1
|
Zheng W, Borja M, Dorman LC, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco AO, Rosenberg OS, Neff N, Zha BS. Single-cell analysis reveals Mycobacterium tuberculosis ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs. SCIENCE ADVANCES 2025; 11:eadq8158. [PMID: 39813329 PMCID: PMC11734715 DOI: 10.1126/sciadv.adq8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Mycobacterium tuberculosis (MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces a transcriptional signature of immune evasion in lung macrophages and BMDM in an ESX-1-dependent manner. Spatial transcriptomics revealed an up-regulation of permissive features within MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 facilitates the recruitment and differentiation of MNPs, which MTB can infect and manipulate for survival. Our dataset across various models and methods could contribute to the broader understanding of recruited cell heterogeneity during MTB lung infection.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Andy Zhou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Seng
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alina Nalyvayko
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Maharjan S, Gamper H, Yamaki Y, Christian T, Henley RY, Li NS, Suzuki T, Suzuki T, Piccirilli JA, Wanunu M, Seifert E, Wallace DC, Hou YM. Post-transcriptional methylation of mitochondrial-tRNA differentially contributes to mitochondrial pathology. Nat Commun 2024; 15:9008. [PMID: 39424798 PMCID: PMC11489592 DOI: 10.1038/s41467-024-53318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Human mitochondrial tRNAs (mt-tRNAs), critical for mitochondrial biogenesis, are frequently associated with pathogenic mutations. These mt-tRNAs have unusual sequence motifs and require post-transcriptional modifications to stabilize their fragile structures. However, whether a modification that stabilizes a wild-type (WT) mt-tRNA would also stabilize its pathogenic variants is unknown. Here we show that the N1-methylation of guanosine at position 9 (m1G9) of mt-Leu(UAA), while stabilizing the WT tRNA, has a destabilizing effect on variants associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). This differential effect is further demonstrated, as removal of the m1G9 methylation, while damaging to the WT tRNA, is beneficial to the major pathogenic variant, improving the structure and activity of the variant. These results have therapeutic implications, suggesting that the N1-methylation of mt-tRNAs at position 9 is a determinant of pathogenicity and that controlling the methylation level is an important modulator of mt-tRNA-associated diseases.
Collapse
Affiliation(s)
- Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yuka Yamaki
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Y Henley
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nan-Sheng Li
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Takeo Suzuki
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
| | | | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Erin Seifert
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
4
|
Maharjan S, Gamper H, Yamaki Y, Henley RY, Li NS, Suzuki T, Suzuki T, Piccirilli JA, Wanunu M, Seifert E, Wallace DC, Hou YM. Post-Transcriptional Methylation of Mitochondrial-tRNA Differentially Contributes to Mitochondrial Pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.569632. [PMID: 38106193 PMCID: PMC10723379 DOI: 10.1101/2023.12.09.569632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Human mitochondrial tRNAs (mt-tRNAs), critical for mitochondrial biogenesis, are frequently associated with pathogenic mutations. These mt-tRNAs have unusual sequence motifs and require post-transcriptional modifications to stabilize their fragile structures. However, whether a modification that stabilizes a wild-type (WT) mt-tRNA structure would also stabilize its pathogenic variants is unknown. Here we show that the N 1 -methylation of guanosine at position 9 (m 1 G9) of mt-Leu(UAA), while stabilizing the WT tRNA, has an opposite and destabilizing effect on variants associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). This differential effect is further demonstrated by the observation that demethylation of m 1 G9, while damaging to the WT tRNA, is beneficial to the major pathogenic variant, improving its structure and activity. These results have new therapeutic implications, suggesting that the N 1 -methylation of mt-tRNAs at position 9 is a determinant of pathogenicity and that controlling the methylation level is an important modulator of mt-tRNA-associated diseases.
Collapse
|
5
|
Tomoda E, Nagao A, Shirai Y, Asano K, Suzuki T, Battersby B, Suzuki T. Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Res 2023; 51:7563-7579. [PMID: 36928678 PMCID: PMC10415153 DOI: 10.1093/nar/gkad139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mutations in mitochondrial (mt-)tRNAs frequently cause mitochondrial dysfunction. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and myoclonus epilepsy associated with ragged red fibers (MERRF) are major clinical subgroups of mitochondrial diseases caused by pathogenic point mutations in tRNA genes encoded in mtDNA. We previously reported a severe reduction in the frequency of 5-taurinomethyluridine (τm5U) and its 2-thiouridine derivative (τm5s2U) in the anticodons of mutant mt-tRNAs isolated from the cells of patients with MELAS and MERRF, respectively. The hypomodified tRNAs fail to decode cognate codons efficiently, resulting in defective translation of respiratory chain proteins in mitochondria. To restore the mitochondrial activity of MELAS patient cells, we overexpressed MTO1, a τm5U-modifying enzyme, in patient-derived myoblasts. We used a newly developed primer extension method and showed that MTO1 overexpression almost completely restored the τm5U modification of the MELAS mutant mt-tRNALeu(UUR). An increase in mitochondrial protein synthesis and oxygen consumption rate suggested that the mitochondrial function of MELAS patient cells can be activated by restoring the τm5U of the mutant tRNA. In addition, we confirmed that MTO1 expression restored the τm5s2U of the mutant mt-tRNALys in MERRF patient cells. These findings pave the way for epitranscriptomic therapies for mitochondrial diseases.
