1
|
K M K, N U, S K. Conformational dynamics and ribosomal interactions of Bacillus subtilis Obg in various nucleotide-bound states: Insights from molecular dynamics simulation. Int J Biol Macromol 2024; 279:135337. [PMID: 39241998 DOI: 10.1016/j.ijbiomac.2024.135337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Obg, a GTPase, binds to the premature 50S ribosomal subunit and facilitates recruitment of rproteins and rRNA processing to form the mature 50S subunit. This binding depends on nucleotide-induced conformational changes (GDP/GTP). However, the mechanism by which Obg undergoes conformational changes to associate with the premature 50S subunit is unknown. Therefore, 1000 ns molecular dynamics simulations were conducted to investigate this mechanism. Visualization of the simulated trajectory showed that in GDP and GTP-bound states, the C-domain moved towards the SwI region, while in GTP-Mg2+ and ppGpp-bound states, the C-domain shifted towards the N-tails. Further, positioning these conformations of Obg on the 50S subunit suggests possible mechanisms by which the GTP-Mg2+ bound state is responsible for recruiting rprotein, as well as the impact of the absence of Mg2+ in the GTP-bound state. Furthermore, the study provides insights into the conformational changes that may lead to the dissociation of the GDP-bound state from the 50S subunit and explores the potential role of the ppGpp-bound state in inhibiting 70S ribosome formation. Additionally, RMSF and community network analyses reveal how internal dynamics and intricate connections within Obg affect C-domain motion.
Collapse
Affiliation(s)
- Kavya K M
- Department of Studies in Physics, University of Mysore, Mysuru, India.
| | - Upendra N
- Center for Research and Innovations, Faculty of Natural Sciences, Adichunchanagiri University, B.G.Nagara, India.
| | - Krishnaveni S
- Department of Studies in Physics, University of Mysore, Mysuru, India.
| |
Collapse
|
2
|
Rodríguez CS, Laurents DV. Architectonic principles of polyproline II helix bundle protein domains. Arch Biochem Biophys 2024; 756:109981. [PMID: 38593862 DOI: 10.1016/j.abb.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Glycine rich polyproline II helix assemblies are an emerging class of natural domains found in several proteins with different functions and diverse origins. The distinct properties of these domains relative to those composed of α-helices and β-sheets could make glycine-rich polyproline II helix assemblies a useful building block for protein design. Whereas the high population of polyproline II conformers in disordered state ensembles could facilitate glycine-rich polyproline II helix folding, the architectonic bases of these structures are not well known. Here, we compare and analyze their structures to uncover common features. These protein domains are found to be highly tolerant of distinct flanking sequences. This speaks to the robustness of this fold and strongly suggests that glycine rich polyproline II assemblies could be grafted with other protein domains to engineer new structures and functions. These domains are also well packed with few or no cavities. Moreover, a significant trend towards antiparallel helix configuration is observed in all these domains and could provide stabilizing interactions among macrodipoles. Finally, extensive networks of Cα-H···OC hydrogen bonds are detected in these domains. Despite their diverse evolutionary origins and activities, glycine-rich polyproline II helix assemblies share architectonic features which could help design novel proteins.
Collapse
Affiliation(s)
| | - Douglas V Laurents
- Instituto de Química Física "Blas Cabrera" CSIC, Serrano 119 Madrid, Spain.
| |
Collapse
|
3
|
Das S, Datta PP. Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae. Arch Microbiol 2022; 204:617. [PMID: 36097213 DOI: 10.1007/s00203-022-03233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
CgtA, a highly conserved 50S ribosome-associated essential GTPase, acts as a repressor of the stringent stress response under nutrient-rich growth conditions to suppress basal levels of the alarmone ppGpp in V. cholerae. To further explore the in vivo functionality of CgtA, we introduced an amino acid substitution, i.e., Gly98Asp, in a conserved glycine residue in the N-terminal domain. The constructed V. cholerae mutant was designated CgtA(G98D). Comparison of cell sizes of the CgtA(G98D)mutant with its isogenic wild-type (Wt) strain N16961 under different phases of growth by Transmission Electron Microscopy (TEM) and statistical analysis suggests that CgtA may control the cell size of V. cholerae. The cell length is significantly reduced, corresponding to the delayed growth in the mid-logarithmic phase. The differences in the cell length of CgtA(G98D) and Wt are indistinguishable in the late logarithmic phase. During the stationary phase, marked by higher OD600, a sub-population of CgtA(G98D) cells outnumbered the Wt cells lengthwise. CgtA(G98D) cells appeared slenderer than Wt cells with significantly reduced cell width. However, the centerline curvature is preserved in CgtA(G98D) cells. We propose that in addition to its multitude of intracellular roles, CgtA may influence the cell size of V. cholerae.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India.
| |
Collapse
|
4
|
Chakraborty A, Halder S, Kishore P, Saha D, Saha S, Sikder K, Basu A. The structure-function analysis of Obg-like GTPase proteins along the evolutionary tree from bacteria to humans. Genes Cells 2022; 27:469-481. [PMID: 35610748 PMCID: PMC9545696 DOI: 10.1111/gtc.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Obg proteins belong to P-loop guanine triphosphatase (GTPase) that are conserved from bacteria to humans. Like other GTPases, Obg cycles between guanine triphosphate (GTP) bound "on" state and guanine diphosphate (GDP)-bound "off" state, thereby controlling various cellular processes. Different members of this group have unique structural characteristics; a conserved glycine-rich N-terminal domain known as obg fold, a central conserved nucleotide binding domain, and a less conserved C-terminal domain of other functions. Obg is a ribosome dependent GTPase helps in ribosome maturation by interacting with several proteins of the 50S subunit of the ribosome. Obg proteins have been widely considered as a regulator of cellular functions, helping in DNA replication, cell division. Apart from that, this protein also takes part in various stress adaptation pathways like a stringent response, sporulation, and general stress response. In this particular review, the structural features of ObgE have been highlighted and how the structure plays important role in interacting with regulators like GTP, ppGpp that are crucial for executing biological function has been orchestrated. In particular, we believe that Obg-like proteins can provide a link between different global pathways that are necessary for fine-tuning cellular processes to maintain the cellular energy status.
