1
|
Thapa G, Kim S, Park HH, Oh TJ. Crystal structure and biochemical characterization of aldehyde dehydrogenase isolated from Rhodococcus sp. PAMC28705. Biochem Biophys Res Commun 2025; 764:151832. [PMID: 40250322 DOI: 10.1016/j.bbrc.2025.151832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Aldehyde dehydrogenase (ALDH) is a widely recognized oxidoreductase that converts toxic aldehydes into harmless carboxylic acids, making it highly valuable for industrial applications. However, the effectiveness of ALDHs derived from Rhodococcus species in processing a range of aliphatic and aromatic aldehydes is still largely unexamined. Therefore, we cloned the ALDH gene from the cold-adapted strain Rhodococcus sp. PAMC28705 to address this gap and subsequently identified the crystal structure of rhALDH. By analyzing the unique structural features of the rhALDH active site, we evaluated its ability to process a wide range of aldehydes, with a focus on substrate specificity. Biochemical characterization revealed that at an optimal temperature of 30 °C and a pH of 8.0, it exhibited the highest catalytic efficiency, with a kcat/Km value of 1.12 μM-1 s-1 for propionaldehyde, which was higher than that of its homologous ALDHs. This indicates a strong affinity for this substrate, as demonstrated by a low Km of 321.9 μM and a rapid turnover rate kcat of 359.2 s-1. Adding disulfide reductants, such as dithiothreitol, 2-mercaptoethanol, and the metal ion Mg2+, further enhanced its activity. Working at mesophilic temperatures with good stability and substrate-specific catalytic efficiency, this novel rhALDH, which favors the conversion of propionaldehyde and benzaldehyde, provides a promising catalyst for biotechnological and sustainable bio-aldehyde elimination technologies. Thus, this study lays a foundation for future structure-function analyses of rhALDH, facilitating molecular modifications, the generation of mutants for improved stability, and the development of ALDH-targeted antibiotics.
Collapse
Affiliation(s)
- Gobinda Thapa
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, 31460, Republic of Korea.
| | - Subin Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, 31460, Republic of Korea; Genome-Based BioIT Convergence Institute, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
2
|
Heider J, Hege D. The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function. Appl Microbiol Biotechnol 2025; 109:106. [PMID: 40301148 PMCID: PMC12041015 DOI: 10.1007/s00253-025-13467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025]
Abstract
Aldehyde dehydrogenases participate in many biochemical pathways, either by degrading organic substrates via organic acids or by producing reactive aldehyde intermediates in many biosynthetic pathways, and are becoming increasingly important for constructing synthetic metabolic pathways. Although they consist of simple and highly conserved basic structural motifs, they exhibit a surprising variability in the reactions catalyzed. We attempt here to give an overview of the known enzymes of two superfamilies comprising the known aldehyde dehydrogenases, focusing on their structural similarities and the residues involved in the catalytic reactions. The analysis reveals that the enzymes of the two superfamilies share many common traits and probably have a common evolutionary origin. While all enzymes catalyzing irreversible aldehyde oxidation to acids exhibit a universally conserved reaction mechanism with shared catalytic active-site residues, the enzymes capable of reducing activated acids to aldehydes deviate from this mechanism, displaying different active-site modifications required to allow these reactions which apparently evolved independently in different enzyme subfamilies. KEY POINTS: • The two aldehyde dehydrogenase superfamilies share significant similarities. • Catalytic amino acids of irreversibly acting AlDH are universally conserved. • Reductive or reversible reactions are enabled by water exclusion via the loss of conserved residues.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
3
|
Wakabayashi T, Matsui Y, Nakasako M. CryoEM and crystal structure analyses reveal the indirect role played by Trp89 in glutamate dehydrogenase enzymatic reactions. FEBS J 2025; 292:2071-2094. [PMID: 39891504 PMCID: PMC12001156 DOI: 10.1111/febs.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Glutamate dehydrogenase from Thermococcus profundus is a homo-hexameric enzyme that catalyzes the reversible deamination of glutamate to 2-oxoglutarate in the presence of a cofactor. In each subunit, a large active-site cleft is formed between the two functional domains, one of which displays motion to open and close the cleft. Trp89 in the cleft displays two sidechain conformers in the open cleft and a single conformer in the closed cleft. To reveal the role of the Trp89 sidechain in the domain motion, we mutated Trp89 to phenylalanine. Despite the Trp89 sidechain being located away from the reaction center, the catalytic constant decreased to 1/38-fold of that of the wild-type without a fatal reduction of the affinities to the cofactor and ligand molecules. To understand the molecular mechanism underlying this reduction, we determined the crystal structure in the unliganded state and the metastable conformations appearing in the steady stage of the reaction using cryo-electron microscopy (cryoEM). The four identified metastable conformations were similar to the three conformations observed in the wild-type, but their populations were different from those of the wild-type. In addition, a conformation with a completely closed active-site cleft necessary for the reaction to proceed was quite rare. The crystal structure and the four metastable conformations suggested that the reduction in the catalytic constant could be attributed to changes in the interactions between Gln13 and the 89th side chains, preventing the closing domain motion.