Collapse
Affiliation(s)
- Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Shirai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition. Nat Commun 2023; 14:4794. [PMID: 37558671 PMCID: PMC10412605 DOI: 10.1038/s41467-023-40354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNASer isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNASer(UGA), and perform a structural and functional comparison with the mSerRS-mtRNASer(GCU) complex. We find that despite their common function, mtRNASer(UGA) and mtRNASer(GCU) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNASer. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
7
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
9
|
Krahn N, Fischer JT, Söll D. Naturally Occurring tRNAs With Non-canonical Structures. Front Microbiol 2020; 11:596914. [PMID: 33193279 PMCID: PMC7609411 DOI: 10.3389/fmicb.2020.596914] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Transfer RNA (tRNA) is the central molecule in genetically encoded protein synthesis. Most tRNA species were found to be very similar in structure: the well-known cloverleaf secondary structure and L-shaped tertiary structure. Furthermore, the length of the acceptor arm, T-arm, and anticodon arm were found to be closely conserved. Later research discovered naturally occurring, active tRNAs that did not fit the established 'canonical' tRNA structure. This review discusses the non-canonical structures of some well-characterized natural tRNA species and describes how these structures relate to their role in translation. Additionally, we highlight some newly discovered tRNAs in which the structure-function relationship is not yet fully understood.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
11
|
Riley LG, Rudinger-Thirion J, Frugier M, Wilson M, Luig M, Alahakoon TI, Nixon CY, Kirk EP, Roscioli T, Lunke S, Stark Z, Wierenga KJ, Palle S, Walsh M, Higgs E, Arbuckle S, Thirukeswaran S, Compton AG, Thorburn DR, Christodoulou J. The expanding LARS2 phenotypic spectrum: HLASA, Perrault syndrome with leukodystrophy, and mitochondrial myopathy. Hum Mutat 2020; 41:1425-1434. [PMID: 32442335 DOI: 10.1002/humu.24050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
LARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay. Three HLASA cases from two unrelated families were identified. All were males with genital anomalies. Two survived multisystem disease in the neonatal period; both have developmental delay and hearing loss. A 55-year old male with deafness has not displayed neurological symptoms while his female siblings with Perrault syndrome developed leukodystrophy and died in their 30s. Analysis of muscle from a child with a reversible myopathy showed reduced LARS2 and mitochondrial complex I levels, and an unusual form of degeneration. Analysis of recombinant LARS2 variant proteins showed they had reduced aminoacylation efficiency, with HLASA-associated variants having the most severe effect. A broad phenotypic spectrum should be considered in association with LARS2 variants.
Collapse
Affiliation(s)
- Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, Australia.,Discipline of Child & Adolescent Health, Sydney Medical School, Sydney, Australia
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, Architecture et Réactivité de l'ARN, CNRS, IBMC, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, Architecture et Réactivité de l'ARN, CNRS, IBMC, Strasbourg, France
| | - Meredith Wilson
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genomic Medicine, University of Sydney, Sydney, Australia
| | - Melissa Luig
- Department of Neonatology, Westmead Hospital, Sydney, Australia
| | - Thushari Indika Alahakoon
- Westmead Institute for Maternal & Fetal Medicine, Westmead Hospital & University of Sydney, Sydney, Australia
| | - Cheng Yee Nixon
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia.,Genetics Laboratory, NSW Health Pathology, Sydney, Australia
| | - Edwin P Kirk
- Genetics Laboratory, NSW Health Pathology, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, The Royal Children's Hospital, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia.,Australian Genomics Health Alliance, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, The Royal Children's Hospital, Melbourne, Australia.,Australian Genomics Health Alliance, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Klaas J Wierenga
- Department of Pediatrics, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| | - Sirish Palle
- Department of Pediatrics, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK
| | - Maie Walsh
- Genetic Medicine & Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| | - Emily Higgs
- Genetic Medicine & Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| | - Susan Arbuckle
- Department of Pathology, The Children's Hospital at Westmead, Sydney, Australia
| | - Shalini Thirukeswaran
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Alison G Compton
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, The Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - John Christodoulou
- Discipline of Child & Adolescent Health, Sydney Medical School, Sydney, Australia.,Victorian Clinical Genetics Services, The Royal Children's Hospital, Melbourne, Australia.,Australian Genomics Health Alliance, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
12
|
Fan JY, Huang Q, Ji QQ, Wang ED. LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor. Nucleic Acids Res 2020; 47:6369-6385. [PMID: 31114902 PMCID: PMC6614811 DOI: 10.1093/nar/gkz443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.
Collapse
Affiliation(s)
- Jia-Yi Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Qian Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Quan-Quan Ji
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
13
|
Kuhle B, Chihade J, Schimmel P. Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun 2020; 11:969. [PMID: 32080176 PMCID: PMC7033119 DOI: 10.1038/s41467-020-14725-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
Metazoan complexity and life-style depend on the bioenergetic potential of mitochondria. However, higher aerobic activity and genetic drift impose strong mutation pressure and risk of irreversible fitness decline in mitochondrial (mt)DNA-encoded genes. Bilaterian mitochondria-encoded tRNA genes, key players in mitochondrial activity, have accumulated mutations at significantly higher rates than their cytoplasmic counterparts, resulting in foreshortened and fragile structures. Here we show that fragility of mt tRNAs coincided with the evolution of bilaterian animals. We demonstrate that bilaterians compensated for this reduced structural complexity in mt tRNAs by sequence-independent induced-fit adaption to the cognate mitochondrial aminoacyl-tRNA synthetase (aaRS). Structural readout by nuclear-encoded aaRS partners relaxed the sequence constraints on mt tRNAs and facilitated accommodation of functionally disruptive mutational insults by cis-acting epistatic compensations. Our results thus suggest that mutational freedom in mt tRNA genes is an adaptation to increased mutation pressure that was associated with the evolution of animal complexity. Bilaterian mitochondria-encoded tRNA genes accumulate mutations at higher rates than their cytoplasmic tRNA counterparts, resulting in idiosyncratic structures. Here the authors suggest an evolutionary basis for the observed mutational freedom of mitochondrial (mt) tRNAs and reveal the associated co-adaptive structural and functional changes in mt aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Bernhard Kuhle
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Joseph Chihade
- Department of Chemistry, Carleton College, 1 North College St., Northfield, MN, 55057, USA
| | - Paul Schimmel
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Florida Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
14
|
Mitochondrial aminoacyl-tRNA synthetases. Enzymes 2020. [PMID: 33837704 DOI: 10.1016/bs.enz.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In all eukaryotic cells, protein synthesis occurs not only in the cytosol, but also in the mitochondria. Translation of mitochondrial genes requires a set of aminoacyl-tRNA synthetases, many of which are often specialized for organellar function. These enzymes have evolved unique mechanisms for tRNA recognition and for ensuring fidelity of translation. Mutations of human mitochondrial synthetases are associated with a wide range of pathogenic phenotypes, both highlighting the importance of their role in maintaining the cellular "powerhouse" and suggesting additional cellular roles.
