1
|
Sun M, Qiao Z, Wei S, Liang Z, Zhang L, Jiang B, Zhang AY. Global Methylation Profiling by Selective Release of Methylated Sites from Immobilized Tryptic Peptides. Anal Chem 2025; 97:9620-9626. [PMID: 40309950 DOI: 10.1021/acs.analchem.5c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Methylation of lysine and arginine (K and R) has emerged as a prevalent post-translational modification with critical roles in numerous biological processes. The current identification approaches suffer from suboptimal enrichment efficiency, particularly for lysine methylation, hindering comprehensive KR methylome profiling. Herein, we presented an antibody-free strategy termed Selective Release of Methylated Sites from Immobilized Tryptic Peptides (SRMs-ITP), which achieves high enrichment efficiency while enabling the simultaneous analysis of all five methylation states of KR. This strategy exploits the unique ability of LysargiNase to cleave methylated KR residues, which are absent in trypsin-based digestion. Totally, our approach identified 5516 methylation sites across 2866 proteins from HeLa cell lysate, including 2405 arginine methylation sites and 3111 lysine methylation sites. SRMs-ITP achieved an enrichment efficiency exceeding 48.2%, significantly outperforming current antibody-based and antibody-free strategies. Notably, 56.4% of the detected methylation sites were on lysine residues, surpassing the existing antibody-free approaches. These findings establish SRMs-ITP as a robust, unbiased, and highly efficient methodology for KR methylome analysis. The approach offers a powerful tool for deciphering the intricate regulatory mechanisms of protein methylation and its cross-talk with other post-translational modifications under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Mingwei Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Zichun Qiao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Wei
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Jiang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - And Yukui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Yu J, You Z, Wong VKW, Chen M, Liu W. Novel Cinnamic Acid Derivatives Containing Naproxen as NLRP3 Inhibitors: Synthesis and Evaluation of Their Biological Activity. Chem Biodivers 2025; 22:e202402700. [PMID: 39737737 DOI: 10.1002/cbdv.202402700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed and synthesized, and their anti-inflammatory activities and mechanisms were explored in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had a lower degree of cytotoxicity than that of naproxen. The present studies revealed that compound 23 (IC50 = 5.66 ± 1.66 µM) markedly inhibited the LPS-induced NO production and the over-expression of pro-inflammatory cytokines, including interleukin (IL)-1β, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Furthermore, it blocked the activation of NF-κB signaling pathway and pyrin domain-containing protein 3 (NLRP-3) inflammasome in a concentration-dependent manner. Additionally, docking studies confirmed that compound 23 exhibited a well-fitting into the NLRP3 active site. Considering these results, compound 23 might be a novel NLRP3 inhibitor to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Yu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Zonglin You
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Wenfeng Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
3
|
Chaturvedi J, Zhang F, Zhang C, Badhe S, Xiang Y, Deng J. Structural and Functional Studies of Rabbit SAMD9 Reveal a Distinct tRNase Module That Underlies the Antiviral Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.10.648150. [PMID: 40291743 PMCID: PMC12027330 DOI: 10.1101/2025.04.10.648150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Human SAMD9 and SAMD9L (collectively SAMD9/9L) are large cytoplasmic proteins with antiviral and antiproliferative activities, recently shown to regulate protein synthesis by specifically cleaving phenylalanine tRNA (tRNA Phe ). The enzymatic activity of human SAMD9 (hSAMD9) resides within its N-terminal tRNase domain, which depends on three essential basic residues for tRNA binding and biological activity. While these residues are highly conserved across mammalian SAMD9/9L, lagomorph SAMD9 orthologs uniquely harbor a charge-reversal acidic residue at one of three sites, a change known to inactivate hSAMD9/9L. Here, we show that despite this variation, rabbit SAMD9 (rSAMD9) potently restricts vaccinia virus replication and specifically reduces tRNA Phe levels, mirroring hSAMD9. However, unlike hSAMD9, rSAMD9's minimal tRNase module extends beyond the homologous tRNase domain (amino acid 158-389) to include the SIR2 region. Additional basic residues, one unique to rSAMD9, were also found to be important for its antiviral activity. The crystal structure of rSAMD9 158-389 closely resembles hSAMD9 156-385 , though with difference in loop conformations. These findings demonstrate that lagomorph SAMD9 preserves core tRNA-targeting and antiviral functions despite a key residue variation and the need for an extended tRNase module. AUTHOR SUMMARY Sterile Alpha Motif Domain-containing 9 (SAMD9) and its paralog SAMD9-like (SAMD9L) are antiviral factors and tumor suppressors. Gain of function (GoF) mutations of SAMD9/9L, however, cause a spectrum of human diseases with immunological or/and neurological presentations. We recently identified the effector domain of SAMD9/9L as a previously unrecognized tRNase, a function critical for both their normal physiological roles and the pathogenic effects of by patient-derived mutations. We also identified three basic residues within the tRNase domain that are highly conserved across mammalian SAMD9/9L as key to its enzymatic and biological activities. However, lagomorph SAMD9 orthologs uniquely harbor a negatively charged acidic residue at one of three sites. Through extensive structural and functional analyses, here we demonstrate that rabbit SAMD9 (rSAMD9) retains both tRNA- cleaving and antiviral activities, despite notable differences in its tRNase module- including a unique basic residue specific to rSAMD9 and a larger domain architecture extending beyond the conserved tRNase core. These data highlight both the evolutionary conservation of tRNase activity in mammalian SAMD9/9L and the flexibility of the tRNase module within the protein family.