Collapse
Grants
- jp15076210 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp15H01647 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp17H05891 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp20050030 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp22018027 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp23120525 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp25120725 The Ministry of Education, Culture, Sports, Science, and Technology of Japan
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
- Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- RIKEN SPring‐8 CenterSayo‐gunJapan
| | - Yuka Matsui
- Department of Physics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- RIKEN SPring‐8 CenterSayo‐gunJapan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
- RIKEN SPring‐8 CenterSayo‐gunJapan
| |
Collapse
|
4
|
Mori T, Sakurada K, Awakawa T, He H, Ushimaru R, Abe I. Structure-function analysis of 2-sulfamoylacetic acid synthase in altemicidin biosynthesis. J Antibiot (Tokyo) 2025; 78:149-158. [PMID: 39672902 DOI: 10.1038/s41429-024-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Altemicidin and its analogs are valuable sulfonamide antibiotics with valuable antitumor and antibacterial activities. Structures of altemicidin and congeners feature an unusual sulfonamide side chain. In the biosynthesis of altemicidin, the aldehyde dehydrogenase SbzJ catalyzes the conversion of 2-sulfamoylacetic aldehyde into 2-sulfamoylacetic acid, a key step in producing the sulfonamide side chain. Here, we conducted the biochemical characterization and structure-function analysis of SbzJ. In vitro assays revealed that SbzJ exhibits substrate promiscuity, accepting various aldehyde substrates and cofactors. The crystal structure of SbzJ in complex with NAD+, along with subsequent mutagenesis studies, provided insights into how SbzJ recognizes the sulfonamide group of the substrate. Notably, His431 and Glu240 were identified as key residues serving as catalytic bases to activate the catalytic Cys273 and a water molecule. These findings provide structural and mechanistic understanding of SbzJ, offering potential for enzyme engineering to generate novel bioactive compounds.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Kosuke Sakurada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Haibin He
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Lei J, Zhao C, Zhang S, Zhang W, Han Y, Zhou W. New insight in the biotreatment of produced water: Pre-oxidation paves a rapid pathway for substrate selection in microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136483. [PMID: 39541887 DOI: 10.1016/j.jhazmat.2024.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The deep treatment of produced water (PW) had emerged as a formidable challenge due to the coexistence of hydrocarbons, surfactants, ammonium nitrogen, and other refractory organics. On the basis of the pre-oxidation coupled heterotrophic ammonia assimilation (PHAA) system constructed in previous research, this work refined the catalyst selection and reduced the hydraulic retention time. The stable running PHAA system removed 96.2 % of total organic carbon (TOC). The study simulated the effects of organic loading fluctuations on the system and dissected the mechanism of pre-oxidation process and its contribution to microbial community. Pre-oxidation significantly improved the ability of microbial community to handle loading shocks and improved organic degradation efficiency in PW during long-term reactor operation. The PHAA process effectively removed medium to long chain alkanes above C24 in PW and proposed potential degradation pathways and direction. The determination of hydrocarbon enzymes activity showed that pre-oxidation changed the substrate selection, making more aldehydes available as auxiliary carbon sources for microorganisms. Pre-oxidation also enriched and preserved microbial diversity, facilitating the accumulation of functional microorganisms in the PHAA process.
Collapse
Affiliation(s)
- Jianhua Lei
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Wenchao Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China, 266000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China, 250000; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China, 250000.
| |
Collapse
|
6
|
Wakabayashi T, Oide M, Nakasako M. CryoEM-sampling of metastable conformations appearing in cofactor-ligand association and catalysis of glutamate dehydrogenase. Sci Rep 2024; 14:11165. [PMID: 38750092 PMCID: PMC11096400 DOI: 10.1038/s41598-024-61793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Kinetic aspects of enzymatic reactions are described by equations based on the Michaelis-Menten theory for the initial stage. However, the kinetic parameters provide little information on the atomic mechanism of the reaction. In this study, we analyzed structures of glutamate dehydrogenase in the initial and steady stages of the reaction using cryoEM at near-atomic resolution. In the initial stage, four metastable conformations displayed different domain motions and cofactor/ligand association modes. The most striking finding was that the enzyme-cofactor-substrate complex, treated as a single state in the enzyme kinetic theory, comprised at least three different metastable conformations. In the steady stage, seven conformations, including derivatives from the four conformations in the initial stage, made the reaction pathway complicated. Based on the visualized conformations, we discussed stage-dependent pathways to illustrate the dynamics of the enzyme in action.
Collapse
Grants
- JPMJPR22E2 Japan Science and Technology Agency
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp26800227 Japan Society for the Promotion of Science
- 18J11653 Japan Society for the Promotion of Science
- jp15076210 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp20050030 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp22018027 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp23120525, jp25120725 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp15H01647 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp17H05891 Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-Ku, Tokyo, 102-0076, Japan
- Protein Research Institute, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
7
|
Zhang Y, Yun J, Zhang G, Parvez A, Zhou L, Zabed HM, Li J, Qi X. Efficient biosynthesis of 3-hydroxypropionic acid from glucose through multidimensional engineering of Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 389:129822. [PMID: 37805087 DOI: 10.1016/j.biortech.2023.129822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
3-Hydroxypropionic acid (3-HP) is a top value-added chemical with multifaceted application in chemical, material, and food field. However, limited availability of robust strains and elevated fermentation costs currently impose constraints on sustainable biosynthesis of 3-HP. Herein, transporter engineering, metabolic dynamic modulation, and enzyme engineering were combined to address above limitations. First, a glucose-utilizing 3-HP biosynthetic pathway was constructed in Escherichia coli, followed by recruiting alternative glucose transport system to overcome center metabolism overflow. Next, the Cra (a transcription factor)-dependent switch was applied to autonomously fine-tune carbon flux, which alleviated growth retardation and improved the 3-HP production. Subsequently, inactivation of glycerol facilitator (GlpF) increased intracellular glycerol levels and boosted 3-HP biosynthesis, but caused toxic intermediate 3-hydroxypropionaldehyde (3-HPA) accumulation. Furthermore, semi-rational design of aldehyde dehydrogenase (YdcW) increased its activity and eliminated 3-HPA accumulation. Finally, fed-batch fermentation of the final strain resulted in 52.73 g/L 3-HP, with a yield of 0.59 mol/mol glucose.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
8
|
Butler ND, Anderson SR, Dickey RM, Nain P, Kunjapur AM. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells. Metab Eng 2023; 77:294-305. [PMID: 37100193 DOI: 10.1016/j.ymben.2023.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxy-benzaldehyde and glycine to form a beta hydroxylated non-standard amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.