Collapse
|
15
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
16
|
González-Serrano LE, Chihade JW, Sissler M. When a common biological role does not imply common disease outcomes: Disparate pathology linked to human mitochondrial aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5309-5320. [PMID: 30647134 PMCID: PMC6462531 DOI: 10.1074/jbc.rev118.002953] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are essential components of the mitochondrial translation machinery. The correlation of mitochondrial disorders with mutations in these enzymes has raised the interest of the scientific community over the past several years. Most surprising has been the wide-ranging presentation of clinical manifestations in patients with mt-aaRS mutations, despite the enzymes' common biochemical role. Even among cases where a common physiological system is affected, phenotypes, severity, and age of onset varies depending on which mt-aaRS is mutated. Here, we review work done thus far and propose a categorization of diseases based on tissue specificity that highlights emerging patterns. We further discuss multiple in vitro and in cellulo efforts to characterize the behavior of WT and mutant mt-aaRSs that have shaped hypotheses about the molecular causes of these pathologies. Much remains to do in order to complete our understanding of these proteins. We expect that futher work is likely to result in the discovery of new roles for the mt-aaRSs in addition to their fundamental function in mitochondrial translation, informing the development of treatment strategies and diagnoses.
Collapse
Affiliation(s)
- Ligia Elena González-Serrano
- From the Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France and
| | - Joseph W Chihade
- the Department of Chemistry, Carleton College, Northfield, Minnesota 55057
| | - Marie Sissler
- From the Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France and
| |
Collapse
|
17
|
Dhana K, Braun KVE, Nano J, Voortman T, Demerath EW, Guan W, Fornage M, van Meurs JBJ, Uitterlinden AG, Hofman A, Franco OH, Dehghan A. An Epigenome-Wide Association Study of Obesity-Related Traits. Am J Epidemiol 2018; 187:1662-1669. [PMID: 29762635 DOI: 10.1093/aje/kwy025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
We conducted an epigenome-wide association study on obesity-related traits. We used data from 2 prospective, population-based cohort studies: the Rotterdam Study (RS) (2006-2013) and the Atherosclerosis Risk in Communities (ARIC) Study (1990-1992). We used the RS (n = 1,450) as the discovery panel and the ARIC Study (n = 2,097) as the replication panel. Linear mixed-effect models were used to assess the cross-sectional associations between genome-wide DNA methylation in leukocytes and body mass index (BMI) and waist circumference (WC), adjusting for sex, age, smoking, leukocyte proportions, array number, and position on array. The latter 2 variables were modeled as random effects. Fourteen 5'-C-phosphate-G-3' (CpG) sites were associated with BMI and 26 CpG sites with WC in the RS after Bonferroni correction (P < 1.07 × 10-7), of which 12 and 13 CpGs were replicated in the ARIC Study, respectively. The most significant novel CpGs were located on the Musashi RNA binding protein 2 gene (MSI2; cg21139312) and the leucyl-tRNA synthetase 2, mitochondrial gene (LARS2; cg18030453) and were associated with both BMI and WC. CpGs at BRDT, PSMD1, IFI44L, MAP1A, and MAP3K5 were associated with BMI. CpGs at LGALS3BP, MAP2K3, DHCR24, CPSF4L, and TMEM49 were associated with WC. We report novel associations between methylation at MSI2 and LARS2 and obesity-related traits. These results provide further insight into mechanisms underlying obesity-related traits, which can enable identification of new biomarkers in obesity-related chronic diseases.
Collapse
Affiliation(s)
- Klodian Dhana
- Department of Epidemiology, Erasmus University Medical Center
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kim V E Braun
- Department of Epidemiology, Erasmus University Medical Center
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Rotterdam Intergenerational Ageing Research Center
| | - Jana Nano
- Department of Epidemiology, Erasmus University Medical Center
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center
- Rotterdam Intergenerational Ageing Research Center
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Sciences Center at Houston, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | | | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center
- Department of Internal Medicine, Erasmus University Medical Center
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center
- Rotterdam Intergenerational Ageing Research Center
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center
- Department of Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Abstract
To date, about 90 post-transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post-transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2′-OH. The methylation on the N1 atom of adenosine to form 1-methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures.
Collapse
|
19
|
Igloi GL, Leisinger AK. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment. RNA Biol 2015; 11:1313-23. [PMID: 25603118 PMCID: PMC4615739 DOI: 10.1080/15476286.2014.996094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.