Collapse
|
4
|
Tang D, Liu T, Chen Y, Zhu Z, Chen H, Chen Q, Yu Y. DUF4297 and HerA form abortosome to mediate bacterial immunity against phage infection. Mol Cell 2025; 85:1176-1188.e5. [PMID: 40010342 DOI: 10.1016/j.molcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/11/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Immune receptors form higher-order complexes known as inflammasomes in animals and resistosomes in plants to mediate immune signaling. Here, we report a similar bacterial protein complex, DUF4297-HerA, which induces abortive infection to mediate anti-phage immunity by coupling nuclease and ATPase activities. Therefore, we name this defense system "Hailibu" after a hunter in a popular folk tale who sacrifices himself to save his village. Cryoelectron microscopy (cryo-EM) results reveal that DUF4297 and HerA assemble into a higher-order complex, reminiscent of apoptosome, inflammasome, or resistosome, which we refer to as an abortosome. By capturing cryo-EM structures of the pre-loading, DNA-loading, and DNA-transporting states during Hailibu abortosome processing of DNA, we propose that DNA substrates are loaded through the HerA hexamer, with adenosine triphosphate (ATP) hydrolysis providing the energy to transport DNA substrates to the clustered DUF4297 Cap4 nuclease domains for degradation. This study demonstrates the existence of analogous multiprotein complexes in innate immunity across the kingdoms of life.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yijun Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixuan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yamei Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Wang Y, Tian Y, Yang X, Yu F, Zheng J. Filamentation activates bacterial Avs5 antiviral protein. Nat Commun 2025; 16:2408. [PMID: 40069208 PMCID: PMC11897194 DOI: 10.1038/s41467-025-57732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Bacterial antiviral STANDs (Avs) are evolutionarily related to the nucleotide-binding oligomerization domain (NOD)-like receptors widely distributed in immune systems across animals and plants. EfAvs5, a type 5 Avs from Escherichia fergusonii, contains an N-terminal SIR2 effector domain, a NOD, and a C-terminal sensor domain, conferring protection against diverse phage invasions. Despite the established roles of SIR2 and STAND in prokaryotic and eukaryotic immunity, the mechanism underlying their collaboration remains unclear. Here we present cryo-EM structures of EfAvs5 filaments, elucidating the mechanisms of dimerization, filamentation, filament bundling, ATP binding, and NAD+ hydrolysis, all of which are crucial for anti-phage defense. The SIR2 and NOD domains engage in intra- and inter-dimer interaction to form an individual filament, while the outward C-terminal sensor domains contribute to bundle formation. Filamentation potentially stabilizes the dimeric SIR2 configuration, thereby activating the NADase activity of EfAvs5. Furthermore, we identify the nucleotide kinase gp1.7 of phage T7 as an activator of EfAvs5, demonstrating its ability to induce filamentation and NADase activity. Together, we uncover the filament assembly of Avs5 as a unique mechanism to switch enzyme activities and perform anti-phage defenses.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Yamada S, Ogawa H, Funato M, Kato M, Nakadate K, Mizukoshi T, Kawakami K, Kobayashi R, Horii T, Hatada I, Sakakibara SI. Induction of MASH-like pathogenesis in the Nwd1 -/- mouse liver. Commun Biol 2025; 8:348. [PMID: 40069352 PMCID: PMC11897295 DOI: 10.1038/s42003-025-07717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Endoplasmic reticulum (ER) stores Ca2+ and plays crucial roles in protein folding, lipid transfer, and it's perturbations trigger an ER stress. In the liver, chronic ER stress is involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Dysfunction of sarco/endoplasmic reticulum calcium ATPase (SERCA2), a key regulator of Ca2+ transport from the cytosol to ER, is associated with the induction of ER stress and lipid droplet formation. We previously identified NACHT and WD repeat domain-containing protein 1 (Nwd1) localized at the ER and mitochondria. However, the physiological significance of Nwd1 outside the brain remains unclear. In this study, we revealed that Nwd1-/- mice exhibited pathological manifestations comparable to MASH. Nwd1 interacts with SERCA2 near ER membranes. Nwd1-/- livers exhibited reduced SERCA2 ATPase activity and a smaller Ca2+ pool in the ER, leading to an exacerbated state of ER stress. These findings highlight the importance of SERCA2 activity mediated by Nwd1 in the pathogenesis of MASH.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan.