Collapse
Affiliation(s)
- Neil D Butler
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Shelby R Anderson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Priyanka Nain
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA.
| |
Collapse
|
9
|
Muñoz-Bacasehua C, Santacruz-Ortega H, Valenzuela-Soto EM. BADH-NAD +-K + Complex Interaction Studies Reveal a New Possible Mechanism between Potassium and Glutamic 254 at the Coenzyme Binding Site. Cell Biochem Biophys 2022; 80:39-44. [PMID: 34981410 DOI: 10.1007/s12013-021-01051-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022]
Abstract
Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Incubation of porcine kidney BADH (pkBADH) with NAD+ decreases the catalytic cysteine (C288) reactivity. Potassium ion increases the pkBADH affinity by the coenzyme. This work aimed to analyze pkBADH and NAD+ interaction in the presence and absence of K+ using 1H NMR to identify the amino acids that interact with NAD+ and/or K+ to understand the regulation process of pkBADH-NAD+ complex formation mediated by the K+ ion and their impact on the substrate binding and catalysis. Nuclear magnetic resonance spectra of pkBADH were obtained in the presence and absence of NAD+ and K+. The results show a chemical shift of the signals corresponding to the catalytic glutamic that participates in the transfer of H+ in the reaction of the pkBADH-NAD+-K+ complex formation. Furthermore, there is a widening of the signal that belongs to the catalytic cysteine indicating higher rigidity or less grade of rotation of the structure, which is consistent with the possible conformations of C288 in the catalytic process; in addition, there is evidence of changes in the chemical environment that surrounds NAD+.
Collapse
Affiliation(s)
- César Muñoz-Bacasehua
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, 83304, Sonora, México
| | - Hisila Santacruz-Ortega
- División de Ingeniería, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, 83000, Sonora, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
10
|
Kugler P, Trumm M, Frese M, Wendisch VF. L-Carnitine Production Through Biosensor-Guided Construction of the Neurospora crassa Biosynthesis Pathway in Escherichia coli. Front Bioeng Biotechnol 2021; 9:671321. [PMID: 33937222 PMCID: PMC8085414 DOI: 10.3389/fbioe.2021.671321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
L-Carnitine is a bioactive compound derived from L-lysine and S-adenosyl-L-methionine, which is closely associated with the transport of long-chain fatty acids in the intermediary metabolism of eukaryotes and sought after in the pharmaceutical, food, and feed industries. The L-carnitine biosynthesis pathway has not been observed in prokaryotes, and the use of eukaryotic microorganisms as natural L-carnitine producers lacks economic viability due to complex cultivation and low titers. While biotransformation processes based on petrochemical achiral precursors have been described for bacterial hosts, fermentative de novo synthesis has not been established although it holds the potential for a sustainable and economical one-pot process using renewable feedstocks. This study describes the metabolic engineering of Escherichia coli for L-carnitine production. L-carnitine biosynthesis enzymes from the fungus Neurospora crassa that were functionally active in E. coli were identified and applied individually or in cascades to assemble and optimize a four-step L-carnitine biosynthesis pathway in this host. Pathway performance was monitored by a transcription factor-based L-carnitine biosensor. The engineered E. coli strain produced L-carnitine from supplemented L-Nε-trimethyllysine in a whole cell biotransformation, resulting in 15.9 μM carnitine found in the supernatant. Notably, this strain also produced 1.7 μM L-carnitine de novo from glycerol and ammonium as carbon and nitrogen sources through endogenous Nε-trimethyllysine. This work provides a proof of concept for the de novoL-carnitine production in E. coli, which does not depend on petrochemical synthesis of achiral precursors, but makes use of renewable feedstocks instead. To the best of our knowledge, this is the first description of L-carnitine de novo synthesis using an engineered bacterium.
Collapse
Affiliation(s)
- Pierre Kugler
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marika Trumm
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marcel Frese
- Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, Wang P, Su HN, Chen Y, Chen XL, Zhang YZ. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248. J Mol Biol 2020; 432:2186-2203. [PMID: 32087198 DOI: 10.1016/j.jmb.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
12
|
Zhao J, Zhang H, Qin B, Nikolay R, He QY, Spahn CMT, Zhang G. Multifaceted Stoichiometry Control of Bacterial Operons Revealed by Deep Proteome Quantification. Front Genet 2019; 10:473. [PMID: 31178895 PMCID: PMC6544118 DOI: 10.3389/fgene.2019.00473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/01/2019] [Indexed: 12/03/2022] Open
Abstract
More than half of the protein-coding genes in bacteria are organized in polycistronic operons composed of two or more genes. It remains under debate whether the operon organization maintains the stoichiometric expression of the genes within an operon. In this study, we performed a label-free data-independent acquisition hyper reaction monitoring mass-spectrometry (HRM-MS) experiment to quantify the Escherichia coli proteome in exponential phase and quantified 93.6% of the cytosolic proteins, covering 67.9% and 56.0% of the translating polycistronic operons in BW25113 and MG1655 strains, respectively. We found that the translational regulation contributes largely to the proteome complexity: the shorter operons tend to be more tightly controlled for stoichiometry than longer operons; the operons which mainly code for complexes is more tightly controlled for stoichiometry than the operons which mainly code for metabolic pathways. The gene interval (distance between adjacent genes in one operon) may serve as a regulatory factor for stoichiometry. The catalytic efficiency might be a driving force for differential expression of enzymes encoded in one operon. These results illustrated the multifaceted nature of the operon regulation: the operon unified transcriptional level and gene-specific translational level. This multi-level regulation benefits the host by optimizing the efficiency of the productivity of metabolic pathways and maintenance of different types of protein complexes.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Hong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biol 2018; 15:557-568. [PMID: 29433022 PMCID: PMC5975064 DOI: 10.1016/j.redox.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Sylvia Reznikov
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Janek Prehn
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Chris Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-12489 Berlin, Germany
| | - Agnieszka K Bronowska
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
14
|
Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, Kim KJ, Jung GY, Choi S, Shim JY, Park S, Yoo TH. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD +, for enhancing the production of 3-hydroxypropionic acid. Sci Rep 2017; 7:17155. [PMID: 29214999 PMCID: PMC5719400 DOI: 10.1038/s41598-017-15400-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD+ regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD+, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower Km values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD+, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant Pseudomonas denitrificans strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the P. denitrificans strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).