Collapse
Affiliation(s)
- Gabor L Igloi
- a Institute of Biology III ; University of Freiburg ; Freiburg , Germany
| | | |
Collapse
|
20
|
Sahyoun AH, Hölzer M, Jühling F, Höner zu Siederdissen C, Al-Arab M, Tout K, Marz M, Middendorf M, Stadler PF, Bernt M. Towards a comprehensive picture of alloacceptor tRNA remolding in metazoan mitochondrial genomes. Nucleic Acids Res 2015; 43:8044-56. [PMID: 26227972 PMCID: PMC4783518 DOI: 10.1093/nar/gkv746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/11/2015] [Indexed: 12/03/2022] Open
Abstract
Remolding of tRNAs is a well-documented process in mitochondrial genomes that changes the identity of a tRNA. It involves a duplication of a tRNA gene, a mutation that changes the anticodon and the loss of the ancestral tRNA gene. The net effect is a functional tRNA that is more closely related to tRNAs of a different alloacceptor family than to tRNAs with the same anticodon in related species. Beyond being of interest for understanding mitochondrial tRNA function and evolution, tRNA remolding events can lead to artifacts in the annotation of mitogenomes and thus in studies of mitogenomic evolution. Therefore, it is important to identify and catalog these events. Here we describe novel methods to detect tRNA remolding in large-scale data sets and apply them to survey tRNA remolding throughout animal evolution. We identify several novel remolding events in addition to the ones previously mentioned in the literature. A detailed analysis of these remoldings showed that many of them are derived from ancestral events.
Collapse
Affiliation(s)
- Abdullah H Sahyoun
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany Bioinformatics Unit and Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Frank Jühling
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christian Höner zu Siederdissen
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
| | - Marwa Al-Arab
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Kifah Tout
- Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Martin Middendorf
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany Fraunhofer Institut für Zelltherapie und Immunologie Perlickstraße 1, D-04103 Leipzig, Germany Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| |
Collapse
|
21
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
22
|
Bhaskaran H, Taniguchi T, Suzuki T, Suzuki T, Perona JJ. Structural dynamics of a mitochondrial tRNA possessing weak thermodynamic stability. Biochemistry 2014; 53:1456-65. [PMID: 24520994 PMCID: PMC3985750 DOI: 10.1021/bi401449z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Folding
dynamics are ubiquitously involved in controlling the multivariate
functions of RNAs. While the high thermodynamic stabilities of some
RNAs favor purely native states at equilibrium, it is unclear whether
weakly stable RNAs exist in random, partially folded states or sample
well-defined, globally folded conformations. Using a folding assay
that precisely tracks the formation of native aminoacylable tRNA,
we show that the folding of a weakly stable human mitochondrial (hmt)
leucine tRNA is hierarchical with a distinct kinetic folding intermediate.
The stabilities of the native and intermediate conformers are separated
by only about 1.2 kcal/mol, and the species are readily interconvertible.
Comparison of folding dynamics between unmodified and fully modified
tRNAs reveals that post-transcriptional modifications produce a more
constrained native structure that does not sample intermediate conformations.
These structural dynamics may thus be crucial for recognition by some
modifying enzymes in vivo, especially those targeting
the globular core region, by allowing access to pretransition state
conformers. Reduced conformational sampling of the native, modified
tRNAs could then permit improved performance in downstream processes
of translation. More generally, weak stabilities of small RNAs that
fold in the absence of chaperone proteins may facilitate conformational
switching that is central to biological function.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry, Portland State University , 1825 SW Broadway, Portland Oregon 97209, United States
| | | | | | | | | |
Collapse
|
23
|
Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations. Biochem J 2013; 453:455-65. [PMID: 23631826 DOI: 10.1042/bj20130294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Point mutations in hmtRNAs (human mitochondrial tRNAs) can cause various disorders, such as CPEO (chronic progressive external ophthalmoplegia) and MM (mitochondrial myopathy). Mitochondrial tRNALeu, especially the UUR codon isoacceptor, is recognized as a hot spot for pathogenic mtDNA point mutations. Thus far, 40 mutations have been reported in hmtRNAsLeu. In the present paper, we describe the wide range of effects of two substitutions found in the TΨC arms of two hmtRNAsLeu isoacceptors. The G52A substitution, corresponding to the pathogenic G12315A mutation in tRNALeu(CUN), and G3283A in tRNALeu(UUR) exhibited structural changes in the outer corner of the tRNA shape as shown by RNase probing. These mutations also induced reductions in aminoacylation, 3'-end processing and base modification processes. The main effects of the A57G substitution, corresponding to mutations A12320G in tRNALeu(CUN) and A3288G in tRNALeu(UUR), were observed on the aminoacylation activity and binding to hmEF-Tu (human mitochondrial elongation factor Tu). These observations suggest that the wide range of effects may amplify the deleterious impact on mitochondrial protein synthesis in vivo. The findings also emphasize that an exact understanding of tRNA dysfunction is critical for the future development of therapies for mitochondrial diseases.