Collapse
Affiliation(s)
- Asmita Chakraborty
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sheta Halder
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Purvi Kishore
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Disha Saha
- Department of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Sujata Saha
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Kunal Sikder
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- JIVAN, Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
5
|
GTP Binding is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE. Int J Mol Sci 2019; 21:ijms21010016. [PMID: 31861427 PMCID: PMC6982127 DOI: 10.3390/ijms21010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*–GTP, but not ObgE*–GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.
Collapse
|
6
|
Attenuation of a Pathogenic Mycoplasma Strain by Modification of the obg Gene by Using Synthetic Biology Approaches. mSphere 2019; 4:4/3/e00030-19. [PMID: 31118296 PMCID: PMC6531878 DOI: 10.1128/msphere.00030-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Animal diseases due to mycoplasmas are a major cause of morbidity and mortality associated with economic losses for farmers all over the world. Currently used mycoplasma vaccines exhibit several drawbacks, including low efficacy, short time of protection, adverse reactions, and difficulty in differentiating infected from vaccinated animals. Therefore, there is a need for improved vaccines to control animal mycoplasmoses. Here, we used genome engineering tools derived from synthetic biology approaches to produce targeted mutations in the essential GTPase-encoding obg gene of Mycoplasma mycoides subsp. capri. Some of the resulting mutants exhibited a marked temperature-sensitive phenotype. The virulence of one of the obg mutants was evaluated in a caprine septicemia model and found to be strongly reduced. Although the obg mutant reverted to a virulent phenotype in one infected animal, we believe that these results contribute to a strategy that should help in building new vaccines against animal mycoplasmoses. Mycoplasma species are responsible for several economically significant livestock diseases for which there is a need for new and improved vaccines. Most of the existing mycoplasma vaccines are attenuated strains that have been empirically obtained by serial passages or by chemical mutagenesis. The recent development of synthetic biology approaches has opened the way for the engineering of live mycoplasma vaccines. Using these tools, the essential GTPase-encoding gene obg was modified directly on the Mycoplasma mycoides subsp. capri genome cloned in yeast, reproducing mutations suspected to induce a temperature-sensitive (TS+) phenotype. After transplantation of modified genomes into a recipient cell, the phenotype of the resulting M. mycoides subsp. capri mutants was characterized. Single-point obg mutations did not result in a strong TS+ phenotype in M. mycoides subsp. capri, but a clone presenting three obg mutations was shown to grow with difficulty at temperatures of ≥40°C. This particular mutant was then tested in a caprine septicemia model of M. mycoides subsp. capri infection. Five out of eight goats infected with the parental strain had to be euthanized, in contrast to one out of eight goats infected with the obg mutant, demonstrating an attenuation of virulence in the mutant. Moreover, the strain isolated from the euthanized animal in the group infected with the obg mutant was shown to carry a reversion in the obg gene associated with the loss of the TS+ phenotype. This study demonstrates the feasibility of building attenuated strains of mycoplasma that could contribute to the design of novel vaccines with improved safety. IMPORTANCE Animal diseases due to mycoplasmas are a major cause of morbidity and mortality associated with economic losses for farmers all over the world. Currently used mycoplasma vaccines exhibit several drawbacks, including low efficacy, short time of protection, adverse reactions, and difficulty in differentiating infected from vaccinated animals. Therefore, there is a need for improved vaccines to control animal mycoplasmoses. Here, we used genome engineering tools derived from synthetic biology approaches to produce targeted mutations in the essential GTPase-encoding obg gene of Mycoplasma mycoides subsp. capri. Some of the resulting mutants exhibited a marked temperature-sensitive phenotype. The virulence of one of the obg mutants was evaluated in a caprine septicemia model and found to be strongly reduced. Although the obg mutant reverted to a virulent phenotype in one infected animal, we believe that these results contribute to a strategy that should help in building new vaccines against animal mycoplasmoses.
Collapse
|
7
|
Chatterjee A, Acharjee A, Das S, Datta PP. Deletion analyses reveal insights into the domain specific activities of an essential GTPase CgtA in Vibrio cholerae. Arch Biochem Biophys 2019; 665:143-151. [PMID: 30894284 DOI: 10.1016/j.abb.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
CgtA is an essential bacterial GTPase protein involved in multiple cellular activities. In the presence of 50S ribosome, its GTPase activity increases significantly. Through sequential deletions of CgtA protein of Vibrio cholerae (CgtAvc) we found that its N terminal Obg domain is essential for ribosome binding and augmenting the ribosome mediated GTPase activity. Strategic deletions of the three glycine rich loops of Obg domain revealed that loop 1 of Obg domain is involved in anchoring the protein into the 50S, whereas, loop 2 & loop 3 are involved in conveying the effect of interaction of the Obg domain with the 50S to the GTPase domain through an interdomain linker, followed by GTP hydrolysis. On the other hand, the non-conserved C-terminal domain (CTD) is not directly involved in ribosome binding but shows negative impact on GTPase activity.
