1
|
Rüttiger AS, Ryan D, Spiga L, Lamm-Schmidt V, Prezza G, Reichardt S, Langford M, Barquist L, Faber F, Zhu W, Westermann AJ. The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:208. [PMID: 39747016 PMCID: PMC11697453 DOI: 10.1038/s41467-024-55383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level. However, how PULs are orchestrated at translational level in response to the fluctuating levels of their cognate substrates is unknown. Here, we identify the RNA-binding protein RbpB and a family of noncoding RNAs as key players in post-transcriptional PUL regulation. We demonstrate that RbpB interacts with numerous cellular transcripts, including a paralogous noncoding RNA family comprised of 14 members, the FopS (family of paralogous sRNAs). Through a series of in-vitro and in-vivo assays, we reveal that FopS sRNAs repress the translation of SusC-like glycan transporters when substrates are limited-an effect antagonized by RbpB. Ablation of RbpB in Bacteroides thetaiotaomicron compromises colonization in the mouse gut in a diet-dependent manner. Together, this study adds to our understanding of RNA-coordinated metabolic control as an important factor contributing to the in-vivo fitness of predominant microbiota species in dynamic nutrient landscapes.
Collapse
Affiliation(s)
- Ann-Sophie Rüttiger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Daniel Ryan
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vanessa Lamm-Schmidt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, D-97080, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Madison Langford
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biology, University of Toronto, Mississauga, L5L 1C6, Ontario, Canada
| | - Franziska Faber
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, D-97080, Germany
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Alexander J Westermann
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany.
| |
Collapse
|
2
|
Wang WS, Lin-Chao S. Hfq-Antisense RNA I Binding Regulates RNase E-Dependent RNA Stability and ColE1 Plasmid Copy Number. Int J Mol Sci 2024; 25:3955. [PMID: 38612765 PMCID: PMC11012335 DOI: 10.3390/ijms25073955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The mechanisms and consequences of gene regulation by Hfq on trans-encoded small RNAs (sRNAs) have been well studied and documented. Recent employment of Genomic SELEX to search for Hfq-binding motifs has indicated that Hfq might frequently regulate gene expression controlled by cis-antisense RNAs. Here, we use the classic ColE1 plasmid antisense RNA-based regulation model (i.e., RNA I) to study the role of Hfq in controlling antisense regulatory functions. We show that Hfq exhibits a high binding affinity for RNA I and that binding limits RNase E cleavage, thereby stabilizing RNA I and reducing the plasmid copy number. Full-length RNA I displays a binding affinity for Hfq in the sub-micromolar range. In vivo overexpression of Hfq prolongs RNA I stability and reduces the ColE1 plasmid copy number, whereas deletion of hfq reduces RNA I stability and increases the plasmid copy number. RNA I predominantly binds to the proximal face of Hfq and exhibits competitive ability against a chromosome-borne proximal face-bound sRNA (DsrA) for Hfq binding. Through its strong promoter and high gene dosage features, plasmid-encoded antisense RNA I results in high RNA I expression, so it may antagonize the effects of trans-encoded RNAs in controlling target gene expression.
Collapse
Affiliation(s)
- Wei-Syuan Wang
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue Lin-Chao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Wang Y, Teng Y, Geng J, Long J, Yang H, Duan G, Chen S. Involvement of RNA chaperone hfq in the regulation of antibiotic resistance and virulence in Shigella sonnei. Res Microbiol 2023; 174:104047. [PMID: 36868486 DOI: 10.1016/j.resmic.2023.104047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The host factor for RNA phage Qβ replicase (Hfq) is a crucial post-transcriptional regulator in many bacterial pathogens, facilitating the interaction between small non-coding RNAs (sRNAs) and their target mRNAs. Studies have suggested that Hfq plays a role in antibiotic resistance and virulence in bacteria, although its functions in Shigella are not fully understood. In this study, we investigated the functional roles of Hfq in Shigella sonnei (S. sonnei) by constructing an hfq deletion mutant. Our phenotypic assays showed that the hfq deletion mutant was more sensitivity to antibiotics and had impaired virulence. Transcriptome analyses supported the results concerning the phenotype of the hfq mutant and showed that differentially expressed genes were mainly enriched in the KEGG pathways two-component system, ABC transporters, ribosome, and Escherichia coli biofilm formation. Additionally, we predicted eleven novel Hfq-dependent sRNAs, which were potentially involved in the regulation of antibiotic resistance and/or virulence in S. sonnei. Our findings suggest that Hfq plays a post-transcriptional role in regulating antibiotic resistance and virulence in S. sonnei, and could provide a basis for future studies on Hfq-sRNA-mRNA regulatory networks in this important pathogen.