Collapse
|
24
|
Nallagatla SR, Jones CN, Ghosh SKB, Sharma SD, Cameron CE, Spremulli LL, Bevilacqua PC. Native tertiary structure and nucleoside modifications suppress tRNA's intrinsic ability to activate the innate immune sensor PKR. PLoS One 2013; 8:e57905. [PMID: 23483938 PMCID: PMC3587421 DOI: 10.1371/journal.pone.0057905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/28/2013] [Indexed: 11/17/2022] Open
Abstract
Interferon inducible protein kinase PKR is an essential component of innate immunity. It is activated by long stretches of dsRNA and provides the first line of host defense against pathogens by inhibiting translation initiation in the infected cell. Many cellular and viral transcripts contain nucleoside modifications and/or tertiary structure that could affect PKR activation. We have previously demonstrated that a 5'-end triphosphate-a signature of certain viral and bacterial transcripts-confers the ability of relatively unstructured model RNA transcripts to activate PKR to inhibit translation, and that this activation is abrogated by certain modifications present in cellular RNAs. In order to understand the biological implications of native RNA tertiary structure and nucleoside modifications on PKR activation, we study here the heavily modified cellular tRNAs and the unmodified or the lightly modified mitochondrial tRNAs (mt-tRNA). We find that both a T7 transcript of yeast tRNA(Phe) and natively extracted total bovine liver mt-tRNA activate PKR in vitro, whereas native E. coli, bovine liver, yeast, and wheat tRNA(Phe) do not, nor do a variety of base- or sugar-modified T7 transcripts. These results are further supported by activation of PKR by a natively folded T7 transcript of tRNA(Phe)in vivo supporting the importance of tRNA modification in suppressing PKR activation in cells. We also examine PKR activation by a T7 transcript of the A14G pathogenic mutant of mt-tRNA(Leu), which is known to dimerize, and find that the misfolded dimeric form activates PKR in vitro while the monomeric form does not. Overall, the in vitro and in vivo findings herein indicate that tRNAs have an intrinsic ability to activate PKR and that nucleoside modifications and native RNA tertiary folding may function, at least in part, to suppress such activation, thus serving to distinguish self and non-self tRNA in innate immunity.
Collapse
Affiliation(s)
- Subba Rao Nallagatla
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fender A, Gaudry A, Jühling F, Sissler M, Florentz C. Adaptation of aminoacylation identity rules to mammalian mitochondria. Biochimie 2012; 94:1090-7. [PMID: 22402012 DOI: 10.1016/j.biochi.2012.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
Many mammalian mitochondrial aminoacyl-tRNA synthetases are of bacterial-type and share structural domains with homologous bacterial enzymes of the same specificity. Despite this high similarity, synthetases from bacteria are known for their inability to aminoacylate mitochondrial tRNAs, while mitochondrial enzymes do aminoacylate bacterial tRNAs. Here, the reasons for non-aminoacylation by a bacterial enzyme of a mitochondrial tRNA have been explored. A mutagenic analysis performed on in vitro transcribed human mitochondrial tRNA(Asp) variants tested for their ability to become aspartylated by Escherichia coli aspartyl-tRNA synthetase, reveals that full conversion cannot be achieved on the basis of the currently established tRNA/synthetase recognition rules. Integration of the full set of aspartylation identity elements and stabilization of the structural tRNA scaffold by restoration of D- and T-loop interactions, enable only a partial gain in aspartylation efficiency. The sequence context and high structural instability of the mitochondrial tRNA are additional features hindering optimal adaptation of the tRNA to the bacterial enzyme. Our data support the hypothesis that non-aminoacylation of mitochondrial tRNAs by bacterial synthetases is linked to the large sequence and structural relaxation of the organelle encoded tRNAs, itself a consequence of the high rate of mitochondrial genome divergence.
Collapse
Affiliation(s)
- Aurélie Fender
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Bhaskaran H, Rodriguez-Hernandez A, Perona JJ. Kinetics of tRNA folding monitored by aminoacylation. RNA (NEW YORK, N.Y.) 2012; 18:569-80. [PMID: 22286971 PMCID: PMC3285943 DOI: 10.1261/rna.030080.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/23/2011] [Indexed: 05/20/2023]
Abstract
We describe a strategy for tracking Mg²⁺-initiated folding of ³²P-labeled tRNA molecules to their native structures based on the capacity for aminoacylation by the cognate aminoacyl-tRNA synthetase enzyme. The approach directly links folding to function, paralleling a common strategy used to study the folding of catalytic RNAs. Incubation of unfolded tRNA with magnesium ions, followed by the addition of aminoacyl-tRNA synthetase and further incubation, yields a rapid burst of aminoacyl-tRNA formation corresponding to the prefolded tRNA fraction. A subsequent slower increase in product formation monitors continued folding in the presence of the enzyme. Further analysis reveals the presence of a parallel fraction of tRNA that folds more rapidly than the majority of the population. The application of the approach to study the influence of post-transcriptional modifications in folding of Escherichia coli tRNA₁(Gln) reveals that the modified bases increase the folding rate but do not affect either the equilibrium between properly folded and misfolded states or the folding pathway. This assay allows the use of ³²P-labeled tRNA in integrated studies combining folding, post-transcriptional processing, and aminoacylation reactions.
Collapse
Affiliation(s)
| | | | - John J. Perona
- Department of Chemistry and Biochemistry
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
- Corresponding author.E-mail .
| |
Collapse
|
27
|
Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombès A, Boucheham A, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011; 39:8173-86. [PMID: 21724600 PMCID: PMC3185436 DOI: 10.1093/nar/gkr546] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.