Collapse
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India; Viral Research and Diagnostic Laboratories, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, P.O. Box-177, Kolkata, 700 010, West Bengal, India
| | - Arita Acharjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
8
|
Abstract
AbstractRibosome assembly is critical for translation and regulating the response to cellular events and requires a complex interplay of ribosomal RNA and proteins with assembly factors. We investigated putative participants in the biogenesis of the reduced organellar ribosomes of Plasmodium falciparum and identified homologues of two assembly GTPases – EngA and Obg that were found in mitochondria. Both are indispensable in bacteria and P. berghei EngA is among the ‘essential’ parasite blood stage proteins identified recently. PfEngA and PfObg1 interacted with parasite mitoribosomes in vivo. GTP stimulated PfEngA interaction with the 50S subunit of Escherichia coli surrogate ribosomes. Although PfObg1–ribosome interaction was independent of nucleotide binding, GTP hydrolysis by PfObg1 was enhanced upon ribosomal association. An additional function for PfObg1 in mitochondrial DNA transactions was suggested by its specific interaction with the parasite mitochondrial genome in vivo. Deletion analysis revealed that the positively-charged OBG (spoOB-associated GTP-binding protein) domain mediates DNA-binding. A role for PfEngA in mitochondrial genotoxic stress response was indicated by its over-expression upon methyl methanesulfonate-induced DNA damage. PfEngA had lower sensitivity to an E. coli EngA inhibitor suggesting differences with bacterial counterparts. Our results show the involvement of two important GTPases in P. falciparum mitochondrial function, with the first confirmed localization of an EngA homologue in eukaryotic mitochondria.
Collapse
|
9
|
Rice TSV3 Encoding Obg-Like GTPase Protein Is Essential for Chloroplast Development During the Early Leaf Stage Under Cold Stress. G3-GENES GENOMES GENETICS 2018; 8:253-263. [PMID: 29162684 PMCID: PMC5765353 DOI: 10.1534/g3.117.300249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Spo0B-associated GTP-binding (Obg) proteins are essential for the viability of nearly all bacteria. However, the detailed roles of Obg proteins in higher plants have not yet been elucidated. In this study, we identified a novel rice (Oryza sativa L.) thermo-sensitive virescent mutant (tsv3) that displayed an albino phenotype at 20° before the three-leaf stage while being a normal green at 32° or even at 20° after the four-leaf stage. The mutant phenotype was consistent with altered chlorophyll content and chloroplast structure in leaves. Map-based cloning and complementation experiments showed that TSV3 encoded a small GTP-binding protein. Subcellular localization studies revealed that TSV3 was localized to the chloroplasts. Expression of TSV3 was high in leaves and weak or undetectable in other tissues, suggesting a tissue-specific expression of TSV3 In the tsv3 mutant, expression levels of genes associated with the biogenesis of the chloroplast ribosome 50S subunit were severely decreased at the three-leaf stage under cold stress (20°), but could be recovered to normal levels at a higher temperature (32°). These observations suggest that the rice nuclear-encoded TSV3 plays important roles in chloroplast development at the early leaf stage under cold stress.
Collapse
|
10
|
Warkentin E, Weidenweber S, Schühle K, Demmer U, Heider J, Ermler U. A rare polyglycine type II-like helix motif in naturally occurring proteins. Proteins 2017; 85:2017-2023. [DOI: 10.1002/prot.25355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Eberhard Warkentin
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Sina Weidenweber
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Karola Schühle
- Laboratorium für Mikrobiologie; Fachbereich Biologie and SYNMIKRO, Philipps-Universität; Marburg 35032 Germany
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| | - Johann Heider
- Laboratorium für Mikrobiologie; Fachbereich Biologie and SYNMIKRO, Philipps-Universität; Marburg 35032 Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3; Frankfurt am Main 60438 Germany
| |
Collapse
|
11
|
Kumar V, Tomar AK, Sahu V, Dey S, Yadav S. Structural insights of Mycobacterium GTPase-Obg and anti-sigma-F factor Usfx interaction. J Mol Recognit 2017; 30. [PMID: 28470740 DOI: 10.1002/jmr.2636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 03/26/2017] [Indexed: 11/08/2022]
Abstract
An essential protein for bacterial growth, GTPase-Obg (Obg), is known to play an unknown but crucial role in stress response as its expression increases in Mycobacterium under stress conditions. It is well reported that Obg interacts with anti-sigma-F factor Usfx; however, a detailed analysis and structural characterization of their physical interaction remain undone. In view of above-mentioned points, this study was conceptualized for performing binding analysis and structural characterization of Obg-Usfx interaction. The binding studies were performed by surface plasmon resonance, while in silico docking analysis was done to identify crucial residues responsible for Obg-Usfx interaction. Surface plasmon resonance results clearly suggest that N-terminal and G domains of Obg mainly contribute to Usfx binding. Also, binding constants display strong affinity that was further evident by intermolecular hydrogen bonds and hydrophobic interactions in the predicted complex. Strong interaction between Obg and Usfx supports the view that Obg plays an important role in stress response, essentially required for Mycobacterium survival. As concluded by various studies that Obg is crucial for Mycobacterium survival under stress, this structural information may help us in designing novel and potential inhibitors against resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vishal Sahu
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
13
|
Esipova NG, Tumanyan VG. Omnipresence of the polyproline II helix in fibrous and globular proteins. Curr Opin Struct Biol 2017; 42:41-49. [DOI: 10.1016/j.sbi.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
14
|
Chatterjee A, Datta PP. Intrinsic GTPase activity of a ribosomal maturation protein CgtA is associated with its inter-domain movement: insights from MD simulations and biochemical studies. J Biomol Struct Dyn 2016; 35:2578-2587. [PMID: 27677930 DOI: 10.1080/07391102.2016.1224732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Partha P. Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
15
|
Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol 2016; 101:531-44. [PMID: 27149325 DOI: 10.1111/mmi.13412] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| | - Gert Bange
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| |
Collapse
|
16
|
Bonventre JA, Zielke RA, Korotkov KV, Sikora AE. Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics. PLoS One 2016; 11:e0148222. [PMID: 26848972 PMCID: PMC4743925 DOI: 10.1371/journal.pone.0148222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
A promising new drug target for the development of novel broad-spectrum antibiotics is the highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent sexually transmitted disease resulting in serious consequences on reproductive and neonatal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective antibiotic treatments are increasingly limited. To address the dire need for alternative antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to identify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was validated with a pilot screen of 40,000 compounds and achieved an average Z’ value of 0.58 ± 0.02, which suggests a robust assay amenable to high-throughput screening. We developed secondary assessments for identified lead compounds that utilize the interaction between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP, and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed using the colorimetric and fluorescence-based activity assays. These approaches can be useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle against multidrug resistant bacteria.