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Hayato Ogawa
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Miona Funato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Misaki Kato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kazuhiko Nakadate
- Department of Functional Morphology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kiyoharu Kawakami
- Department of Functional Morphology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| |
Collapse
|
7
|
Qiu L, Fang R, Jia Y, Xiong H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li C, Guo H, Liu L. The allelic mutation of NBS-LRR gene causes premature senescence in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112395. [PMID: 39842697 DOI: 10.1016/j.plantsci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.8 % at 15 days after heading, all other leaves became dryness at the grain filling stage. In the mutant, the reactive oxygen species (ROS) and its metabolites increased up to 34.8-47.3 %, while activities of ROS scavenging enzymes were reduced by 62.7-96.7 %. Premature senescence resulted in a reduction of thousand grain weight by over 50 %. Genetic analysis showed the mutation of senescence was controlled by a single recessive gene, and target gene was finely mapped to a 338 kb region of the long arm of chromosome 2D. This region contained a total of 6 annotated genes, while only gene TraesFLD2D01G513900 carried a SNP mutation. The gene contained an NBS-LRR domain, we named it Taps1. Allelic mutants of Taps1 exhibited a lesion mimic phenotype, and the mutant allele resulted in cell death in tobacco, which represent a novel gene controlling wheat senescence. Two haplotypes were identified in 180 accessions, which did not lead to cell death. These results contribute to increase our understanding of the regulation of premature plant senescence.
Collapse
Affiliation(s)
- Lin Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China; Institute of Crop resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rongmin Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| |
Collapse
|
8
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Han Y, Zhang X, Miao L, Lin H, Zhuo Z, He J, Fu W. Biological function and mechanism of NAT10 in cancer. CANCER INNOVATION 2025; 4:e154. [PMID: 39817252 PMCID: PMC11732740 DOI: 10.1002/cai2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 01/18/2025]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood. In this review, we first describe the cellular localization of NAT10 and then summarize its numerous biological functions. NAT10 is involved in various biological processes by mediating the acetylation of different proteins and RNAs. These biological functions are also associated with cancer progression and patient prognosis. We also review the mechanisms by which NAT10 plays roles in various cancer types. NAT10 can affect tumor cell proliferation, metastasis, and stress tolerance through its acetyltransferase properties. Further research into NAT10 functions and expression regulation in tumors will help explore its future potential in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yufeng Han
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Lei Miao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
- State Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen Fu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Liao Y, Kong Y, Chen H, Xia J, Zhao J, Zhou Y. Unraveling the priming phase of NLRP3 inflammasome activation: Molecular insights and clinical relevance. Int Immunopharmacol 2025; 146:113821. [PMID: 39674000 DOI: 10.1016/j.intimp.2024.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The NLRP3 inflammasome plays a pivotal role in the innate immune response. Its activation involves a two-step mechanism that consists of priming and activation. The priming of the NLRP3 inflammasome is a vital initial phase necessary for its activation and subsequent involvement in the immune response, though its understanding varies across studies. Recent research has identified key proteins that influence the priming process, revealing a sophisticated regulatory network. This review provides a comprehensive review of the priming phase of NLRP3 inflammasome activation, with a particular focus on the underlying molecular mechanisms, including transcriptional regulation, orchestration of the phosphorylation status, deubiquitination and the relationships with the inflammation-associated diseases. Understanding the intricacies of NLRP3 inflammasome priming not only elucidates fundamental aspects of immune regulation, but also provides potential avenues for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China
| | - Yueyao Kong
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Hongyu Chen
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jing Xia
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, 402460 Chongqing, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China.