Collapse
Affiliation(s)
- Olga Z Karicheva
- UMR 7156 University of Strasbourg - CNRS, Molecular Genetics, Genomics & Microbiology, Strasbourg 67084, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scaglia F. The role of mitochondrial dysfunction in psychiatric disease. ACTA ACUST UNITED AC 2010; 16:136-43. [DOI: 10.1002/ddrr.115] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Abstract
Post-transcriptional ribonucleotide modification is a phenomenon best studied in tRNA, where it occurs most frequently and in great chemical diversity. This paper reviews the intrinsic network of modifications in the structural core of the tRNA, which governs structural flexibility and rigidity to fine-tune the molecule to peak performance and to regulate its steady-state level. Structural effects of RNA modifications range from nanometer-scale rearrangements to subtle restrictions of conformational space on the angstrom scale. Structural stabilization resulting from nucleotide modification results in increased thermal stability and translates into protection against unspecific degradation by bases and nucleases. Several mechanisms of specific degradation of hypomodified tRNA, which were only recently discovered, provide a link between structural and metabolic stability.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
30
|
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147-54. [PMID: 20194621 DOI: 10.1128/mcb.01614-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
Collapse
|
31
|
Messmer M, Pütz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Catherine F. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Res 2009; 37:6881-95. [PMID: 19767615 PMCID: PMC2777451 DOI: 10.1093/nar/gkp697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria.
Collapse
Affiliation(s)
- Marie Messmer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Ding WJ, Zeng YZ, Li WH, Zhang TE, Liu WW, Teng XK, Ma YX, Yan SL, Wan JMF, Wang MQ. Identification of Linkage Disequilibrium SNPs from a Kidney-Yang Deficiency Syndrome Pedigree. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 37:427-38. [PMID: 19606505 DOI: 10.1142/s0192415x09006953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to probe the genetic traits of Kidney-yang Deficiency Syndrome (KDS), we employed a national standard of KDS diagnosis for the collection of KDS subjects. Each candidate KDS subject from a typical family was diagnosed by 5 independent physicians of Traditional Chinese Medicine (TCM), and repeated for 3 years, all on the first Saturday of December. Fifteen samples of genomic DNA were isolated and genotyped by Affymetrix 100 K arrays of single nucleotide polymorphism (SNP). Then appropriate tools were used for the analysis of linkage disequilibrium (LD) and bioinformatic mining of LD SNPs. The results indicated that our procedure of TCM diagnosis can effectively collect KDS subjects and therefore provide substantial basis for the linkage analysis of KDS. Five SNPs (i.e. rs514207, rs1054020, rs7685923, rs10515889 and rs10516202) were identified as LD SNPs from this KDS family, representing an unprecedented set of LD SNPs derived from TCM syndrome. These SNPs demonstrate midrange linkage disequilibrium within the KDS family. Two genes with established functions were identified within 100 bp of these SNPs. One is Homo sapiens double cortin domain containing 5, which interacts selectively with mono-, di- or tri-saccharide carbohydrate and involves certain signaling cascades. Another one, leucyl-tRNA synthetase, is also a pleiotropic gene response to cysteinyl-tRNA aminoacylation and protein biosynthesis. In conclusion, KDS is involved in special SNP linkage disequilibrium in the intragenic level, and genes within the flanks of these SNPs suggest some essential symptoms of KDS. However, definitive evidence to confirm or exclude these loci and to establish their biological activities will be required.
Collapse
Affiliation(s)
- Wei Jun Ding
- Department of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA (NEW YORK, N.Y.) 2008; 14:2407-2416. [PMID: 18796578 PMCID: PMC2578859 DOI: 10.1261/rna.1208808] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
The A3243G mutation in the human mitochondrial tRNA(Leu(UUR)) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNA(Leu(UUR)) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNA(Leu(UUR)) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
34
|
Sissler M, Lorber B, Messmer M, Schaller A, Pütz J, Florentz C. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Methods 2008; 44:176-89. [PMID: 18241799 DOI: 10.1016/j.ymeth.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022] Open
Abstract
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Collapse
Affiliation(s)
- Marie Sissler
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
35
|
Rorbach J, Yusoff AA, Tuppen H, Abg-Kamaludin DP, Chrzanowska-Lightowlers ZM, Taylor RW, Turnbull DM, McFarland R, Lightowlers RN. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 2008; 36:3065-74. [PMID: 18400783 PMCID: PMC2396425 DOI: 10.1093/nar/gkn147] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/05/2008] [Accepted: 03/17/2008] [Indexed: 11/23/2022] Open
Abstract
Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNA(Val). In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNA(Val) were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNA(Val) observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNA(Val). By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNA(Val), consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert N. Lightowlers
- Mitochondrial Research Group, Institute of Neuroscience, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
36
|
Yao P, Zhu B, Jaeger S, Eriani G, Wang ED. Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps. Nucleic Acids Res 2008; 36:2728-38. [PMID: 18367476 PMCID: PMC2377443 DOI: 10.1093/nar/gkn028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recognition of tRNA by the cognate aminoacyl-tRNA synthetase during translation is crucial to ensure the correct expression of the genetic code. To understand tRNA(Leu) recognition sets and their evolution, the recognition of tRNA(Leu) by the leucyl-tRNA synthetase (LeuRS) from the primitive hyperthermophilic bacterium Aquifex aeolicus was studied by RNA probing and mutagenesis. The results show that the base A73; the core structure of tRNA formed by the tertiary interactions U8-A14, G18-U55 and G19-C56; and the orientation of the variable arm are critical elements for tRNA(Leu) aminoacylation. Although dispensable for aminoacylation, the anticodon arm carries discrete editing determinants that are required for stabilizing the conformation of the post-transfer editing state and for promoting translocation of the tRNA acceptor arm from the synthetic to the editing site.