Collapse
Affiliation(s)
- Josephine A. Bonventre
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97330, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zielke RA, Wierzbicki IH, Baarda BI, Sikora AE. The Neisseria gonorrhoeae Obg protein is an essential ribosome-associated GTPase and a potential drug target. BMC Microbiol 2015; 15:129. [PMID: 26122105 PMCID: PMC4487204 DOI: 10.1186/s12866-015-0453-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria gonorrhoeae (GC) is a Gram-negative pathogen that most commonly infects mucosal surfaces, causing sexually transmitted urethritis in men and endocervicitis in women. Serious complications associated with these infections are frequent and include pelvic inflammatory disease, ectopic pregnancy, and infertility. The incidence of gonorrhea cases remains high globally while antibiotic treatment options, the sole counter measures against gonorrhea, are declining due to the remarkable ability of GC to acquire resistance. Evaluating of potential drug targets is essential to provide opportunities for developing antimicrobials with new mechanisms of action. We propose the GC Obg protein, belonging to the Obg/CgtA GTPase subfamily, as a potential target for the development of therapeutic interventions against gonorrhea, and in this study perform its initial functional and biochemical characterization. Results We report that NGO1990 encodes Obg protein, which is an essential factor for GC viability, associates predominantly with the large 50S ribosomal subunit, and is stably expressed under conditions relevant to infection of the human host. The anti-Obg antisera cross-reacts with a panel of contemporary GC clinical isolates, demonstrating the ubiquitous nature of Obg. The cellular levels of Obg reach a maximum in the early logarithmic phase and remain constant throughout bacterial growth. The in vitro binding and hydrolysis of the fluorescent guanine nucleotide analogs mant-GTP and mant-GDP by recombinant wild type and T192AT193A mutated variants of Obg are also assessed. Conclusions Characterization of the GC Obg at the molecular and functional levels presented herein may facilitate the future targeting of this protein with small molecule inhibitors and the evaluation of identified lead compounds for bactericidal activity against GC and other drug-resistant bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0453-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Igor H Wierzbicki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| |
Collapse
|
18
|
Chatterjee A, Datta PP. Two conserved amino acids of juxtaposed domains of a ribosomal maturation protein CgtA sustain its optimal GTPase activity. Biochem Biophys Res Commun 2015; 461:636-41. [PMID: 25912137 DOI: 10.1016/j.bbrc.2015.04.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022]
Abstract
CgtA is a highly conserved ribosome binding protein involved in ribosome biogenesis and associated with stringent response. It is a 55 KDa GTPase protein consisting of GTPase, Obg and C-terminal domains. The function of the latter two domains was not clear and despite the importance, the mode of action of CgtA is still largely unknown. Knocking out of CgtA gene is lethal and mutations lead to growth, sporulation and developmental defects in bacteria. It was found that a growth defect and pinhole size colony morphology of Bacillus subtilis was associated with a Gly92Asp point mutation on the Obg domain of its CgtA protein, instead of its GTPase domain. CgtA is an important and essential protein of the deadly diarrhea causing bacteria Vibrio cholerae and in order to investigate the mode of action of the V. cholerae CgtA we have utilized this information. We measured the GTPase activity of V. cholerae CgtA (CgtAvc) protein in the presence of purified ribosome. Our results showed 5-fold increased GTP hydrolysis activity compared to its intrinsic activity. Then we explored the GTPase activity of the mutated CgtAvc (Gly98Asp) located at the Obg domain, which reduced the GTP hydrolysis rate to half. The double point mutations (Gly98Asp, and Tyr194Gly) encompassing another conserved residue, Tyr194, located at the diagonally opposite position in the GTPase domain largely restored (about 82%) the reduced GTPase activity, revealing a fine-tuned inter-domain movement readily associated with the GTPase activity of CgtA and thus maintaining the proper functioning of the CgtA protein.
Collapse
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
19
|
Chebrek R, Leonard S, de Brevern AG, Gelly JC. PolyprOnline: polyproline helix II and secondary structure assignment database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau102. [PMID: 25380779 PMCID: PMC4224144 DOI: 10.1093/database/bau102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polyproline helix type II (PPII) is a regular protein secondary structure with remarkable features. Many studies have highlighted different crucial biological roles supported by this local conformation, e.g. in the interactions between biological macromolecules. Although PPII is less frequently present than regular secondary structures such as canonical alpha helices and beta strands, it corresponds to 3–10% of residues. Up to now, PPII is not assigned by most popular assignment tools, and therefore, remains insufficiently studied. PolyprOnline database is, therefore, dedicated to PPII structure assignment and analysis to facilitate the study of PPII structure and functional roles. This database is freely accessible from www.dsimb.inserm.fr/dsimb_tools/polyproline.