Collapse
Affiliation(s)
- Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Un Jong Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Nguyen Hoai Nam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Sang Jin Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Sun-Gu Lee
- Department of Chemical and Biomolecular Engineering, Pusan National University, Pusan, 46241, Korea
| | - Kyung Jin Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Jeung Yeop Shim
- Bio R&D Center, Noroo Holdings Co., Ltd, Suwon, 16229, Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea.
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
15
|
Gao H, Gao Y, Dong R. Enhanced biosynthesis of 3,4-dihydroxybutyric acid by engineered Escherichia coli in a dual-substrate system. BIORESOURCE TECHNOLOGY 2017; 245:794-800. [PMID: 28926911 DOI: 10.1016/j.biortech.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
3,4-Dihydroxybutyric acid (3,4-DHBA), a versatile platform four carbon (C4) chemical, can be used as a precursor in the production of many commercially important chemicals. Here, a dual-substrate biosynthesis system was developed for 3,4-DHBA production via a synthetic pathway established in an engineered Escherichia coli, and using xylose as a synthetic substrate and glucose as a cell growth substrate. The deletion of genes xylA, yjhH and yagE and others encoding for alcohol dehydrogenases in E. coli is essential for the production of 3,4-DHBA. Blocking competing pathway by removing the gene yiaE encoding for a 2-keto-3-deoxy-D-xylonate reductase also facilitated carbon flow towards the synthesis of 3,4-DHBA. Furthermore, regulation the availability of NAD+ resulted in further improved 3,4-DHBA production. The combinational optimization of the biosynthesis system led to a production of 0.38g/L 3,4-DHBA. This study provides an alternative 3,4-DHBA biosynthesis approach with the possibility of utilizing hydrolysates of lignocellulosic biomass as substrates.
Collapse
Affiliation(s)
- Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Yu Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
16
|
Ochoa-Montaño B, Blundell TL. XSuLT: a web server for structural annotation and representation of sequence-structure alignments. Nucleic Acids Res 2017; 45:W381-W387. [PMID: 28510698 PMCID: PMC5793734 DOI: 10.1093/nar/gkx421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
The web server XSuLT, an enhanced version of the protein alignment annotation program JoY, formats a submitted multiple-sequence alignment using three-dimensional (3D) structural information in order to assist in the comparative analysis of protein evolution and in the optimization of alignments for comparative modelling and construct design. In addition to the features analysed by JoY, which include secondary structure, solvent accessibility and sidechain hydrogen bonds, XSuLT annotates each amino acid residue with residue depth, chain and ligand interactions, inter-residue contacts, sequence entropy, root mean square deviation and secondary structure and disorder prediction. It is also now integrated with built-in 3D visualization which interacts with the formatted alignment to facilitate inspection and understanding. Results can be downloaded as stand-alone HTML for the formatted alignment and as XML with the underlying annotation data. XSuLT is freely available at http://structure.bioc.cam.ac.uk/xsult/.
Collapse
Affiliation(s)
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
17
|
Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines. Chem Biol Interact 2017; 276:52-64. [PMID: 28216341 DOI: 10.1016/j.cbi.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
The catalytic mechanism of the NAD(P)+-dependent aldehyde dehydrogenases (ALDHs) involves the nucleophilic attack of the essential cysteine (Cys302, mature HsALDH2 numbering) on the aldehyde substrate. Although oxidation of Cys302 will inactivate these enzymes, it is not yet well understood how this oxidation is prevented. In this work we explore possible mechanisms of protection by systematically analyzing the reported three-dimensional structures and amino acid sequences of the enzymes of the ALDH superfamily. Specifically, we considered the Cys302 conformational space, the structure and residues conservation of the catalytic loop where Cys302 is located, the observed oxidation states of Cys302, the ability of physiological reductants to revert its oxidation, and the presence of vicinal Cys in the catalytic loop. Our analyses suggested that: 1) In the apo-enzyme, the thiol group of Cys302 is quite resistant to oxidation by ambient O2 or mild oxidative conditions, because the protein environment promotes its high pKa. 2) NAD(P)+ bound in the "hydride transfer" conformation afforded total protection against Cys302 oxidation by an unknown mechanism. 3) If formed, the Cys302-sulfenic acid is protected against irreversible oxidation. 4) Of the physiological reductant agents, the dithiol lipoic acid could reduce a sulfenic or a disulfide bond in the ALDHs active site; glutathione cannot because its thiol group cannot reach Cys302, and other physiological monothiols may be ineffective in those ALDHs where their active site cannot sterically accommodate two molecules of the monothiols. 5) Formation of the disulfides Cys301-Cys302, Cys302-Cys304, Cys302-Cys305 and Cys-302-Cys306 in those ALDHs that have these Cys residues is not probable, because of the permitted Cys conformers as well as the conserved structure and low flexibility of the catalytic loop. 6) Only in some ALDH2, ALDH9, ALDH16 and ALDH23 enzymes, Cys303, alone or in conjunction with Cys301, allows disulfide formation. Interestingly, several of these enzymes are mitochondrial.
