1
|
Masoudi A, Joseph RA, Keyhani NO. Viral- and fungal-mediated behavioral manipulation of hosts: summit disease. Appl Microbiol Biotechnol 2024; 108:492. [PMID: 39441364 PMCID: PMC11499535 DOI: 10.1007/s00253-024-13332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. KEY POINTS: • Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal. • Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms. • Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
Collapse
Affiliation(s)
- Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Ross A Joseph
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Stajich JE, Lovett B, Lee E, Macias AM, Hajek AE, de Bivort BL, Kasson MT, De Fine Licht HH, Elya C. Signatures of transposon-mediated genome inflation, host specialization, and photoentrainment in Entomophthora muscae and allied entomophthoralean fungi. eLife 2024; 12:RP92863. [PMID: 38767950 PMCID: PMC11105155 DOI: 10.7554/elife.92863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae's species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-RiversideRiversideUnited States
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARSIthacaUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angie M Macias
- Division of Plant and Soil Sciences, West Virginia UniversityMorgantownUnited States
| | - Ann E Hajek
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Benjamin L de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia UniversityMorgantownUnited States
| | - Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagenDenmark
| | - Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
3
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
4
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Will I, Beckerson WC, de Bekker C. Using machine learning to predict protein-protein interactions between a zombie ant fungus and its carpenter ant host. Sci Rep 2023; 13:13821. [PMID: 37620441 PMCID: PMC10449854 DOI: 10.1038/s41598-023-40764-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Parasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host responses. These proteins, classified as a type of "effector," often act via protein-protein interactions (PPIs). The fungal parasite Ophiocordyceps camponoti-floridani (zombie ant fungus) manipulates Camponotus floridanus (carpenter ant) behavior to promote transmission. The most striking aspect of this behavioral change is a summit disease phenotype where infected hosts ascend and attach to an elevated position. Plausibly, interspecific PPIs drive aspects of Ophiocordyceps infection and host manipulation. Machine learning PPI predictions offer high-throughput methods to produce mechanistic hypotheses on how this behavioral manipulation occurs. Using D-SCRIPT to predict host-parasite PPIs, we found ca. 6000 interactions involving 2083 host proteins and 129 parasite proteins, which are encoded by genes upregulated during manipulated behavior. We identified multiple overrepresentations of functional annotations among these proteins. The strongest signals in the host highlighted neuromodulatory G-protein coupled receptors and oxidation-reduction processes. We also detected Camponotus structural and gene-regulatory proteins. In the parasite, we found enrichment of Ophiocordyceps proteases and frequent involvement of novel small secreted proteins with unknown functions. From these results, we provide new hypotheses on potential parasite effectors and host targets underlying zombie ant behavioral manipulation.
Collapse
Affiliation(s)
- Ian Will
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| | - William C Beckerson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Charissa de Bekker
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
7
|
Parasitic manipulation or by-product of infection: an experimental approach using trematode-infected snails. J Helminthol 2022; 96:e2. [PMID: 34991736 DOI: 10.1017/s0022149x21000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural selection should favour parasite genotypes that manipulate hosts in ways that enhance parasite fitness. However, it is also possible that the effects of infection are not adaptive. Here we experimentally examined the phenotypic effects of infection in a snail-trematode system. These trematodes (Atriophallophorus winterbourni) produce larval cysts within the snail's shell (Potamopyrgus antipodarum); hence the internal shell volume determines the total number of parasite cysts produced. Infected snails in the field tend to be larger than uninfected snails, suggesting the hypothesis that parasites manipulate host growth so as to increase the space available for trematode reproduction. To test the hypothesis, we exposed juvenile snails to trematode eggs. Snails were then left to grow for about one year in 800-l outdoor mesocosms. We found that uninfected males were smaller than uninfected females (sexual dimorphism). We also found that infection did not affect the shell dimensions of males. However, infected females were smaller than uninfected females. Hence, infection stunts the growth of females, and (contrary to the hypothesis) it results in a smaller internal volume for larval cysts. Finally, infected females resembled males in size and shape, suggesting the possibility that parasitic castration prevents the normal development of females. These results thus indicate that the parasite is not manipulating the growth of infected hosts so as to increase the number of larval cysts, although alternative adaptive explanations are possible.