Collapse
Affiliation(s)
- Peng Yao
- State Key Laboratory of Molecular Biology - Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Ledoux S, Uhlenbeck OC. [3'-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 2008; 44:74-80. [PMID: 18241789 PMCID: PMC2275914 DOI: 10.1016/j.ymeth.2007.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology, and Cell Biology Northwestern University Evanston, Illinois 60208
| | - Olke C. Uhlenbeck
- Department of Biochemistry, Molecular Biology, and Cell Biology Northwestern University Evanston, Illinois 60208
| |
Collapse
|
38
|
Maniura-Weber K, Helm M, Engemann K, Eckertz S, Möllers M, Schauen M, Hayrapetyan A, von Kleist-Retzow JC, Lightowlers RN, Bindoff LA, Wiesner RJ. Molecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene. Nucleic Acids Res 2006; 34:6404-15. [PMID: 17130166 PMCID: PMC1702489 DOI: 10.1093/nar/gkl727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gene encoding mt-tRNALeu(UUR), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNALeu(UUR) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G in transmitochondrial cybrids. Increased steady-state levels of RNA19 was confirmed, although not to the levels previously reported in muscle. This data was consistent with an increase in RNA19 stability. The mutation resulted in decreased mt-tRNALeu(UUR) levels, but its stability was unchanged, consistent with a defect in RNA19 processing responsible for low tRNA levels. A partial defect in aminoacylation was also identified, potentially caused by an alteration in tRNA structure. These deficiencies lead to a severe defect in respiration in the transmitochondrial cybrids, consistent with the profound mitochondrial disorder originally associated with this mutation.
Collapse
Affiliation(s)
- Katharina Maniura-Weber
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Katrin Engemann
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Sabrina Eckertz
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Myriam Möllers
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Matthias Schauen
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- Department of Pediatrics, University of KölnKerpener Strasse 62, 50924 Köln, Germany
| | - Robert N. Lightowlers
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon TyneUK
| | - Laurence A. Bindoff
- Department of Neurology, Institute of Clinical Medicine, Haukeland University Hospital, University of Bergen5021 Bergen, Norway
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| |
Collapse
|
39
|
Massey SE. A sequential "2-1-3" model of genetic code evolution that explains codon constraints. J Mol Evol 2006; 62:809-10. [PMID: 16612538 DOI: 10.1007/s00239-005-0222-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 12/31/2005] [Indexed: 11/28/2022]
|
40
|
Hao R, Zhao MW, Hao ZX, Yao YN, Wang ED. A T-stem slip in human mitochondrial tRNALeu(CUN) governs its charging capacity. Nucleic Acids Res 2005; 33:3606-13. [PMID: 15972857 PMCID: PMC1157101 DOI: 10.1093/nar/gki677] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human mitochondrial tRNALeu(CUN) [hmtRNALeu(CUN)] corresponds to the most abundant codon for leucine in human mitochondrial protein genes. Here, in vitro studies reveal that the U48C substitution in hmtRNALeu(CUN), which corresponds to the pathological T12311C gene mutation, improved the aminoacylation efficiency of hmtRNALeu(CUN). Enzymatic probing suggested a more flexible secondary structure in the wild-type hmtRNALeu(CUN) transcript compared with the U48C mutant. Structural analysis revealed that the flexibility of hmtRNALeu(CUN) facilitates a T-stem slip resulting in two potential tertiary structures. Several rationally designed tRNALeu(CUN) mutants were generated to examine the structural and functional consequences of the T-stem slip. Examination of these hmtRNALeu(CUN) mutants indicated that the T-stem slip governs tRNA accepting activity. These results suggest a novel, self-regulation mechanism of tRNA structure and function.
Collapse
Affiliation(s)
- Rui Hao
- Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences320 Yue Yang Road, Shanghai 200031, People's Republic of China
| | - Ming-Wei Zhao
- Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences320 Yue Yang Road, Shanghai 200031, People's Republic of China
| | - Zhan-Xi Hao
- Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences320 Yue Yang Road, Shanghai 200031, People's Republic of China
| | | | - En-Duo Wang
- Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences320 Yue Yang Road, Shanghai 200031, People's Republic of China
- To whom correspondence should be addressed. Tel: +86 21 54921241; Fax: +86 21 54921011;
| |
Collapse
|
41
|
Zagryadskaya EI, Kelley SO. Combinatorial analysis of loop nucleotides in human mitochondrial tRNALeu(UUR). Biochemistry 2005; 44:233-42. [PMID: 15628864 DOI: 10.1021/bi0489560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of disease-related mutations are known to affect the hs mt tRNA(Leu(UUR)) gene, and the molecular-level properties of this tRNA may underlie the effects of pathogenic sequence changes. A combinatorial approach has been used to explore the importance of the D, TPsiC, and anticodon loops of hs mt tRNA(Leu(UUR)) in the structure and function of this molecule. A tRNA library was constructed with 20 randomized nucleotides in the loop regions of hs mt tRNA(Leu(UUR)), and tRNA variants that were aminoacylated by hs mt LeuRS were isolated using an in vitro selection approach. Analysis of 26 selected sequences revealed that a stabilized anticodon stem significantly enhances aminoacylation activity. However, anticodon loop nucleotides were not conserved in the active sequences, indicating that this region of hs mt tRNA(Leu(UUR)) is not involved in recognition by LeuRS. Within the D and TPsiC loops, only two nucleotides conserved their identities, while new sequences were selected that likely mediate interloop interactions. The results indicate that hs mt tRNA(Leu(UUR)), which is known to have structurally weak D and anticodon stems, benefits functionally from the introduction of stabilizing interactions. However, the locations of individual nucleotides that govern discrimination of this tRNA by hs mt LeuRS still remain obscure.