Collapse
|
18
|
Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chem Biol Interact 2017; 276:65-74. [PMID: 28212821 DOI: 10.1016/j.cbi.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.
Collapse
|
19
|
Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications. Biochem J 2016; 473:873-85. [DOI: 10.1042/bj20151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022]
Abstract
The activity of plant BADH enzymes may be down-regulated in the short term by a novel and physiologically relevant mechanism, consisting of the reversible formation of a thiohemiacetal between a conserved non-essential cysteine residue and the substrate betaine aldehyde.
Collapse
|
20
|
Efficient synthesis of (R)-2-chloro-1-phenylethol using a yeast carbonyl reductase with broad substrate spectrum and 2-propanol as cosubstrate. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Delgado-Gaytán MF, Hernández-Palomares MLE, Soñanez-Organis JG, Muhlia-Almazán A, Sánchez-Paz A, Stephens-Camacho NA, Valenzuela-Soto EM, Rosas-Rodríguez JA. Molecular characterization and organ-specific expression of the gene that encodes betaine aldehyde dehydrogenase from the white shrimp Litopenaeus vannamei in response to osmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2015. [PMID: 26219579 DOI: 10.1016/j.cbpb.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.
Collapse
Affiliation(s)
- María F Delgado-Gaytán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Magally L E Hernández-Palomares
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - José G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Angeles, CP 83106, Hermosillo, Sonora, Mexico
| | - Norma A Stephens-Camacho
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Jesús A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|
22
|
Muñoz-Clares RA, González-Segura L, Riveros-Rosas H, Julián-Sánchez A. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases. Chem Biol Interact 2015; 234:45-58. [DOI: 10.1016/j.cbi.2015.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/21/2014] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
|
23
|
Halavaty AS, Rich RL, Chen C, Joo JC, Minasov G, Dubrovska I, Winsor JR, Myszka DG, Duban M, Shuvalova L, Yakunin AF, Anderson WF. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1159-75. [PMID: 25945581 PMCID: PMC4427200 DOI: 10.1107/s1399004715004228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023]
Abstract
When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Chao Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeong Chan Joo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - James R. Winsor
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Mark Duban
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| |
Collapse
|
24
|
Roth AJK, Tretbar M, Stark CBW. Mimicking the active site of aldehyde dehydrogenases: stabilization of carbonyl hydrates through hydrogen bonds. Chem Commun (Camb) 2015; 51:14175-8. [DOI: 10.1039/c5cc02831k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Oxides have been identified as reagents stabilizing aldehyde hydrates in solution and in the solid state.
Collapse
Affiliation(s)
- A. J. K. Roth
- Fachbereich Chemie
- Institut für Organische Chemie
- Universität Hamburg
- 20146 Hamburg
- Germany
| | - M. Tretbar
- Fachbereich Chemie
- Institut für Organische Chemie
- Universität Hamburg
- 20146 Hamburg
- Germany
| | - C. B. W. Stark
- Fachbereich Chemie
- Institut für Organische Chemie
- Universität Hamburg
- 20146 Hamburg
- Germany
| |
Collapse
|
25
|
Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Appl Environ Microbiol 2014; 80:3992-4002. [PMID: 24747910 DOI: 10.1128/aem.00215-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.
Collapse
|
26
|
González-Segura L, Riveros-Rosas H, Díaz-Sánchez AG, Julián-Sánchez A, Muñoz-Clares RA. Potential monovalent cation-binding sites in aldehyde dehydrogenases. Chem Biol Interact 2013; 202:41-50. [PMID: 23295228 DOI: 10.1016/j.cbi.2012.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Potassium ions are non-essential activators of several aldehyde dehydrogenases (ALDHs), whereas a few others require the cation for activity. Two kinds of cation-binding sites, which we named intra-subunit and inter-subunit, have been observed in crystal structures of ALDHs, and based on reported crystallographic data, we here propose the existence of a third kind located in the central cavity of some tetrameric ALDHs. Given the high structural similarity between these enzymes, cation-binding sites may be present in many other members of this superfamily. To explore the prevalence of these sites, we compared 37 known crystal structures from 13 different ALDH families and evaluated the possible existence of a cation on the basis of the number, distance and geometry of its potential interactions, as well as of B-factor values of modeled cations obtained in new refinements of some reported crystal structures. Also, by performing multiple alignments of 855 non-redundant amino acid sequences, we assessed the degree of conservation in their respective families of the amino acid residues putatively relevant for cation binding. Among the ALDH enzymes studied, and according to our analyses, potential intra-subunit cation-binding sites seem to be present in most members of ALDH2, ALDH1L, ALDH4, ALDH5, ALDH7, ALDH10, and ALDH25 families, as well as in the bacterial and fungal members of the ALDH9 family and in a few ALDH1, ALDH6, ALDH11 and ALDH26 enzymes; potential inter-subunit sites in members of ALDH1L, ALDH3, ALDH4 from bacillales, ALDH5, ALDH7, ALDH9, ALDH10, ALDH11 and ALDH25 families; and potential central-cavity sites only in some bacterial and animal ALDH9s and in most members of the ALDH1L family. Because potassium is the most abundant intracellular cation, we propose that these are potassium-binding sites, but the specific structural and/or functional roles of the cation bound to these different sites remain to be investigated.