Collapse
Affiliation(s)
- Romain Chebrek
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Sylvain Leonard
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Alexandre G de Brevern
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Christophe Gelly
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
20
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
21
|
Feng B, Mandava CS, Guo Q, Wang J, Cao W, Li N, Zhang Y, Zhang Y, Wang Z, Wu J, Sanyal S, Lei J, Gao N. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 2014; 12:e1001866. [PMID: 24844575 PMCID: PMC4028186 DOI: 10.1371/journal.pbio.1001866] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/10/2014] [Indexed: 01/13/2023] Open
Abstract
Kinetics and cryo-electronmicroscopy data provide insights into GTPase ObgE’s role as a ribosome anti-association factor that is modulated by nutrient availability, coupling growth control to ribosome biosynthesis and protein translation. Obg proteins are a family of P-loop GTPases, conserved from bacteria to human. The Obg protein in Escherichia coli (ObgE) has been implicated in many diverse cellular functions, with proposed molecular roles in two global processes, ribosome assembly and stringent response. Here, using pre-steady state fast kinetics we demonstrate that ObgE is an anti-association factor, which prevents ribosomal subunit association and downstream steps in translation by binding to the 50S subunit. ObgE is a ribosome dependent GTPase; however, upon binding to guanosine tetraphosphate (ppGpp), the global regulator of stringent response, ObgE exhibits an enhanced interaction with the 50S subunit, resulting in increased equilibrium dissociation of the 70S ribosome into subunits. Furthermore, our cryo-electron microscopy (cryo-EM) structure of the 50S·ObgE·GMPPNP complex indicates that the evolutionarily conserved N-terminal domain (NTD) of ObgE is a tRNA structural mimic, with specific interactions with peptidyl-transferase center, displaying a marked resemblance to Class I release factors. These structural data might define ObgE as a specialized translation factor related to stress responses, and provide a framework towards future elucidation of functional interplay between ObgE and ribosome-associated (p)ppGpp regulators. Together with published data, our results suggest that ObgE might act as a checkpoint in final stages of the 50S subunit assembly under normal growth conditions. And more importantly, ObgE, as a (p)ppGpp effector, might also have a regulatory role in the production of the 50S subunit and its participation in translation under certain stressed conditions. Thus, our findings might have uncovered an under-recognized mechanism of translation control by environmental cues. GTPases commonly act as molecular switches in biological systems. By oscillating between two conformational states, depending on the type of guanine nucleotide bound (GTP or GDP), GTPases are essential regulators of many aspects of cell biology. Additional levels of regulation can be acquired through the synthesis of other guanine nucleotide derivatives that target GTPases; for instance, when nutrients are limited, bacterial cells produce guanine tetraphosphate/pentaphosphate—(p)ppGpp—as part of the “stringent response” to adjust the balance between growth and survival. ObgE is a GTPase with many reported cellular functions that include ribosome biogenesis, but none of its functions is understood at the molecular level. Here we characterize, both biochemically and structurally, the binding of ObgE to its cellular partner, the 50S ribosomal subunit. Our results show that ObgE is an anti-association factor, which binds to the 50S subunit to block the formation of the 70S ribosome, thereby inhibiting the initiation of translation. Furthermore, the binding and anti-association activities of ObgE are regulated by guanine nucleotides, as well as by (p)ppGpp. We thus propose that ObgE is a checkpoint protein in the assembly of the 50S subunit, which senses the cellular energy stress via levels of (p)ppGpp and links ribosome assembly to other global growth control pathways.
Collapse
Affiliation(s)
- Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Qiang Guo
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Cao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhixin Wang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail: (NG); (JL); (SS)
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (NG); (JL); (SS)
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (NG); (JL); (SS)
| |
Collapse
|
22
|
Shahid MA, Markham PF, Markham JF, Marenda MS, Noormohammadi AH. Mutations in GTP binding protein Obg of Mycoplasma synoviae vaccine strain MS-H: implications in temperature-sensitivity phenotype. PLoS One 2013; 8:e73954. [PMID: 24069254 PMCID: PMC3775756 DOI: 10.1371/journal.pone.0073954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma synoviae strain MS-H, developed by chemical mutagenesis of the Australian field strain 86079/7NS, is a live temperature-sensitive (ts (+)) vaccine used for control of M. synoviae infection in poultry worldwide. Genetic basis of temperature sensitivity and attenuation of MS-H has not been revealed thus far. Comparison of the complete genome sequence of MS-H, its parent strain 86079/7NS and two non-temperature sensitive (ts (-)) reisolates of MS-H revealed a mutation in a highly conserved domain of GTP binding protein Obg of MS-H, with reversion in ts (-) MS-H reisolates. Nucleotide change from G to A at position 369 of the obg gene resulted in an alteration of glycine to arginine at position 123 in Obg fold. Further analysis of the complete obg gene sequence in several MS-H reisolates revealed that a Gly123Arg substitution was associated with alteration in temperature sensitivity phenotype of MS-H. A second mutation, C to T at position 629, in obg gene was found in some of the MS-H reisolates and appeared to suppress the effects of the Gly123Arg substitution. In silico analysis of point mutations revealed that Gly123Arg has highly destabilizing effect on the MS-H Obg structure that can potentially abolish its biological functions in vivo especially at non-permissive temperature. Findings of this study implicate Obg alteration (Gly123Arg) as one of the possible causes of MS-H attenuation/temperature sensitivity and warrant further investigations into exploring the role of Obg-like proteins, an evolutionarily conserved protein from human to bacteria, in the biology of mycoplasmas.