Collapse
|
8
|
Elya C, De Fine Licht HH. The genus Entomophthora: bringing the insect destroyers into the twenty-first century. IMA Fungus 2021; 12:34. [PMID: 34763728 PMCID: PMC8588673 DOI: 10.1186/s43008-021-00084-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
The fungal genus Entomophthora consists of highly host-specific pathogens that cause deadly epizootics in their various insect hosts. The most well-known among these is the "zombie fly" fungus E. muscae, which, like other Entomophthora species, elicits a series of dramatic behaviors in infected hosts to promote optimal spore dispersal. Despite having been first described more than 160 years ago, there are still many open questions about Entomophthora biology, including the molecular underpinnings of host behavior manipulation and host specificity. This review provides a comprehensive overview of our current understanding of the biology of Entomophthora fungi and enumerates the most pressing outstanding questions that should be addressed in the field. We briefly review the discovery of Entomophthora and provide a summary of the 21 recognized Entomophthora species, including their type hosts, methods of transmission (ejection of spores after or before host death), and for which molecular data are available. Further, we argue that this genus is globally distributed, based on a compilation of Entomophthora records in the literature and in online naturalist databases, and likely to contain additional species. Evidence for strain-level specificity of hosts is summarized and directly compared to phylogenies of Entomophthora and the class Insecta. A detailed description of Entomophthora's life-cycle and observed manipulated behaviors is provided and used to summarize a consensus for ideal growth conditions. We discuss evidence for Entomophthora's adaptation to growth exclusively inside insects, such as producing wall-less hyphal bodies and a unique set of subtilisin-like proteases to penetrate the insect cuticle. However, we are only starting to understand the functions of unusual molecular and genomic characteristics, such as having large > 1 Gb genomes full of repetitive elements and potential functional diploidy. We argue that the high host-specificity and obligate life-style of most Entomophthora species provides ample scope for having been shaped by close coevolution with insects despite the current general lack of such evidence. Finally, we propose six major directions for future Entomophthora research and in doing so hope to provide a foundation for future studies of these fungi and their interaction with insects.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| |
Collapse
|
9
|
Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021; 24:18-29. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect-microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect-microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect-microbe associations.
Collapse
Affiliation(s)
- Corentin Iltis
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium.,UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Vincent Foray
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc Grandmont, Tours, 37200, France
| |
Collapse
|
10
|
Csata E, Billen J, Barbu-Tudoran L, Markó B. Inside Pandora's box: Development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
St. Leger RJ, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol 2020; 10:200307. [PMID: 33292103 PMCID: PMC7776561 DOI: 10.1098/rsob.200307] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.
Collapse
|
12
|
Wang JB, Elya C, St Leger RJ. Genetic variation for resistance to the specific fly pathogen Entomophthora muscae. Sci Rep 2020; 10:14284. [PMID: 32868814 PMCID: PMC7459287 DOI: 10.1038/s41598-020-71262-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
We found substantial variation in resistance to the fly-specific pathogen Entomophthora muscae 'Berkeley' (Entomophthoromycota), in 20 lines from the Drosophila melanogaster Genetic Reference Panel (DGRP). Resistance to E. muscae is positively (r = 0.55) correlated with resistance to the broad host range ascomycete entomopathogen Metarhizium anisopliae (Ma549), indicative of generalist (non-specific) defenses. Most of the lines showing above average resistance to Ma549 showed cross-resistance to E. muscae. However, lines that succumbed quickly to Ma549 exhibited the full range of resistance to E. muscae. This suggests fly populations differ in E. muscae-specific resistance mechanisms as well as generic defences effective against both Ma549 and E. muscae. We looked for trade-offs that could account for inter-line variation, but increases (decreases) in disease resistance to E. muscae are not consistently associated with increases (decreases) of resistance to oxidative stress, starvation stress and sleep indices. That these pathogens are dynamic agents of selection on hosts is reflected in this genetic variation for resistance in lines derived from wild populations.
Collapse
Affiliation(s)
- Jonathan B Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|