Collapse
Affiliation(s)
- Lilian González-Segura
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | | | | | | | | |
Collapse
|
27
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Lang BS, Gorren ACF, Oberdorfer G, Wenzl MV, Furdui CM, Poole LB, Mayer B, Gruber K. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. J Biol Chem 2012; 287:38124-34. [PMID: 22988236 PMCID: PMC3488082 DOI: 10.1074/jbc.m112.371716] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) catalyzes the bioactivation of nitroglycerin (glyceryl trinitrate, GTN) in blood vessels, resulting in vasodilation by nitric oxide (NO) or a related species. Because the mechanism of this reaction is still unclear we determined the three-dimensional structures of wild-type (WT) ALDH2 and of a triple mutant of the protein that exhibits low denitration activity (E268Q/C301S/C303S) in complex with GTN. The structure of the triple mutant showed that GTN binds to the active site via polar contacts to the oxyanion hole and to residues 268 and 301 as well as by van der Waals interactions to hydrophobic residues of the catalytic pocket. The structure of the GTN-soaked wild-type protein revealed a thionitrate adduct to Cys-302 as the first reaction intermediate, which was also found by mass spectrometry (MS) experiments. In addition, the MS data identified sulfinic acid as the irreversibly inactivated enzyme species. Assuming that the structures of the triple mutant and wild-type ALDH2 reflect binding of GTN to the catalytic site and the first reaction step, respectively, superposition of the two structures indicates that denitration of GTN is initiated by nucleophilic attack of Cys-302 at one of the terminal nitrate groups, resulting in formation of the observed thionitrate intermediate and release of 1,2-glyceryl dinitrate. Our results shed light on the molecular mechanism of the GTN denitration reaction and provide useful information on the structural requirements for high affinity binding of organic nitrates to the catalytic site of ALDH2.
Collapse
Affiliation(s)
- Barbara S Lang
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Frömmel J, Soural M, Tylichová M, Kopečný D, Demo G, Wimmerová M, Sebela M. Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino Acids 2012; 43:1189-202. [PMID: 22160258 DOI: 10.1007/s00726-011-1174-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/21/2011] [Indexed: 11/29/2022]
Abstract
The metabolic degradation of aldehydes is catalyzed by oxidoreductases from which aldehyde dehydrogenases (EC 1.2.1) comprise nonspecific or substrate-specific enzymes. The latter subset is represented, e.g., by NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs; EC 1.2.1.19) oxidizing a group of naturally occurring ω-aminoaldehydes including polyamine oxidation products. Recombinant isoenzymes from pea (PsAMADH1 and 2) and tomato (LeAMADH1 and 2) were subjected to kinetic measurements with synthetic aldehydes containing a nitrogenous heterocycle such as pyridinecarbaldehydes and their halogenated derivatives, (pyridinylmethylamino)-aldehydes, pyridinyl propanals and aldehydes derived from purine, 7-deazapurine and pyrimidine to characterize their substrate specificity and significance of the resulting data for in vivo reactions. The enzymatic production of the corresponding carboxylic acids was analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry. Although the studied AMADHs are largely homologous and supposed to have a very similar active site architecture, significant differences were observed. LeAMADH1 displayed the broadest specificity oxidizing almost all compounds followed by PsAMADH2 and 1. In contrast, LeAMADH2 accepted only a few compounds as substrates. Pyridinyl propanals were converted by all isoenzymes, usually better than pyridinecarbaldehydes and aldehydes with fused rings. The K (m) values for the best substrates were in the range of 10(-5)-10(-4) M. Nevertheless, the catalytic efficiency values (V (max)/K (m)) reached only a very small fraction of that with 3-aminopropanal (except for LeAMADH1 activity with two pyridine-derived compounds). Docking experiments using the crystal structure of PsAMADH2 were involved to discuss differences in results with position isomers or alkyl chain homologs.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
Jiamsomboon K, Treesuwan W, Boonyalai N. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Biochimie 2012; 94:1773-83. [DOI: 10.1016/j.biochi.2012.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/07/2012] [Indexed: 11/16/2022]
|
32
|
Wongpanya R, Boonyalai N, Thammachuchourat N, Horata N, Arikit S, Myint KM, Vanavichit A, Choowongkomon K. Biochemical and enzymatic study of rice BADH wild-type and mutants: an insight into fragrance in rice. Protein J 2012; 30:529-38. [PMID: 21959793 DOI: 10.1007/s10930-011-9358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ(1)-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.
Collapse
Affiliation(s)
- Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wulf H, Perzborn M, Sievers G, Scholz F, Bornscheuer U. Kinetic resolution of glyceraldehyde using an aldehyde dehydrogenase from Deinococcus geothermalis DSM 11300 combined with electrochemical cofactor recycling. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Lee YC, Lin DT, Ong PL, Chen HL, Lo HF, Lin LL. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:1233-1241. [PMID: 22117550 DOI: 10.1134/s0006297911110058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Based on the sequence homology, we have modeled the three-dimensional structure of Bacillus licheniformis aldehyde dehydrogenase (BlALDH) and identified two different residues, Glu255 and Cys289, that might be responsible for the catalytic function of the enzyme. The role of these residues was further investigated by site-directed mutagenesis and biophysical analysis. The expressed parental and mutant proteins were purified by nickel-chelate chromatography, and their molecular masses were determined to be approximately 53 kDa by SDS-PAGE. As compared with the parental BlALDH, a dramatic decrease or even complete loss of the dehydrogenase activity was observed for the mutant enzymes. Structural analysis showed that the intrinsic fluorescence and circular dichroism spectra of the mutant proteins were similar to the parental enzyme, but most of the variants exhibited a different sensitivity towards thermal- and guanidine hydrochloride-induced denaturation. These observations indicate that residues Glu255 and Cys289 play an important role in the dehydrogenase activity of BlALDH, and the rigidity of the enzyme has been changed as a consequence of the mutations.