Collapse
Affiliation(s)
- Muhammad A. Shahid
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
- * E-mail:
| | - Philip F. Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - John F. Markham
- National ICT Australia (NICTA) Victoria Research Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marc S. Marenda
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Amir H. Noormohammadi
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
23
|
Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2013; 40:207-24. [PMID: 23537324 DOI: 10.3109/1040841x.2013.776510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.
Collapse
Affiliation(s)
- Cyrielle Kint
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven , Kasteelpark Arenberg 20, 3001 Heverlee , Kasteelpark Arenberg 20, 3001 Heverlee and
| | | | | | | | | |
Collapse
|
24
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
25
|
Kint CI, Verstraeten N, Wens I, Liebens VR, Hofkens J, Versées W, Fauvart M, Michiels J. The Escherichia coli GTPase ObgE modulates hydroxyl radical levels in response to DNA replication fork arrest. FEBS J 2012; 279:3692-3704. [PMID: 22863262 DOI: 10.1111/j.1742-4658.2012.08731.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Obg proteins are universally conserved GTP-binding proteins that are essential for viability in bacteria. Homologs in different organisms are involved in various cellular processes, including DNA replication. The goal of this study was to analyse the structure-function relationship of Escherichia coli ObgE with regard to DNA replication in general and sensitivity to stalled replication forks in particular. Defined C-terminal chromosomal deletion mutants of obgE were constructed and tested for sensitivity to the replication inhibitor hydroxyurea. The ObgE C-terminal domain was shown to be dispensable for normal growth of E.coli. However, a region within this domain is involved in the cellular response to replication fork stress. In addition, a mutant obgE over-expression library was constructed by error-prone PCR and screened for increased hydroxyurea sensitivity. ObgE proteins with substitutions L159Q, G163V, P168V, G216A or R237C, located within distinct domains of ObgE, display dominant-negative effects leading to hydroxyurea hypersensitivity when over-expressed. These effects are abolished in strains with a single deletion of the iron transporter TonB or combined deletions the toxin/antitoxin modules RelBE/MazEF, strains both of which have been shown to be involved in a pathway that stimulates hydroxyl radical formation following hydroxyurea treatment. Moreover, the observed dominant-negative effects are lost in the presence of the hydroxyl radical scavenger thiourea. Together, these results indicate involvement of hydroxyl radical toxicity in ObgE-mediated protection against replication fork stress.
Collapse
Affiliation(s)
- Cyrielle I Kint
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Inez Wens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Veerle R Liebens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Johan Hofkens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Wim Versées
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
26
|
Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD. Functional characterization of ObgC in ribosome biogenesis during chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:122-34. [PMID: 22380942 DOI: 10.1111/j.1365-313x.2012.04976.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.
Collapse
Affiliation(s)
- Woo Young Bang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology-GNTECH, Jinju 660-758, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
28
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
29
|
Blombach F, Launay H, Zorraquino V, Swarts DC, Cabrita LD, Benelli D, Christodoulou J, Londei P, van der Oost J. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol 2011; 193:2861-7. [PMID: 21478358 PMCID: PMC3133125 DOI: 10.1128/jb.01552-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/26/2011] [Indexed: 02/06/2023] Open
Abstract
HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.
Collapse
Affiliation(s)
- Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee Y, Bang WY, Kim S, Lazar P, Kim CW, Bahk JD, Lee KW. Molecular modeling study for interaction between Bacillus subtilis Obg and Nucleotides. PLoS One 2010; 5:e12597. [PMID: 20830302 PMCID: PMC2935376 DOI: 10.1371/journal.pone.0012597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
The bacterial Obg proteins (Spo0B-associated GTP-binding protein) belong to the subfamily of P-loop GTPase proteins that contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain which is referred as the “Obg fold” and now it is considered as one of the new targets for antibacterial drug. When the Obg protein is associated with GTP, it becomes activated, because conformation of Obg fold changes due to the structural changes of GTPase switch elements in GTP binding site. In order to investigate the effects and structural changes in GTP bound to Obg and GTPase switch elements for activation, four different molecular dynamics (MD) simulations were performed with/without the three different nucleotides (GTP, GDP, and GDP + Pi) using the Bacillus subtilis Obg (BsObg) structure. The protein structures generated from the four different systems were compared using their representative structures. The pattern of Cα-Cα distance plot and angle between the two Obg fold domains of simulated apo form and each system (GTP, GDP, and GDP+Pi) were significantly different in the GTP-bound system from the others. The switch 2 element was significantly changed in GTP-bound system. Also root-mean-square fluctuation (RMSF) analysis revealed that the flexibility of the switch 2 element region was much higher than the others. This was caused by the characteristic binding mode of the nucleotides. When GTP was bound to Obg, its γ-phosphate oxygen was found to interact with the key residue (D212) of the switch 2 element, on the contrary there was no such interaction found in other systems. Based on the results, we were able to predict the possible binding conformation of the activated form of Obg with L13, which is essential for the assembly with ribosome.