| |
Collapse
|
11
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
13
|
Wang S, Kuang S, Song H, Sun E, Li M, Liu Y, Xia Z, Zhang X, Wang X, Han J, Rao VB, Zou T, Tan C, Tao P. The role of TIR domain-containing proteins in bacterial defense against phages. Nat Commun 2024; 15:7384. [PMID: 39191765 DOI: 10.1038/s41467-024-51738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Toll/interleukin-1 receptor (TIR) domain-containing proteins play a critical role in immune responses in diverse organisms, but their function in bacterial systems remains to be fully elucidated. This study, focusing on Escherichia coli, addresses how TIR domain-containing proteins contribute to bacterial immunity against phage attack. Through an exhaustive survey of all E. coli genomes available in the NCBI database and testing of 32 representatives of the 90% of the identified TIR domain-containing proteins, we found that a significant proportion (37.5%) exhibit antiphage activities. These defense systems recognize a variety of phage components, thus providing a sophisticated mechanism for pathogen detection and defense. This study not only highlights the robustness of TIR systems in bacterial immunity, but also draws an intriguing parallel to the diversity seen in mammalian Toll-like receptors (TLRs), enriching our understanding of innate immune mechanisms across life forms and underscoring the evolutionary significance of these defense strategies in prokaryotes.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sirong Kuang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haiguang Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuepeng Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ziwei Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiumin Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Tingting Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
14
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
15
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
16
|
Fu Z, MacKinnon R. Structure of the flotillin complex in a native membrane environment. Proc Natl Acad Sci U S A 2024; 121:e2409334121. [PMID: 38985763 PMCID: PMC11260169 DOI: 10.1073/pnas.2409334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) superfamily, from cell-derived vesicles without detergents. It forms a right-handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a β-strand, and coiled-coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Collapse
Affiliation(s)
- Ziao Fu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
17
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
18
|
Yamada S, Mizukoshi T, Sato A, Sakakibara SI. Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review. Acta Histochem Cytochem 2024; 57:89-100. [PMID: 38988694 PMCID: PMC11231565 DOI: 10.1267/ahc.24-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
19
|
Wang Y, Yang X, Yu F, Deng Z, Lin S, Zheng J. Structural and functional characterization of AfsR, an SARP family transcriptional activator of antibiotic biosynthesis in Streptomyces. PLoS Biol 2024; 22:e3002528. [PMID: 38427710 PMCID: PMC10936776 DOI: 10.1371/journal.pbio.3002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the β-flap tip helix (FTH), the β' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Shao W, Shi G, Chu H, Du W, Zhou Z, Wuriyanghan H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:668. [PMID: 38475513 DOI: 10.3390/plants13050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gongfu Shi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Han Chu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjia Du
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
21
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
22
|
Quiniou SMA, Bengtén E, Boudinot P. Costimulatory receptors in the channel catfish: CD28 family members and their ligands. Immunogenetics 2024; 76:51-67. [PMID: 38197898 DOI: 10.1007/s00251-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 39216, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 39216, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
23
|
Ma Q, Lim CS. Molecular Activation of NLRP3 Inflammasome by Particles and Crystals: A Continuing Challenge of Immunology and Toxicology. Annu Rev Pharmacol Toxicol 2024; 64:417-433. [PMID: 37708431 PMCID: PMC10842595 DOI: 10.1146/annurev-pharmtox-031023-125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Particles and crystals constitute a unique class of toxic agents that humans are constantly exposed to both endogenously and from the environment. Deposition of particulates in the body is associated with a range of diseases and toxicity. The mechanism by which particulates cause disease remains poorly understood due to the lack of mechanistic insights into particle-biological interactions. Recent research has revealed that many particles and crystals activate the NLRP3 inflammasome, an intracellular pattern-recognition receptor. Activated NLRP3 forms a supramolecular complex with an adaptor protein to activate caspase 1, which in turn activates IL-1β and IL-18 to instigate inflammation. Genetic ablation and pharmacological inhibition of the NLRP3 inflammasome dampen inflammatory responses to particulates. Nonetheless, how particulates activate NLRP3 remains a challenging question. From this perspective, we discuss our current understanding of and progress on revealing the function and mode of action of the NLRP3 inflammasome in mediating adaptive and pathologic responses to particulates in health and disease.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA;
| | - Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA;
| |
Collapse
|
24
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Wang C, Luo J, He W, Huang A, Lu W, Lin Y, Ou Y. Genome-wide identification and expression analysis of GDP-D-mannose pyrophosphorylase and KATANIN in Corymbia citriodora. FRONTIERS IN PLANT SCIENCE 2023; 14:1308354. [PMID: 38186597 PMCID: PMC10766700 DOI: 10.3389/fpls.2023.1308354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
The GDP-D-mannose pyrophosphorylase (GMP) and microtubule severing enzyme KATANIN (KTN) are crucial for wood formation. Although functional identification has been performed in Arabidopsis, few comprehensive studies have been conducted in forest trees. In this study, we discovered 8 CcGMP and 4 CcKTN genes by analyzing the whole genome sequence of Corymbia citriodora. The chromosomal location, genome synteny, phylogenetic relationship, protein domain, motif identification, gene structure, cis-acting regulatory elements, and protein-interaction of CcGMP and CcKTN were all investigated. KTN has just one pair of segmentally duplicated genes, while GMP has no duplication events. According to gene structure, two 5' UTRs were identified in CcGMP4. Furthermore, there is no protein-interaction between KTN and GMP. Based on real-time PCR, the expression of most genes showed a positive connection with DBH diameters. In addition, the expression of CcGMP4 and CcKTN4 genes were greater in different size tree, indicating that these genes are important in secondary xylem production. Overall, this findings will enhance our comprehension of the intricacy of CcGMP&CcKTN across diverse DBHs and furnish valuable insights for future functional characterization of specific genes in C. citriodora.
