1
|
Agbekudzi A, Arapov TD, Stock AM, Scharf BE. The dual role of a novel Sinorhizobium meliloti chemotaxis protein CheT in signal termination and adaptation. Mol Microbiol 2024; 122:429-446. [PMID: 39081077 DOI: 10.1111/mmi.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 10/17/2024]
Abstract
Sinorhizobium meliloti senses nutrients and compounds exuded from alfalfa host roots and coordinates an excitation, termination, and adaptation pathway during chemotaxis. We investigated the role of the novel S. meliloti chemotaxis protein CheT. While CheT and the Escherichia coli phosphatase CheZ share little sequence homology, CheT is predicted to possess an α-helix with a DXXXQ phosphatase motif. Phosphorylation assays demonstrated that CheT dephosphorylates the phosphate-sink response regulator, CheY1~P by enhancing its decay two-fold but does not affect the motor response regulator CheY2~P. Isothermal Titration Calorimetry (ITC) experiments revealed that CheT binds to a phosphomimic of CheY1~P with a KD of 2.9 μM, which is 25-fold stronger than its binding to CheY1. Dissimilar chemotaxis phenotypes of the ΔcheT mutant and cheT DXXXQ phosphatase mutants led to the hypothesis that CheT exerts additional function(s). A screen for potential binding partners of CheT revealed that it forms a complex with the methyltransferase CheR. ITC experiments confirmed CheT/CheR binding with a KD of 19 μM, and a SEC-MALS analysis determined a 1:1 and 2:1 CheT/CheR complex formation. Although they did not affect each other's enzymatic activity, CheT binding to CheY1~P and CheR may serve as a link between signal termination and sensory adaptation.
Collapse
Affiliation(s)
- Alfred Agbekudzi
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Timofey D Arapov
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Schwartz J, Son J, Brugger C, Deaconescu AM. Phospho-dependent signaling during the general stress response by the atypical response regulator and ClpXP adaptor RssB. Protein Sci 2021; 30:899-907. [PMID: 33599047 DOI: 10.1002/pro.4047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 11/05/2022]
Abstract
In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two-domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3 - . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a "meta-active" state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y-T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.
Collapse
Affiliation(s)
- Jacob Schwartz
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Jonghyeon Son
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Varela L, Bell CH, Armitage JP, Redfield C. (1)H, (13)C and (15)N resonance assignments for the response regulator CheY3 from Rhodobacter sphaeroides. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:373-378. [PMID: 27468962 PMCID: PMC5039241 DOI: 10.1007/s12104-016-9703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/22/2016] [Indexed: 05/29/2023]
Abstract
Rhodobacter sphaeroides has emerged as a model system for studies of the complex chemotaxis pathways that are a hallmark of many non-enteric bacteria. The genome of R. sphaeroides encodes two sets of flagellar genes, fla1 and fla2, that are controlled by three different operons. Each operon encodes homologues of most of the proteins required for the well-studied E. coli chemotaxis pathway. R. sphaeroides has six homologues of the response regulator CheY that are localized to and are regulated by different clusters of chemosensory proteins in the cell and have different effects on chemotaxis. CheY6 is the major CheY stopping the fla1 flagellar motor and associated with a cytoplasmically localised chemosensory pathway. CheY3 and CheY4 are associated with a membrane localised polar chemosensory cluster, and can bind to but not stop the motor. CheY6 and either CheY3 or CheY4 are required for chemotaxis. We are using NMR spectroscopy to characterise and compare the structure and dynamics of CheY3 and CheY6 in solution. We are interested in defining the conformational changes that occur upon activation of these two proteins and to identify differences in their properties that can explain the different functions they play in chemotaxis in R. sphaeroides. Here we present the (1)H, (13)C and (15)N assignments for CheY3 in its active, inactive and Mg(2+)-free apo form. These assignments provide the starting point for detailed investigations of the structure and function of CheY3.
Collapse
Affiliation(s)
- Lorena Varela
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Christian H Bell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
4
|
Webb BA, Helm RF, Scharf BE. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:231-9. [PMID: 26713349 DOI: 10.1094/mpmi-12-15-0264-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.