Collapse
Affiliation(s)
- Yen-Chung Lee
- Department of Bioagricultural Science, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Kuaprasert B, Silprasit K, Horata N, Khunrae P, Wongpanya R, Boonyalai N, Vanavichit A, Choowongkomon K. Purification, crystallization and preliminary X-ray analysis of recombinant betaine aldehyde dehydrogenase 2 (OsBADH2), a protein involved in jasmine aroma, from Thai fragrant rice (Oryza sativa L.). Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1221-3. [PMID: 22102032 PMCID: PMC3212367 DOI: 10.1107/s1744309111030971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 08/01/2011] [Indexed: 11/10/2022]
Abstract
Fragrant rice (Oryza sativa L.) betaine aldehyde dehydrogenase 2 (OsBADH2) is a key enzyme in the synthesis of fragrance aroma compounds. The extremely low activity of OsBADH2 in catalyzing the oxidation of acetaldehyde is believed to be crucial for the accumulation of the volatile compound 2-acetyl-1-pyrroline (2AP) in many scented plants, including fragrant rice. Recombinant fragrant rice OsBADH2 was expressed in Escherichia coli as an N-terminal hexahistidine fusion protein, purified using Ni Sepharose affinity chromatography and crystallized using the microbatch method. Initial crystals were obtained within 24 h using 0.1 M Tris pH 8.5 with 30%(w/v) PEG 4000 and 0.2 M magnesium chloride as the precipitating agent at 291 K. Crystal quality was improved when the enzyme was cocrystallized with NAD(+). Improved crystals were grown in 0.1 M HEPES pH 7.4, 24%(w/v) PEG 4000 and 0.2 M ammonium chloride and diffracted to beyond 2.95 Å resolution after being cooled in a stream of N(2) immediately prior to X-ray diffraction experiments. The crystals belonged to space group C222(1), with unit-cell parameters a = 66.03, b = 183.94, c = 172.28 Å. An initial molecular-replacement solution has been obtained and refinement is in progress.
Collapse
Affiliation(s)
- Buabarn Kuaprasert
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Kun Silprasit
- Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Natharinee Horata
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakran 10540, Thailand
| | - Pongsak Khunrae
- Microbiology Department, King Mongkut’s University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nonlawat Boonyalai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Apichart Vanavichit
- Rice Gene Discovery Unit, Kasetsart University, Kamphangsaen Campus, Nakhon Pathom 73140, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
36
|
Zhang K, Woodruff AP, Xiong M, Zhou J, Dhande YK. A synthetic metabolic pathway for production of the platform chemical isobutyric acid. CHEMSUSCHEM 2011; 4:1068-1070. [PMID: 21744508 DOI: 10.1002/cssc.201100045] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Kechun Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
37
|
Bravo D, Braissant O, Solokhina A, Clerc M, Daniels AU, Verrecchia E, Junier P. Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity. FEMS Microbiol Ecol 2011; 78:266-74. [PMID: 21696406 DOI: 10.1111/j.1574-6941.2011.01158.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Isothermal microcalorimetry (IMC) has been used in the past to monitor metabolic activities in living systems. A few studies have used it on ecological research. In this study, IMC was used to monitor oxalotrophic activity, a widespread bacterial metabolism found in the environment, and particularly in soils. Six model strains were inoculated in solid angle media with K-oxalate as the sole carbon source. Cupriavidus oxalaticus, Cupriavidus necator, and Streptomyces violaceoruber presented the highest activity (91, 40, and 55 μW, respectively) and a maximum growth rate (μmax h(-1) ) of 0.264, 0.185, and 0.199, respectively, among the strains tested. These three strains were selected to test the incidence of different oxalate sources (Ca, Cu, and Fe-oxalate salts) in the metabolic activity. The highest activity was obtained in Ca-oxalate for C. oxalaticus. Similar experiments were carried out with a model soil to test whether this approach can be used to measure oxalotrophic activity in field samples. Although measuring oxalotrophic activity in a soil was challenging, there was a clear effect of the amendment with oxalate on the metabolic activity measured in soil. The correlation between heat flow and growth suggests that IMC analysis is a powerful method to monitor bacterial oxalotrophic activity.
Collapse
Affiliation(s)
- Daniel Bravo
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Bains J, Leon R, Temke KG, Boulanger MJ. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400. Protein Sci 2011; 20:1048-59. [PMID: 21495107 DOI: 10.1002/pro.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 11/09/2022]
Abstract
Oxidation of cis-3,4-dehydroadipyl-CoA semialdehyde to cis-3,4-dehydroadipyl-CoA by the aldehyde dehydrogenase, ALDH(C) (EC.1.2.1.77), is an essential step in the metabolism of benzoate in Burkholderia xenovorans LB400. In a previous study, we established a structural blueprint for this novel group of ALDH enzymes. Here, we build significantly on this initial work and propose a detailed reaction mechanism for ALDH(C) based on comprehensive structural and functional investigations of active site residues. Kinetic analyses reveal essential roles for C296 as the nucleophile and E257 as the associated general base. Structural analyses of E257Q and C296A variants suggest a dynamic charge repulsion relationship between E257 and C296 that contributes to the inherent flexibility of E257 in the native enzyme, which is further regulated by E496 and E167. A proton relay network anchored by E496 and supported by E167 and K168 serves to reset E257 for the second catalytic step. We also propose that E167, which is unique to ALDH(C) and its homologs, serves a critical role in presenting the catalytic water to the newly reset E257 such that the enzyme can proceed with deacylation and product release. Collectively, the reaction mechanism proposed for ALDH(C) promotes a greater understanding of these novel ALDH enzymes, the ALDH super-family in general, and benzoate degradation in B. xenovorans LB400.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W3P6, Canada
| | | | | | | |
Collapse
|
39
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A Regioselective Biocatalyst for Alkane Activation under Mild Conditions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A regioselective biocatalyst for alkane activation under mild conditions. Angew Chem Int Ed Engl 2011; 50:2075-9. [PMID: 21344555 DOI: 10.1002/anie.201005597] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/20/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Mélanie Bordeaux
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM2/UM1, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
41
|
Muñoz-Clares RA, González-Segura L, Díaz-Sánchez AG. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Chem Biol Interact 2010; 191:137-46. [PMID: 21195066 DOI: 10.1016/j.cbi.2010.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