Collapse
Affiliation(s)
- Chubiao Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wenliang He
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Anying Huang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yuduan Ou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
26
|
Ma ZY, Jiang C, Xu LL. Protein-protein interactions and related inhibitors involved in the NLRP3 inflammasome pathway. Cytokine Growth Factor Rev 2023; 74:14-28. [PMID: 37758629 DOI: 10.1016/j.cytogfr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) receptor serves as the central node of immune sensing in the innate immune system, and plays an important role in the initiation and progression of chronic diseases. Cryo-electron microscopy (cryo-EM) has provided insights into the conformation of various oligomers within the NLRP3 activation pathway, significantly advancing our understanding of the mechanisms underlying NLRP3 inflammasome activation. Despite the extensive network of protein-protein interactions (PPIs) involved in the assembly and activation of NLRP3 inflammasome, the utilization of protein-protein interactions has been relatively overlooked in the development of NLRP3 inhibitors. This review focuses on summarizing PPIs within the NLRP3 inflammasome activation pathway and small molecule inhibitors capable of interfering with PPIs to counteract the NLRP3 overactivation. Small molecule NLRP3 inhibitors have been gained significant attention owing to their remarkable efficacy, excellent safety profiles, and unique mechanisms of action.
Collapse
Affiliation(s)
- Zhen-Yu Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Smug BJ, Szczepaniak K, Rocha EPC, Dunin-Horkawicz S, Mostowy RJ. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat Commun 2023; 14:7460. [PMID: 38016962 PMCID: PMC10684548 DOI: 10.1038/s41467-023-43236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Biological modularity enhances evolutionary adaptability. This principle is vividly exemplified by bacterial viruses (phages), which display extensive genomic modularity. Phage genomes are composed of independent functional modules that evolve separately and recombine in various configurations. While genomic modularity in phages has been extensively studied, less attention has been paid to protein modularity-proteins consisting of distinct building blocks that can evolve and recombine, enhancing functional and genetic diversity. Here, we use a set of 133,574 representative phage proteins and highly sensitive homology detection to capture instances of domain mosaicism, defined as fragment sharing between two otherwise unrelated proteins, and to understand its relationship with functional diversity in phage genomes. We discover that unrelated proteins from diverse functional classes frequently share homologous domains. This phenomenon is particularly pronounced within receptor-binding proteins, endolysins, and DNA polymerases. We also identify multiple instances of recent diversification via domain shuffling in receptor-binding proteins, neck passage structures, endolysins and some members of the core replication machinery, often transcending distant taxonomic and ecological boundaries. Our findings suggest that ongoing diversification via domain shuffling is reflective of a co-evolutionary arms race, driven by the need to overcome various bacterial resistance mechanisms against phages.
Collapse
Affiliation(s)
- Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Rafał J Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
28
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
29
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
30
|
Chiwina K, Xiong H, Bhattarai G, Dickson RW, Phiri TM, Chen Y, Alatawi I, Dean D, Joshi NK, Chen Y, Riaz A, Gepts P, Brick M, Byrne PF, Schwartz H, Ogg JB, Otto K, Fall A, Gilbert J, Shi A. Genome-Wide Association Study and Genomic Prediction of Fusarium Wilt Resistance in Common Bean Core Collection. Int J Mol Sci 2023; 24:15300. [PMID: 37894980 PMCID: PMC10607830 DOI: 10.3390/ijms242015300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.