Collapse
Affiliation(s)
- Yuno Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Woo Young Bang
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Prettina Lazar
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Wu H, Sun L, Blombach F, Brouns SJJ, Snijders APL, Lorenzen K, van den Heuvel RHH, Heck AJR, Fu S, Li X, Zhang XC, Rao Z, van der Oost J. Structure of the ribosome associating GTPase HflX. Proteins 2010; 78:705-13. [PMID: 19787775 DOI: 10.1002/prot.22599] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The HflX-family is a widely distributed but poorly characterized family of translation factor-related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0-A resolution in apo- and GDP-bound forms. The enzyme displays a two-domain architecture with a novel "HflX domain" at the N-terminus, and a classical G-domain at the C-terminus. The HflX domain is composed of a four-stranded parallel beta-sheet flanked by two alpha-helices on either side, and an anti-parallel coiled coil of two long alpha-helices that lead to the G-domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX-domain upon GTP-binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24-fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX-domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bang WY, Hata A, Jeong IS, Umeda T, Masuda T, Chen J, Yoko I, Suwastika IN, Kim DW, Im CH, Lee BH, Lee Y, Lee KW, Shiina T, Bahk JD. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. PLANT MOLECULAR BIOLOGY 2009; 71:379-90. [PMID: 19636801 DOI: 10.1007/s11103-009-9529-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 05/21/2023]
Abstract
Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein-protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.
Collapse
Affiliation(s)
- Woo Young Bang
- Division of Applied Life Sciences (BK21 and EB-NCRC), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2009; 73:253-66. [PMID: 19555460 PMCID: PMC2771346 DOI: 10.1111/j.1365-2958.2009.06767.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stringent response is important for bacterial survival under stressful conditions, such as amino acid starvation, and is characterized by the accumulation of ppGpp and pppGpp. ObgE (CgtA, YhbZ) is an essential conserved GTPase in Escherichia coli and several observations have implicated the protein in the control of the stringent response. However, consequences of the protein on specific responses to amino acid starvation have not been noted. We show that ObgE binds to ppGpp with biologically relevant affinity in vitro, implicating ppGpp as an in vivo ligand of ObgE. ObgE mutants increase the ratio of pppGpp to ppGpp within the cell during the stringent response. These changes are correlated with a delayed inhibition of DNA replication by the stringent response, delayed resumption of DNA replication after release, as well as a decreased survival after amino acid deprivation. With these data, we place ObgE as an active effector of the response to amino acid starvation in vivo. Our data correlate the pppGpp/ppGpp ratio with DNA replication control under bacterial starvation conditions, suggesting a possible role for the relative balance of these two nucleotides.
Collapse
Affiliation(s)
- Nicole S. Persky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Deani L. Cooper
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Hayley R. Moore
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
34
|
Functional analysis of the essential GTP-binding-protein-coding gene cgtA of Vibrio cholerae. J Bacteriol 2008; 190:4764-71. [PMID: 18456812 DOI: 10.1128/jb.02021-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cgtA gene, coding for the conserved G protein CgtA, is essential in bacteria. In contrast to a previous report, here we show by using genetic analysis that cgtA is essential in Vibrio cholerae even in a Delta relA background. Depletion of CgtA affected the growth of V. cholerae and rendered the cells highly sensitive to the replication inhibitor hydroxyurea. Overexpression of V. cholerae CgtA caused distinct elongation of Escherichia coli cells. Deletion analysis indicated that the C-terminal end of CgtA plays a critical role in its proper function.
Collapse
|
35
|
Lapik YR, Misra JM, Lau LF, Pestov DG. Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1. Mol Cell Biol 2007; 27:7735-44. [PMID: 17785438 PMCID: PMC2169037 DOI: 10.1128/mcb.01161-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/27/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022] Open
Abstract
Nog1 is a conserved eukaryotic GTPase of the Obg family involved in the biogenesis of 60S ribosomal subunits. Here we report the unique dominant-inhibitory properties of a point mutation in the switch II region of mouse Nog1; this mutation is predicted to restrict conformational mobility of the GTP-binding domain. We show that although the mutation does not significantly affect GTP binding, ectopic expression of the mutant in mouse cells disrupts productive assembly of pre-60S subunits and arrests cell proliferation. The mutant impairs processing of multiple pre-rRNA intermediates, resulting in the degradation of the newly synthesized 5.8S/28S rRNA precursors. Sedimentation analysis of nucleolar preribosomes indicates that defective Nog1 function inhibits the conversion of 32S pre-rRNA-containing complexes to a smaller form, resulting in a drastic accumulation of enlarged pre-60S particles in the nucleolus. These results suggest that conformational changes in the switch II element of Nog1 have a critical importance for the dissociation of preribosome-bound factors during intranucleolar maturation and thereby strongly influence the overall efficiency of the assembly process.
Collapse
Affiliation(s)
- Yevgeniya R Lapik
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
36
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
37
|
Raskin DM, Judson N, Mekalanos JJ. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc Natl Acad Sci U S A 2007; 104:4636-41. [PMID: 17360576 PMCID: PMC1838653 DOI: 10.1073/pnas.0611650104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the conserved bacterial G protein CgtA (Obg) is essential for viability in every organism in which it has been studied. CgtA has been reported to be involved in several diverse bacterial functions, including ribosome assembly, DNA repair, sporulation, and morphological development. However, none of these functions have been identified as essential. Here we show that depletion of CgtA in Vibrio cholerae causes global changes in gene expression that are consistent with induction of a classical low nutrient stress response or "stringent" response. We show that depletion of CgtA leads to increased ppGpp levels that correlate with induction of the global stress response and cessation of growth. The enzyme RelA is responsible for synthesis of the alarmone ppGpp during the stringent response. We show that CgtA is no longer essential in a relA deletion mutant and thus conclude that the essentiality of CgtA is directly linked to its ability to affect ppGpp levels. The enzyme SpoT degrades ppGpp, and here we show that SpoT is essential in a RelA+ CgtA+ background but not in a relA deletion mutant. We also confirmed that CgtA interacts with SpoT in a two-hybrid assay. We suggest that the essential function of CgtA is as a repressor of the stringent response that acts by regulating SpoT activity to maintain low ppGpp levels when bacteria are growing in a nutrient-rich environment.