The overall chemical mechanism of the reaction catalyzed by the hydrolytic aldehyde dehydrogenases (ALDHs) involves three main steps: (1) nucleophilic attack of the thiol group of the catalytic cysteine on the carbonyl carbon of the aldehyde substrate; (2) hydride transfer from the tetrahedral thiohemiacetal intermediate to the pyridine ring of NAD(P)(+); and (3) hydrolysis of the resulting thioester intermediate (deacylation). Crystal structures of different ALDHs from several organisms-determined in the absence and presence of bound NAD(P)(+), NAD(P)H, aldehydes, or acid products-showed specific details at the atomic level about the catalytic residues involved in each of the catalytic steps. These structures also showed the conformational flexibility of the nicotinamide half of the cofactor, and of the catalytic cysteinyl and glutamyl residues, the latter being the general base that activates the hydrolytic water molecule in the deacylation step. The architecture of the ALDH active site allows for this conformational flexibility, which, undoubtedly, is crucial for catalysis in these enzymes. Focusing in the deacylation step of the ALDH-catalyzed reaction, here we review and systematize the crystallographic evidence of the structural features responsible for the conformational flexibility of the catalytic glutamyl residue, and for the positioning of the hydrolytic water molecule inside the ALDH active site. Based on the analysis of the available crystallographic data and of energy-minimized models of the thioester reaction intermediate, as well as on the results of theoretical calculations of the pK(a) of the carboxyl group of the catalytic glutamic acid in its three different conformations, we discuss the role that the conformational flexibility of this residue plays in the activation of the hydrolytic water. We also propose a critical participation in the water activation process of the peptide bond to which the catalytic glutamic acid in the intermediate conformation is hydrogen bonded.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, Mexico.
| | | | | |
Collapse
|
42
|
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 2010; 285:18452-63. [PMID: 20207735 DOI: 10.1074/jbc.m109.077925] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic stress-induced apoptosis caused by increased extracellular concentrations of sucrose or sodium chloride. Purified recombinant ALDH7A1 efficiently metabolized a number of aldehyde substrates, including the osmolyte precursor, betaine aldehyde, lipid peroxidation-derived aldehydes, and the intermediate lysine degradation product, alpha-aminoadipic semialdehyde. The crystal structure for ALDH7A1 supports the enzyme's substrate specificities. Tissue distribution studies in mice showed the highest expression of ALDH7A1 protein in liver, kidney, and brain, followed by pancreas and testes. ALDH7A1 protein was found in the cytosol, nucleus, and mitochondria, making it unique among the aldehyde dehydrogenase enzymes. Analysis of human and mouse cDNA sequences revealed mitochondrial and cytosolic transcripts that are differentially expressed in a tissue-specific manner in mice. In conclusion, ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 2010; 396:870-82. [PMID: 20026072 DOI: 10.1016/j.jmb.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
44
|
Langendorf CG, Key TLG, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RHP, Whisstock JC. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 2010; 5:e9280. [PMID: 20174634 PMCID: PMC2823781 DOI: 10.1371/journal.pone.0009280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.
Collapse
Affiliation(s)
- Christopher G. Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Trevor L. G. Key
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wan-Ting Kan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| |
Collapse
|
45
|
Li X, Li Y, Wei D, Li P, Wang L, Feng L. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiol Res 2010; 165:706-12. [PMID: 20171064 DOI: 10.1016/j.micres.2010.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/18/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
Abstract
An aldehyde dehydrogenase (ALDH) involved in alkane degradation in crude oil-degrading Geobacillus thermodenitrificans NG80-2 was characterized in vitro. The ALDH was expressed heterologously in Escherichia coli and purified as a His-tagged homotetrameric protein with a subunit of 57 kDa based on SDS-PAGE and Native-PAGE analysis. The purified ALDH-oxidized alkyl aldehydes ranging from formaldehyde (C₁) to eicosanoic aldehyde (C₂₀) with the highest activity on C₁. It also oxidized several aromatic aldehydes including benzaldehyde, phenylacetaldehyde, o-chloro-benzaldehyde and o-phthalaldehyde. The ALDH uses only NAD(+) as the cofactor, and has no reductive activity on acetate or hexadecanoic acid. Therefore, it is an irreversible NAD(+)-dependent aldehyde dehydrogenase. Kinetic parameters, temperature and pH optimum of the enzyme, and effects of metal ions, EDTA and Triton X-100 on the enzyme activity were investigated. Physiological roles of the ALDH for the survival of NG80-2 in oil reservoirs are discussed.
Collapse
Affiliation(s)
- Xiaomin Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys 2009; 493:71-81. [PMID: 19766587 DOI: 10.1016/j.abb.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/05/2009] [Accepted: 09/14/2009] [Indexed: 11/19/2022]
Abstract
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)(+)-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of gamma-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, México.
| | | | | | | |
Collapse
|
47
|
Krupenko SA. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 2009; 178:84-93. [PMID: 18848533 PMCID: PMC2664990 DOI: 10.1016/j.cbi.2008.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO(2) in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO(2).
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
48
|
Reaction of the catalytic cysteine of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with arsenite-BAL and phenylarsine oxide. Chem Biol Interact 2009; 178:64-9. [DOI: 10.1016/j.cbi.2008.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
|
49
|
The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site. J Mol Biol 2008; 385:542-57. [PMID: 19013472 DOI: 10.1016/j.jmb.2008.10.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/10/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The other--not described before for any ALDH but most likely present in most of them--is located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K(+) ions on the activity and stability of PaBADH.
Collapse
|
50
|
The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. FEBS Lett 2008; 582:3090-6. [PMID: 18694748 DOI: 10.1016/j.febslet.2008.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.
Collapse
|