Collapse
Affiliation(s)
- Kenani Chiwina
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Ryan William Dickson
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Theresa Makawa Phiri
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Yilin Chen
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Ibtisam Alatawi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Derek Dean
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Yuyan Chen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Awais Riaz
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Paul Gepts
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Mark Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Patrick F. Byrne
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Howard Schwartz
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; (H.S.); (K.O.)
| | - James B. Ogg
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Kristin Otto
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; (H.S.); (K.O.)
| | - Amy Fall
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Jeremy Gilbert
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| |
Collapse
|
31
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Forlani G, Shallak M, Gatta A, Shaik AKB, Accolla RS. The NLR member CIITA: Master controller of adaptive and intrinsic immunity and unexpected tool in cancer immunotherapy. Biomed J 2023; 46:100631. [PMID: 37467968 PMCID: PMC10505679 DOI: 10.1016/j.bj.2023.100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Human nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) include a large family of proteins that have important functions in basic physio-pathological processes like inflammation, cell death and regulation of transcription of key molecules for the homeostasis of the immune system. They are all characterized by a common backbone structure (the STAND ATPase module consisting in a nucleotide-binding domain (NBD), an helical domain 1 (HD1) and a winged helix domain (WHD), used by both prokaryotes and eukaryotes as defense mechanism. In this review, we will focus on the MHC class II transactivator (CIITA), the master regulator of MHC class II (MHC-II) gene expression and the founding member of NLR. Although a consistent part of the described NLR family components is often recalled as innate or intrinsic immune sensors, CIITA in fact occupies a special place as a unique example of regulator of both intrinsic and adaptive immunity. The description of the discovery of CIITA and the genetic and molecular characterization of its expression will be followed by the most recent studies that have unveiled this dual role of CIITA, key molecule in intrinsic immunity as restriction factor for human retroviruses and precious tool to induce the expression of MHC-II molecules in cancer cells, rendering them potent surrogate antigen presenting cells (APC) for their own tumor antigens.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy.
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Andrea Gatta
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Amruth K B Shaik
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
33
|
Landry D, Mila I, Sabbagh CRR, Zaffuto M, Pouzet C, Tremousaygue D, Dabos P, Deslandes L, Peeters N. An NLR integrated domain toolkit to identify plant pathogen effector targets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1443-1457. [PMID: 37248633 DOI: 10.1111/tpj.16331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.
Collapse
Affiliation(s)
- David Landry
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Isabelle Mila
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Cyrus Raja Rubenstein Sabbagh
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Matilda Zaffuto
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Cécile Pouzet
- Plateforme imagerie TRI-FRAIB, FR AIB, Université de Toulouse, CNRS, Castanet-Tolosan, F-31320, France
| | - Dominique Tremousaygue
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Patrick Dabos
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| | - Nemo Peeters
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, F-31326, France
| |
Collapse
|
34
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
35
|
Wu Y, Sun Y, Richet E, Han Z, Chai J. Structural basis for negative regulation of the Escherichia coli maltose system. Nat Commun 2023; 14:4925. [PMID: 37582800 PMCID: PMC10427625 DOI: 10.1038/s41467-023-40447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Proteins from the signal transduction ATPases with numerous domains (STAND) family are known to play an important role in innate immunity. However, it remains less well understood how they function in transcriptional regulation. MalT is a bacterial STAND that controls the Escherichia coli maltose system. Inactive MalT is sequestered by different inhibitory proteins such as MalY. Here, we show that MalY interacts with one oligomerization interface of MalT to form a 2:2 complex. MalY represses MalT activity by blocking its oligomerization and strengthening ADP-mediated MalT autoinhibition. A loop region N-terminal to the nucleotide-binding domain (NBD) of MalT has a dual role in mediating MalT autoinhibition and activation. Structural comparison shows that ligand-binding induced oligomerization is required for stabilizing the C-terminal domains and conferring DNA-binding activity. Together, our study reveals the mechanism whereby a prokaryotic STAND is inhibited by a repressor protein and offers insights into signaling by STAND transcription activators.
Collapse
Affiliation(s)
- Yuang Wu
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yue Sun
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Evelyne Richet
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
36
|
Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep 2023; 42:112672. [PMID: 37347666 DOI: 10.1016/j.celrep.2023.112672] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
37
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
38
|
Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, Meng X, Dong L, Deng J, Qian SB, Xiang Y. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. SCIENCE ADVANCES 2023; 9:eadh8502. [PMID: 37285440 PMCID: PMC10246899 DOI: 10.1126/sciadv.adh8502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.
Collapse
Affiliation(s)
- Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Quanquan Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Marisol Morales
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
39
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
40
|
Wein T, Johnson AG, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD-like domains mediate anti-phage defense in bacterial gasdermin systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542683. [PMID: 37398489 PMCID: PMC10312443 DOI: 10.1101/2023.05.28.542683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Upon pathogen recognition by NLR proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore forming proteins to and induce pyroptotic cell death. Here we show that CARD-like domains are present in defense systems that protect bacteria against phage. The bacterial CARD is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defense systems utilize CARD-like domains to activate a variety of cell death effectors. We find that these systems are triggered by a conserved immune evasion protein that phages use to overcome the bacterial defense system RexAB, demonstrating that phage proteins inhibiting one defense system can activate another. We also detect a phage protein with a predicted CARD-like structure that can inhibit the CARD-containing bacterial gasdermin system. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is conserved in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alex G. Johnson
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Steinruecke
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aidan B. Hill
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
41
|
Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, Whalen LA, Aravind L, Whiteley AT. Bacterial NLR-related proteins protect against phage. Cell 2023; 186:2410-2424.e18. [PMID: 37160116 PMCID: PMC10294775 DOI: 10.1016/j.cell.2023.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.