Collapse
Affiliation(s)
| | - Richard F Helm
- 2 Virginia Tech Department of Biochemistry, Life Sciences I, Blacksburg, VA 24061, U.S.A
| | | |
Collapse
|
5
|
Sheftic SR, White E, Gage DJ, Alexandrescu AT. NMR structure of the HWE kinase associated response regulator Sma0114 in its activated state. Biochemistry 2014; 53:311-22. [PMID: 24364624 DOI: 10.1021/bi401497h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial receiver domains modulate intracellular responses to external stimuli in two-component systems. Sma0114 is the first structurally characterized representative from the family of receiver domains that are substrates for histidine-tryptophan-glutamate (HWE) kinases. We report the NMR structure of Sma0114 bound by Ca(2+) and BeF3(-), a phosphate analogue that stabilizes the activated state. Differences between the NMR structures of the inactive and activated states occur in helix α1, the active site loop that connects strand β3 and helix α3, and in the segment from strand β5 to helix α5 of the 455 (α4-β5-α5) face. Structural rearrangements of the 455 face typically make receiver domains competent for binding downstream target molecules. In Sma0114 the structural changes accompanying activation result in a more negatively charged surface for the 455 face. Coupling between the 455 face and active site phosphorylation is usually mediated through the rearrangement of a threonine and tyrosine residue, in a mechanism called Y-T coupling. The NMR structure indicates that Sma0114 lacks Y-T coupling and that communication between the active site and the 455 face is achieved through a conserved lysine residue that stabilizes the acyl phosphate in receiver domains. (15)N-NMR relaxation experiments were used to investigate the backbone dynamics of the Sma0114 apoprotein, the binary Sma0114·Ca(2+) complex, and the ternary Sma0114·Ca(2+)·BeF3(-) complex. The loss of entropy due to ligand binding at the active site is compensated by increased flexibility in the 455 face. The dynamic character of the 455 face in Sma0114, which results in part from the replacement of helix α4 by a flexible loop, may facilitate induced-fit recognition of target molecules.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs , Connecticut, United States
| | | | | | | |
Collapse
|
6
|
Sheftic SR, Garcia PP, White E, Robinson VL, Gage DJ, Alexandrescu AT. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti. Biochemistry 2012; 51:6932-41. [PMID: 22880754 DOI: 10.1021/bi300922z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Chemotaxis is an important virulence factor for Helicobacter pylori colonization and infection. The chemotactic system of H. pylori is marked by the presence of multiple response regulators: CheY1, one CheY-like-containing CheA protein (CheAY2), and three CheV proteins. Recent studies have demonstrated that these molecules play unique roles in the chemotactic signal transduction mechanisms of H. pylori. Here we report the crystal structures of BeF(3(-)-activated CheY1 from H. pylori resolved to 2.4 A. Structural comparison of CheY1 with active-site residues of BeF3(-)-bound CheY from Escherichia coli and fluorescence quenching experiments revealed the importance of Thr84 in the phosphotransfer reaction. Complementation assays using various nonchemotactic E. coli mutants and pull-down experiments demonstrated that CheY1 displays differential association with the flagellar motor in E. coli. The structural rearrangement of helix 5 and the C-terminal loop in CheY1 provide a different interaction surface for FliM. On the other hand, interaction of the CheA-P2 domain with CheY1, but not with CheY2/CheV proteins, underlines the preferential recognition of CheY1 by CheA in the phosphotransfer reaction. Our results provide the first structural insight into the features of the H. pylori chemotactic system as a model for Epsilonproteobacteria.