Collapse
Affiliation(s)
- David M. Raskin
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Nicholas Judson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
38
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Recognition of ribosomal protein L11 by the protein trimethyltransferase PrmA. EMBO J 2007; 26:567-77. [PMID: 17215866 PMCID: PMC1783454 DOI: 10.1038/sj.emboj.7601508] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/27/2006] [Indexed: 11/09/2022] Open
Abstract
Bacterial ribosomal protein L11 is post-translationally trimethylated at multiple residues by a single methyltransferase, PrmA. Here, we describe four structures of PrmA from the extreme thermophile Thermus thermophilus. Two apo-PrmA structures at 1.59 and 2.3 A resolution and a third with bound cofactor S-adenosyl-L-methionine at 1.75 A each exhibit distinct relative positions of the substrate recognition and catalytic domains, revealing how PrmA can position the L11 substrate for multiple, consecutive side-chain methylation reactions. The fourth structure, the PrmA-L11 enzyme-substrate complex at 2.4 A resolution, illustrates the highly specific interaction of the N-terminal domain with its substrate and places Lys39 in the PrmA active site. The presence of a unique flexible loop in the cofactor-binding site suggests how exchange of AdoMet with the reaction product S-adenosyl-L-homocysteine can occur without necessitating the dissociation of PrmA from L11. Finally, the mode of interaction of PrmA with L11 explains its observed preference for L11 as substrate before its assembly into the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Albert E Dahlberg
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-E129, Providence, RI 2912, USA. Tel.: +1 401 863 6123; Fax: +1 401 863 6114; E-mail:
| |
Collapse
|
39
|
Brown ED. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 2006; 83:738-46. [PMID: 16333325 DOI: 10.1139/o05-162] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry.
Collapse
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Sikora AE, Zielke R, Wegrzyn A, Wegrzyn G. DNA replication defect in the Escherichia coli cgtA(ts) mutant arising from reduced DnaA levels. Arch Microbiol 2006; 185:340-7. [PMID: 16518617 DOI: 10.1007/s00203-006-0099-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/27/2006] [Accepted: 02/13/2006] [Indexed: 11/29/2022]
Abstract
In Escherichia coli and other bacteria, the ribosome-associated CgtA GTP-binding protein plays a critical role in many basic cellular processes, including the control of DNA replication and/or segregation. However, the mechanism of this control is largely unknown. Here we report that ectopic expression of the dnaA gene partially restored both early growth in liquid medium and DNA synthesis defects of the cgtA(ts) mutant. Amounts of DnaA protein in the cgtA(ts) mutant incubated at elevated (42 degrees C) temperature were significantly lower relative to wild-type bacteria. Both level of dnaA mRNA and transcriptional activity of the dnaA promoter-lacZ fusion were decreased in the CgtA-deficient cells. The effects of ectopic expression of dnaA were specific as analogous expression of another gene coding for a replication regulator, seqA, had no significant changes in growth and DNA synthesis in the cgtA mutant. Thus, it appears that the DNA replication defect in this mutant is a consequence of reduced DnaA levels.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- Department of Molecular Biology, University of Gdansk, Kładki 24, 80-822, Gdansk, Poland
| | | | | | | |
Collapse
|
41
|
Datta K, Skidmore JM, Pu K, Maddock JR. The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels. Mol Microbiol 2005; 54:1379-92. [PMID: 15554976 DOI: 10.1111/j.1365-2958.2004.04354.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene (cgtAC) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus, a P168V mutant is not activating in vivo, although in vitro, the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtAC, we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtAC is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E cells rapidly lose viability and yet do not display an additional ribosome defect. Thus, the essential nature of the cgtAC gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtAC is necessary for DNA replication and progression through the cell cycle.
Collapse
Affiliation(s)
- Kaustuv Datta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
42
|
Foti JJ, Schienda J, Sutera VA, Lovett ST. A bacterial G protein-mediated response to replication arrest. Mol Cell 2005; 17:549-60. [PMID: 15721258 DOI: 10.1016/j.molcel.2005.01.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/29/2004] [Accepted: 01/14/2005] [Indexed: 01/24/2023]
Abstract
To define factors in E. coli promoting survival to replication fork stress, we isolated insertion mutants sensitive to replication inhibitors. One insertion caused partial loss of the universally conserved GTPase, obgE/yhbZ gene. Although obgE is essential for growth, our insertion allele supported viability until challenged with various replication inhibitors. A mutation designed to negate the GTPase activity of the protein produced similar phenotypes, but was genetically dominant. Synergistic genetic interactions with recA and recB suggested that chromosome breaks and regressed forks accumulate in obgE mutants. Mutants in obgE also exhibited asynchronous overreplication during normal growth, as revealed by flow cytometry. ObgE overexpression caused SeqA foci, normally localized to replication forks, to spread extensively within the cell. We propose that ObgE defines a pathway analogous to the replication checkpoint response of eukaryotes and acts in a complementary way to the RecA-dependent SOS response to promote bacterial cell survival to replication fork arrest.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
43
|
Brown ED, Wright GD. New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chem Rev 2005; 105:759-74. [PMID: 15700964 DOI: 10.1021/cr030116o] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|