on the maintenance of inoculum viability under adverse field conditions such as solar ultraviolet (UV) radiation. Therefore, increasing the tolerance of Metarhizium to UV radiation is necessary. It was previously established that, in mycelium, exposure to visible light increases tolerance to UV radiation. Similarly, growth under visible light for 14 days induces the production of tolerant conidia. However, a study evaluating if and how visible light affects conidia and their relationship with UV radiation was never performed. Here, we report that a relatively short and timed exposure to light around the time of conidiation is sufficient to induce the production of conidia with increased photoreactivating capacity and UV tolerance in Metarhizium acridum. Conidia produced by this method retain their characteristic higher tolerance even after many days of being transferred to the dark. Furthermore, we show that mature conidia of M. acridum and Metarhizium brunneum can still answer to light and regulate UV tolerance, suggesting that gene expression is possible even in dormant spores. Being able to respond to light in the dormant stages of development is certainly an advantage conferring improved environmental persistence to Metarhizium.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciano Bachmann
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
9
|
Dias LP, Souza RKF, Pupin B, Rangel DEN. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biol 2021; 125:891-904. [PMID: 34649676 DOI: 10.1016/j.funbio.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena da Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | | | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | | |
Collapse
|
10
|
Wang H, Liu H, Yu Q, Fan F, Liu S, Feng G, Zhang P. A CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans is involved in the resistance to UV-B radiation and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:235-244. [PMID: 34385002 DOI: 10.1016/j.plaphy.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
In Antarctic continent, the organisms are exposed to high ultraviolet (UV) radiation because of damaged stratospheric ozone. UV causes DNA lesions due to the accumulation of photoproducts. Photolyase can repair UV-damaged DNA in a light-dependent process by electron transfer mechanism. Here, we isolated a CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans, which encodes a protein of theoretical molecular weight of 69.1 KDa. The expression level of PnPHR1 was increased by UV-B irradiation. Enzyme activity assay in vitro showed that PnPHR1 exhibited photoreactivation activity, which can repair CPD photoproducts in a light-dependent manner. The complementation assay of repair-deficient E. coli strain SY2 demonstrated that PnPHR1 gene enhanced the survival rate of SY2 strain after UV-B radiation. Additionally, overexpression of PnPHR1 enhanced the Arabidopsis resistance to UV-B radiation and salinity stress, which also conferred plant tolerance to oxidative stress by decreasing ROS production and increasing ROS clearance. Our work shows that PnPHR1 encodes an active CPD photolyase, which may participate in the adaptation of P. nutans to polar environments.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Liu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China; Medical Administration Department, Shinan District Health Bureau, Qingdao, 266073, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Guihua Feng
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Paixão FRS, Huarte-Bonnet C, Ribeiro-Silva CDS, Mascarin GM, Fernandes ÉKK, Pedrini N. Tolerance to Abiotic Factors of Microsclerotia and Mycelial Pellets From Metarhizium robertsii, and Molecular and Ultrastructural Changes During Microsclerotial Differentiation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:654737. [PMID: 37744155 PMCID: PMC10512246 DOI: 10.3389/ffunb.2021.654737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/05/2021] [Indexed: 09/26/2023]
Abstract
Metarhizium species fungi are able to produce resistant structures termed microsclerotia, formed by compact and melanized threads of hyphae. These propagules are tolerant to desiccation and produce infective conidia; thus, they are promising candidates to use in biological control programs. In this study, we investigated the tolerance to both ultraviolet B (UV-B) radiation and heat of microsclerotia of Metarhizium robertsii strain ARSEF 2575. We also adapted the liquid medium and culture conditions to obtain mycelial pellets from the same isolate in order to compare these characteristics between both types of propagules. We followed the peroxisome biogenesis and studied the oxidative stress during differentiation from conidia to microsclerotia by transmission electron microscopy after staining with a peroxidase activity marker and by the expression pattern of genes potentially involved in these processes. We found that despite their twice smaller size, microsclerotia exhibited higher dry biomass, yield, and conidial productivity than mycelial pellets, both with and without UV-B and heat stresses. From the 16 genes measured, we found an induction after 96-h differentiation in the oxidative stress marker genes MrcatA, MrcatP, and Mrgpx; the peroxisome biogenesis factors Mrpex5 and Mrpex14/17; and the photoprotection genes Mrlac1 and Mrlac2; and Mrlac3. We concluded that an oxidative stress scenario is induced during microsclerotia differentiation in M. robertsii and confirmed that because of its tolerance to desiccation, heat, and UV-B, this fungal structure could be an excellent candidate for use in biological control of pests under tropical and subtropical climates where heat and UV radiation are detrimental to entomopathogenic fungi survival and persistence.