Collapse
|
8
|
Liu YH, Belcheva A, Konermann L, Golemi-Kotra D. Phosphorylation-Induced Activation of the Response Regulator VraR from Staphylococcus aureus: Insights from Hydrogen Exchange Mass Spectrometry. J Mol Biol 2009; 391:149-63. [DOI: 10.1016/j.jmb.2009.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
|
9
|
Yamada S, Shiro Y. Structural Basis of the Signal Transduction in the Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:22-39. [DOI: 10.1007/978-0-387-78885-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Riepl H, Maurer T, Kalbitzer HR, Meier VM, Haslbeck M, Schmitt R, Scharf B. Interaction of CheY2 and CheY2-P with the cognate CheA kinase in the chemosensory-signalling chain of Sinorhizobium meliloti. Mol Microbiol 2008; 69:1373-84. [PMID: 18573176 DOI: 10.1111/j.1365-2958.2008.06342.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARY An unusual regulatory mechanism involving two response regulators, CheY1 and CheY2, but no CheZ phosphatase, operates in the chemotactic signalling chain of Sinorhizobium meliloti. Active CheY2-P, phosphorylated by the cognate histidine kinase, CheA, is responsible for flagellar motor control. In the absence of any CheZ phosphatase activity, the level of CheY2-P is quickly reset by a phospho-transfer from CheY2-P first back to CheA, and then to CheY1, which acts as a phosphate sink. In studying the mechanism of this phosphate shuttle, we have used GFP fusions to show that CheY2, but not CheY1, associates with CheA at a cell pole. Cross-linking experiments with the purified proteins revealed that both CheY2 and CheY2-P bind to an isolated P2 ligand-binding domain of CheA, but CheY1 does not. The dissociation constants of CheA-CheY2 and CheA-CheY2-P indicated that both ligands bind with similar affinity to CheA. Based on the NMR structures of CheY2 and CheY2-P, their interactions with the purified P2 domain were analysed. The interacting surface of CheY2 comprises its C-terminal beta4-alpha4-beta5-alpha5 structural elements, whereas the interacting surface of CheY2-P is shifted towards the loop connecting beta5 and alpha5. We propose that the distinct CheY2 and CheY2-P surfaces interact with two overlapping sites in the P2 domain that selectively bind either CheY2 or CheY2-P, depending on whether CheA is active or inactive.
Collapse
Affiliation(s)
- Hubert Riepl
- Lehrstuhl für Genetik, Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Wisedchaisri G, Wu M, Sherman DR, Hol WGJ. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J Mol Biol 2008; 378:227-42. [PMID: 18353359 PMCID: PMC2364609 DOI: 10.1016/j.jmb.2008.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 A resolution and its C-terminal DNA-binding domain at 1.7 A resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (beta alpha)(4) topology instead of the canonical (beta alpha)(5) fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix alpha 10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix alpha 10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| | - Meiting Wu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| | - David R. Sherman
- Department of Pathobiology, University of Washington, Seattle, Washington 98195
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
12
|
Donaldson LW. The NMR structure of the Staphylococcus aureus response regulator VraR DNA binding domain reveals a dynamic relationship between it and its associated receiver domain. Biochemistry 2008; 47:3379-88. [PMID: 18293926 DOI: 10.1021/bi701844q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus, a two-component signaling system consisting of the histidine kinase VraS and the response regulator VraR stimulates gene expression in response to antibiotics that inhibit cell wall formation. With respect to understanding the mechanism of the VraSR response and precise interaction of VraR at promoter sites, the structure of the VraR DNA binding domain (DBD) was determined using NMR methods. The DBD demonstrates a four-helix configuration that is shared with the NarL/FixJ family of response regulators and is monomeric in solution. Unobservable amide resonances in VraR NMR spectra coincided with a set of DNA backbone contact sites predicted from a model of a VraR-DNA complex. This observation suggests that a degree of conformational sampling is required to achieve a high-affinity interaction with DNA. On the basis of chemical shift differences and line broadening, an amino-terminal 3 10 helix and a portion of helix H4 identify a continuous surface that may link the DBD to the receiver domain. The full-length VraR protein thermally denatured with a single transition, suggesting that the receiver domain and DBD were integrated and not simply tethered. Of note, the DBD alone denatured at a temperature that was 21 degrees C higher than that of the full-length protein. Thus, the DBD appears to be thermodynamically and structurally sensitive to state of the receiver domain.