Collapse
Affiliation(s)
- Emily M Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Amy N Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Toni A Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jose A Vargas
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lindsay A Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
42
|
Ma Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol Rev 2023; 75:487-520. [PMID: 36669831 PMCID: PMC10121800 DOI: 10.1124/pharmrev.122.000629] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein complex that combines sensing, regulation, and effector functions to regulate inflammation in health and disease. NLRP3 is activated by a diverse range of inflammation-instigating signals known as pathogen associated molecular patterns and danger associated molecular patterns. Upon activation, NLRP3 oligomerizes and recruits partner proteins to form a supramolecular platform to process the maturation and release of interleukin (IL)-1β, IL-18, and gasdermin D, major mediators of inflammation and inflammatory cell death termed pyroptosis. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide range of disease conditions, including chronic inflammatory disease that are associated with lifestyle and dietary changes, aging, and environmental exposures, and have become the leading cause of death worldwide. Pharmacological targeting of NLRP3 and signaling demonstrated promising efficacy in ameliorating a list of disease conditions in animal models. These findings underscore the potential and importance of NLRP3 as a druggable target for treating a range of diseases. In this review, recent progress in understanding the structure and mechanism of action of the NLRP3 inflammasome is discussed with focus on pharmacological inhibition of NLRP3 by small molecule inhibitors. New structural and mechanistic insights into NLRP3 activation and inhibitor-NLRP3 interactions would aid in the rational design and pharmacological evaluation of NLRP3 inhibitors for treatment of human disease. SIGNIFICANCE STATEMENT: The NLRP3 inflammasome plays central role in innate immune sensing and control of inflammation. Pharmacological inhibition of NLRP3 demonstrated promising efficacy in a range of diseases in animal models. Recent elucidation of the structure and inhibitor binding of NLRP3 generated new insights into its mode of action and inhibitor-NLRP3 interaction at molecular levels, providing new framework for developing small chemical inhibitors of NLRP3 with improved efficacy and specificity against chronic disease that has become major health concerns worldwide.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
43
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
44
|
Teng L, Liang M, Wang C, Li Y, Urbach JM, Kobe B, Xing Q, Han W, Ye N. Exon shuffling potentiates a diverse repertoire of brown algal NB-ARC-TPR candidate immune receptor proteins via alternative splicing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:246-261. [PMID: 36738111 DOI: 10.1111/tpj.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Like other organisms, brown algae are subject to diseases caused by bacteria, fungi, and viruses. Brown algal immunity mechanisms are not well characterized; however, there is evidence suggesting that pathogen receptors exist in brown algae. One key protein family likely associated with brown algal innate immunity possesses an NB-ARC domain analogous to innate immune proteins in plants and animals. In this study, we conducted an extensive survey of NB-ARC genes in brown algae and obtained insights into the domain organization and evolutionary history of the encoded proteins. Our data show that brown algae possess an ancient NB-ARC-tetratricopeptide repeat (NB-TPR) domain architecture. We identified an N-terminal effector domain, the four-helix bundle, which was not previously found associated with NB-ARC domains. The phylogenetic tree including NB-ARC domains from all kingdoms of life suggests the three clades of brown algal NB-TPRs are likely monophyletic, whereas their TPRs seem to have distinct origins. One group of TPRs exhibit intense exon shuffling, with various alternative splicing and diversifying selection acting on them, suggesting exon shuffling is an important mechanism for evolving ligand-binding specificities. The reconciliation of gene duplication and loss events of the NB-ARC genes reveals that more independent gene gains than losses have occurred during brown algal evolution, and that tandem duplication has played a major role in the expansion of NB-ARC genes. Our results substantially enhance our understanding of the evolutionary history and exon shuffling mechanisms of the candidate innate immune repertoire of brown algae.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Miao Liang
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Yan Li
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Jonathan M Urbach
- Ragon Institute, 400 Technology Square, Cambridge, Massachusetts, 02139, USA
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Qikun Xing
- Department of Marine Science, Incheon National University, Incheon, 22012, South Korea
| | - Wentao Han
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
45
|
Morehouse BR. Phage defense origin of animal immunity. Curr Opin Microbiol 2023; 73:102295. [PMID: 37011504 DOI: 10.1016/j.mib.2023.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The innate immune system is the first line of defense against microbial pathogens. Many of the features of eukaryotic innate immunity have long been viewed as lineage-specific innovations, evolved to deal with the challenges and peculiarities of multicellular life. However, it has become increasingly apparent that in addition to evolving their own unique antiviral immune strategies, all lifeforms have some shared defense strategies in common. Indeed, critical fixtures of animal innate immunity bear striking resemblance in both structure and function to the multitude of diverse bacteriophage (phage) defense pathways discovered hidden in plain sight within the genomes of bacteria and archaea. This review will highlight many surprising examples of the recently revealed connections between prokaryotic and eukaryotic antiviral immune systems.