Collapse
|
42
|
Munakata K, Iwamoto K, Bundo M, Kato T. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 2005; 57:525-32. [PMID: 15737668 DOI: 10.1016/j.biopsych.2004.11.041] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 11/10/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Accumulating evidence suggests mitochondrial dysfunction in bipolar disorder. Analyses of mitochondria-related genes using DNA microarray showed significantly increased LARS2 (mitochondrial leucyl-tRNA synthetase) in the postmortem prefrontal cortices of patients with bipolar disorder provided by the Stanley Foundation Brain Collection. LARS2 is a nuclear gene encoding the enzyme catalyzing the aminoacylation of mitochondrial tRNA(Leu). A well-studied mitochondrial DNA point mutation, 3243A>G, in the region of tRNA(Leu (UUR)), related with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), is known to decrease the efficiency of aminoacylation of tRNA(Leu (UUR)). METHODS The steady state level of LARS2 was examined in the transmitochondrial cybrids carrying 3243A>G. We examined the 3243A>G mutation in these brains using the peptide nucleic acid-clamped polymerase chain reaction restriction fragment length polymorphism method. RESULTS LARS2 was upregulated in the transmitochrondrial cybrids carrying 3243A>G. The 3243A>G was detected in the postmortem brains of two patients with bipolar disorder and one with schizophrenia. These patients also showed higher levels of the mutation in their livers and significantly higher gene expression of LARS2 compared with other subjects. CONCLUSIONS These results suggest that upregulation of LARS2 is a hallmark of 324A>G mutation. The accumulation of 3243A>G mutation in the brain may have a pathophysiologic role in bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Kae Munakata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
43
|
Bonnefond L, Fender A, Rudinger-Thirion J, Giegé R, Florentz C, Sissler M. Toward the Full Set of Human Mitochondrial Aminoacyl-tRNA Synthetases: Characterization of AspRS and TyrRS†. Biochemistry 2005; 44:4805-16. [PMID: 15779907 DOI: 10.1021/bi047527z] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human mitochondrion possesses a translational machinery devoted to the synthesis of 13 proteins. While the required tRNAs and rRNAs are produced by transcription of the mitochondrial genome, all other factors needed for protein synthesis are synthesized in the cytosol and imported. This is the case for aminoacyl-tRNA synthetases, the enzymes which esterify their cognate tRNA with the specific amino acid. The genes for the full set of cytosolic aaRSs are well defined, but only nine genes for mitochondrial synthetases are known. Here we describe the genes for human mitochondrial aspartyl- and tyrosyl-tRNA synthetases and the initial characterization of the enzymes. Both belong to the expected class of synthetases, have a dimeric organization, and aminoacylate Escherichia coli tRNAs as well as in vitro transcribed human mitochondrial tRNAs. Genes for the remaining missing synthetases were also found with the exception of glutaminyl-tRNA synthetase. Their sequence analysis confirms and further extends the view that, except for lysyl- and glycyl-tRNA synthetases, human mitochondrial and cytosolic enzymes are coded by two different sets of genes.
Collapse
Affiliation(s)
- Luc Bonnefond
- Department Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Hao R, Yao YN, Zheng YG, Xu MG, Wang ED. Reduction of mitochondrial tRNALeu(UUR) aminoacylation by some MELAS-associated mutations. FEBS Lett 2004; 578:135-9. [PMID: 15581630 DOI: 10.1016/j.febslet.2004.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 10/30/2004] [Accepted: 11/03/2004] [Indexed: 11/25/2022]
Abstract
The mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS) is a rare congenital disorder of mitochondrial DNA. Five single nucleotide substitutions within the human mitochondrial tRNALeu(UUR) gene have been reported to be associated with MELAS. Here, we provide in vitro evidence that the aminoacylation capacities of these five hmtRNALeu(UUR) transcripts are reduced to different extents relative to the wild-type hmtRNALeu(UUR) transcript. A thermal denaturation experiment showed that the A3243G and T3291C mutants, which were the least charged by LeuRS, have fragile structures. In addition, the T3291C mutant can inhibit aminoacylation of the wild-type hmtRNALeu(UUR), indicating that it may act as an inhibitor in the mitochondrial heteroplasmic environment.
Collapse
Affiliation(s)
- Rui Hao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, PR China
| | | | | | | | | |
Collapse
|
45
|
Levinger L, Mörl M, Florentz C. Mitochondrial tRNA 3' end metabolism and human disease. Nucleic Acids Res 2004; 32:5430-41. [PMID: 15477393 PMCID: PMC524294 DOI: 10.1093/nar/gkh884] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over 150 mutations in the mitochondrial genome have been shown to be associated with human disease. Remarkably, two-thirds of them are found in tRNA genes, which constitute only one-tenth of the mitochondrial genome. A total of 22 tRNAs punctuate the genome and are produced together with 11 mRNAs and 2 rRNAs from long polycistronic primary transcripts with almost no spacers. Pre-tRNAs thus require precise endonucleolytic excision. Furthermore, the CCA triplet which forms the 3' end of all tRNAs is not encoded, but must be synthesized by the CCA-adding enzyme after 3' end cleavage. Amino acid attachment to the CCA of mature tRNA is performed by aminoacyl-tRNA synthetases, which, like the preceding processing enzymes, are nuclear-encoded and imported into mitochondria. Here, we critically review the effectiveness and reliability of evidence obtained from reactions with in vitro transcripts that pathogenesis-associated mutant mitochondrial tRNAs can lead to deficiencies in tRNA 3' end metabolism (3' end cleavage, CCA addition and aminoacylation) toward an understanding of molecular mechanisms underlying human tRNA disorders. These defects probably contribute, individually and cumulatively, to the progression of human mitochondrial diseases.
Collapse
Affiliation(s)
- Louis Levinger
- York College/CUNY, 94-20 Guy R. Brewer Boulevard, Jamaica, NY 11451, USA.
| | | | | |
Collapse
|