Collapse
Affiliation(s)
- Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
13
|
Knaggs MH, Salsbury FR, Edgell MH, Fetrow JS. Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations. Biophys J 2006; 92:2062-79. [PMID: 17172298 PMCID: PMC1861790 DOI: 10.1529/biophysj.106.081950] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CheY is a response regulator protein involved in bacterial chemotaxis. Much is known about its active and inactive conformations, but little is known about the mechanisms underlying long-range interactions or correlated motions. To investigate these events, molecular dynamics simulations were performed on the unphosphorylated, inactive structure from Salmonella typhimurium and the CheY-BeF(3)(-) active mimic structure (with BeF(3)(-) removed) from Escherichia coli. Simulations utilized both sequences in each conformation to discriminate sequence- and structure-specific behavior. The previously identified conformational differences between the inactive and active conformations of the strand-4-helix-4 loop, which are present in these simulations, arise from the structural, and not the sequence, differences. The simulations identify previously unreported structure-specific flexibility features in this loop and sequence-specific flexibility features in other regions of the protein. Both structure- and sequence-specific long-range interactions are observed in the active and inactive ensembles. In the inactive ensemble, two distinct mechanisms based on Thr-87 or Ile-95 rotameric forms, are observed for the previously identified g+ and g- rotamer sampling by Tyr-106. These molecular dynamics simulations have thus identified both sequence- and structure-specific differences in flexibility, long-range interactions, and rotameric form of key residues. Potential biological consequences of differential flexibility and long-range correlated motion are discussed.
Collapse
Affiliation(s)
- Michael H Knaggs
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | | | | | |
Collapse
|
14
|
Porter SL, Wadhams GH, Martin AC, Byles ED, Lancaster DE, Armitage JP. The CheYs of Rhodobacter sphaeroides. J Biol Chem 2006; 281:32694-704. [PMID: 16950782 DOI: 10.1074/jbc.m606016200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Escherichia coli two-component chemosensory pathway has been extensively studied, and its response regulator, CheY, has become a paradigm for response regulators. However, unlike E. coli, most chemotactic nonenteric bacteria have multiple CheY homologues. The roles and cellular localization of the CheYs in Rhodobacter sphaeroides were determined. Only two CheYs were required for chemotaxis, CheY(6) and either CheY(3) or CheY(4). These CheYs were partially localized to either of the two chemotaxis signaling clusters, with the remaining protein delocalized. Interestingly, mutation of the CheY(6) phosphorylatable aspartate to asparagine produced a stopped motor, caused by phosphorylation on alternative site Ser-83 by CheA. Extensive mutagenesis of E. coli CheY has identified a number of activating mutations, which have been extrapolated to other response regulators (D13K, Y106W, and I95V). Analogous mutations in R. sphaeroides CheYs did not cause activation. These results suggest that although the R. sphaeroides and E. coli CheYs are similar in that they require phosphorylation for activation, they may differ in both the nature of the phosphorylation-induced conformational change and their subsequent interactions with the flagellar motor. Caution should therefore be used when projecting from E. coli CheY onto novel response regulators.
Collapse
Affiliation(s)
- Steven L Porter
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Attmannspacher U, Scharf B, Schmitt R. Control of speed modulation (chemokinesis) in the unidirectional rotary motor ofSinorhizobium meliloti. Mol Microbiol 2005; 56:708-18. [PMID: 15819626 DOI: 10.1111/j.1365-2958.2005.04565.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Swimming cells of Sinorhizobium meliloti are driven by flagella that rotate only clockwise. They can modulate rotary speed (achieve chemokinesis) and reorient the swimming path by slowing flagellar rotation. The flagellar motor is energized by proton motive force, and torque is generated by electrostatic interactions at the rotor/stator (FliG/MotA-MotB) interface. Like the Escherichia coli flagellar motor that switches between counterclockwise and clockwise rotation, the S. meliloti rotary motor depends on electrostatic interactions between conserved charged residues, namely, Arg294 and Glu302 (FliG) and Arg90, Glu98 and Glu150 (MotA). Unlike in E. coli, however, Glu150 is essential for torque generation, whereas residues Arg90 and Glu98 are crucial for the chemotaxis-controlled variation of rotary speed. Substitutions of either Arg90 or Glu98 by charge-neutralizing residues or even by their smaller, charge-maintaining isologues, lysine and aspartate, resulted in top-speed flagellar rotation and decreased potential to slow down in response to tactic signalling (chemokinesis-defective mutants). The data infer a novel mechanism of flagellar speed control by electrostatic forces acting at the rotor/stator interface. These features have been integrated into a working model of the speed-modulating rotary motor.
Collapse
Affiliation(s)
- Ursula Attmannspacher
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|