Collapse
Affiliation(s)
- Flávia R. S. Paixão
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Gabriel M. Mascarin
- Laboratório de Microbiologia Ambiental, Empresa Brasileira de Pesquisa Agropecuária–Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Éverton K. K. Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
12
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
13
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
14
|
Bernardo CDC, Pereira-Junior RA, Luz C, Mascarin GM, Kamp Fernandes ÉK. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Fungal Biol 2020; 124:714-722. [PMID: 32690253 DOI: 10.1016/j.funbio.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023]
Abstract
We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m-2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.
Collapse
Affiliation(s)
- Cíntia das Chagas Bernardo
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Ronaldo Alves Pereira-Junior
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Christian Luz
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Gabriel Moura Mascarin
- Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente, Jaguariúna, SP, 13820-000, Brazil
| | - Éverton Kort Kamp Fernandes
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
15
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 PMCID: PMC7438019 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
16
|
Tagua VG, Navarro E, Gutiérrez G, Garre V, Corrochano LM. Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides. Fungal Biol 2019; 124:338-351. [PMID: 32389296 DOI: 10.1016/j.funbio.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The transcription of about 5-10 % of the genes in Phycomyces blakesleeanus is regulated by light. Among the most up-regulated, we have identified four genes, crgA-D, with similarity to crgA of Mucor circinelloides, a gene encoding a repressor of light-inducible carotenogenesis. The four proteins have the same structure with two RING RING Finger domains and a LON domain, suggesting that they could act as ubiquitin ligases, as their M. circinelloides homolog. The expression of these genes is induced by light with different thresholds as in other Mucoromycotina fungi like Blakeslea trispora and M. circinelloides. Only the P. blakesleeanus crgD gene could restore the wild type phenotype in a M. circinelloides null crgA mutant suggesting that P. blakesleeanus crgD is the functional homolog of crgA in M. circinelloides. Despite their sequence similarity it is possible that the P. blakesleeanus Crg proteins do not participate in the regulation of beta-carotene biosynthesis since none of the carotene-overproducing mutants of P. blakesleeanus had mutations in any of the crg genes. Our results provide further support of the differences in the regulation of the biosynthesis of beta-carotene in these two Mucoromycotina fungi.
Collapse
Affiliation(s)
- Víctor G Tagua
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain; Present address: Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
| |
Collapse
|
17
|
Brancini GTP, Ferreira MES, Rangel DEN, Braga GÚL. Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum. G3 (BETHESDA, MD.) 2019; 9:2951-2961. [PMID: 31292157 PMCID: PMC6723126 DOI: 10.1534/g3.119.400430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
Light is an important stimulus for fungi as it regulates many diverse and important biological processes. Metarhizium acridum is an entomopathogenic fungus currently used for the biological control of insect pests. The success of this approach is heavily dependent on tolerance to environmental stresses. It was previously reported that light exposure increases tolerance to ultraviolet radiation in M. acridum There is no information in the literature about how light globally influences gene expression in this fungus. We employed a combination of mRNA-Sequencing and high-throughput proteomics to study how light regulates gene expression both transcriptionally and post-transcriptionally. Mycelium was exposed to light for 5 min and changes at the mRNA and protein levels were followed in time-course experiments for two and four hours, respectively. After light exposure, changes in mRNA abundance were observed for as much as 1128 genes or 11.3% of the genome. However, only 57 proteins changed in abundance and at least 347 significant changes at the mRNA level were not translated to the protein level. We observed that light downregulated subunits of the eukaryotic translation initiation factor 3, the eIF5A-activating enzyme deoxyhypusine hydroxylase, and ribosomal proteins. We hypothesize that light is perceived as a stress by the cell that responds to it by reducing translational activity. Overall, our results indicate that light acts both as a signal and a stressor to M. acridum and highlight the importance of measuring protein levels in order to fully understand light responses in fungi.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil and
| | - Márcia E S Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil and
| | | | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil and
| |
Collapse
|
18
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|