Collapse
Affiliation(s)
- Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
46
|
Wu X, Yang ZH, Wu J, Han J. Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity. Immunity 2023; 56:926-943.e7. [PMID: 36948192 DOI: 10.1016/j.immuni.2023.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
NOD-like receptors (NLRs) are pattern recognition receptors for diverse innate immune responses. Self-oligomerization after engagement with a ligand is a generally accepted model for the activation of each NLR. We report here that a catalyzer was required for NLR self-oligomerization. PELO, a well-known surveillance factor in translational quality control and/or ribosome rescue, interacted with all cytosolic NLRs and activated their ATPase activity. In the case of flagellin-initiated NLRC4 inflammasome activation, flagellin-bound NAIP5 recruited the first NLRC4 and then PELO was required for correctly assembling the rest of NLRC4s into the NLRC4 complex, one by one, by activating the NLRC4 ATPase activity. Stoichiometric and functional data revealed that PELO was not a structural constituent of the NLRC4 inflammasome but a powerful catalyzer for its assembly. The catalytic role of PELO in the activation of cytosolic NLRs provides insight into NLR activation and provides a direction for future studies of NLR family members.
Collapse
Affiliation(s)
- Xiurong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhang-Hua Yang
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
47
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
48
|
Tweedell RE, Kumar SP, Kanneganti TD. Innate sensing pathways: Defining new innate immune and inflammatory cell death pathways has shaped translational applications. PLoS Biol 2023; 21:e3002022. [PMID: 36763683 PMCID: PMC9949619 DOI: 10.1371/journal.pbio.3002022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/23/2023] [Indexed: 02/12/2023] Open
Abstract
The past 20 years of research has elucidated new innate immune sensing and cell death pathways with disease relevance. Future molecular characterization of these pathways and their crosstalk and functional redundancies will aid in development of therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca E. Tweedell
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sivakumar Prasanth Kumar
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
49
|
Soberanes-Gutiérrez CV, Castillo-Jiménez A, Pérez-Rueda E, Galán-Vásquez E. Construction and analysis of gene co-expression network in the pathogenic fungus Ustilago maydis. Front Microbiol 2022; 13:1048694. [PMID: 36569046 PMCID: PMC9767968 DOI: 10.3389/fmicb.2022.1048694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Biological systems respond to environmental disturbances and a wide range of compounds through complex gene interaction networks. The enormous growth of experimental information obtained using large-scale genomic techniques such as microarrays and RNA sequencing led to the construction of a wide variety of gene co-expression networks in recent years. These networks allow the discovery of clusters of co-expressed genes that potentially work in the same process linking them to biological processes often of interest to industrial, medicinal, and academic research. Methods In this study, we built the gene co-expression network of Ustilago maydis from the gene expression data of 168 samples belonging to 19 series, which correspond to the GPL3681 platform deposited in the NCBI using WGCNA software. This network was analyzed to identify clusters of co-expressed genes, gene hubs and Gene Ontology terms. Additionally, we identified relevant modules through a hypergeometric approach based on a predicted set of transcription factors and virulence genes. Results and Discussion We identified 13 modules in the gene co-expression network of U. maydis. The TFs enriched in the modules of interest belong to the superfamilies of Nucleic acid-binding proteins, Winged helix DNA-binding, and Zn2/Cys6 DNA-binding. On the other hand, the modules enriched with virulence genes were classified into diseases related to corn smut, Invasive candidiasis, among others. Finally, a large number of hypothetical, a large number of hypothetical genes were identified as highly co-expressed with virulence genes, making them possible experimental targets.
Collapse
Affiliation(s)
- Cinthia V. Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, Mexico
| | - Alfredo Castillo-Jiménez
- Licenciatura en Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas. Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico,*Correspondence: Edgardo Galán-Vásquez,
| |
Collapse
|
50
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|