Collapse
Affiliation(s)
- Ya Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanli Teng
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Anand D, Jakkala K, Nair RR, Sharan D, Pradhan A, Mukkayyan N, Ajitkumar P. Complete identity and expression of StfZ, the cis-antisense RNA to the mRNA of the cell division gene ftsZ, in Escherichia coli. Front Microbiol 2022; 13:920117. [PMID: 36338044 PMCID: PMC9628754 DOI: 10.3389/fmicb.2022.920117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Deepak Anand,
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|
5
|
Cai H, Roca J, Zhao YF, Woodson SA. Dynamic Refolding of OxyS sRNA by the Hfq RNA Chaperone. J Mol Biol 2022; 434:167776. [PMID: 35934049 PMCID: PMC10044511 DOI: 10.1016/j.jmb.2022.167776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5' and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.
Collapse
Affiliation(s)
- Huahuan Cai
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Jorjethe Roca
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA
| | - Yu-Fen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sarah A Woodson
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA.
| |
Collapse
|
6
|
Roca J, Santiago-Frangos A, Woodson SA. Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nat Commun 2022; 13:2449. [PMID: 35508531 PMCID: PMC9068810 DOI: 10.1038/s41467-022-30211-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Hundreds of bacterial small RNAs (sRNAs) require the Hfq chaperone to regulate mRNA expression. Hfq is limiting, thus competition among sRNAs for binding to Hfq shapes the proteomes of individual cells. To understand how sRNAs compete for a common partner, we present a single-molecule fluorescence platform to simultaneously visualize binding and release of multiple sRNAs with Hfq. We show that RNA residents rarely dissociate on their own. Instead, clashes between residents and challengers on the same face of Hfq cause rapid exchange, whereas RNAs that recognize different surfaces may cohabit Hfq for several minutes before one RNA departs. The prevalence of these pathways depends on the structure of each RNA and how it interacts with Hfq. We propose that sRNA diversity creates many pairwise interactions with Hfq that allow for distinct biological outcomes: active exchange favors fast regulation whereas co-residence of dissimilar RNAs favors target co-recognition or target exclusion.
Collapse
Affiliation(s)
- Jorjethe Roca
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Andrew Santiago-Frangos
- CMDB Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.
| |
Collapse
|
7
|
Lai YJ, Yakhnin H, Pannuri A, Pourciau C, Babitzke P, Romeo T. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol Microbiol 2022; 117:32-53. [PMID: 34107125 PMCID: PMC10000020 DOI: 10.1111/mmi.14769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 02/03/2023]
Abstract
The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.
Collapse
Affiliation(s)
- Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Turbant F, Wu P, Wien F, Arluison V. The Amyloid Region of Hfq Riboregulator Promotes DsrA: rpoS RNAs Annealing. BIOLOGY 2021; 10:biology10090900. [PMID: 34571778 PMCID: PMC8468756 DOI: 10.3390/biology10090900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Pengzhi Wu
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- UFR Sciences du Vivant, Université de Paris, 75006 Paris, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
9
|
Małecka EM, Woodson SA. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell 2021; 81:1988-1999.e4. [PMID: 33705712 PMCID: PMC8106647 DOI: 10.1016/j.molcel.2021.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.
Collapse
Affiliation(s)
- Ewelina M Małecka
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Sy BM, Tree JJ. Small RNA Regulation of Virulence in Pathogenic Escherichia coli. Front Cell Infect Microbiol 2021; 10:622202. [PMID: 33585289 PMCID: PMC7873438 DOI: 10.3389/fcimb.2020.622202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Enteric and extraintestinal pathotypes of Escherichia coli utilize a wide range of virulence factors to colonize niches within the human body. During infection, virulence factors such as adhesins, secretions systems, or toxins require precise regulation and coordination to ensure appropriate expression. Additionally, the bacteria navigate rapidly changing environments with fluctuations in pH, temperature, and nutrient levels. Enteric pathogens utilize sophisticated, interleaved systems of transcriptional and post-transcriptional regulation to sense and respond to these changes and modulate virulence gene expression. Regulatory small RNAs and RNA-binding proteins play critical roles in the post-transcriptional regulation of virulence. In this review we discuss how the mosaic genomes of Escherichia coli pathotypes utilize small RNA regulation to adapt to their niche and become successful human pathogens.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Bianchi DM, Brier TA, Poddar A, Azam MS, Vanderpool CK, Ha T, Luthey-Schulten Z. Stochastic Analysis Demonstrates the Dual Role of Hfq in Chaperoning E. coli Sugar Shock Response. Front Mol Biosci 2021; 7:593826. [PMID: 33425989 PMCID: PMC7786190 DOI: 10.3389/fmolb.2020.593826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression by silencing the translation of target mRNAs. SgrS is an sRNA that relieves glucose-phosphate stress, or "sugar shock" in E. coli. The power of single cell measurements is their ability to obtain population level statistics that illustrate cell-to-cell variation. Here, we utilize single molecule super-resolution microscopy in single E. coli cells coupled with stochastic modeling to analyze glucose-phosphate stress regulation by SgrS. We present a kinetic model that captures the combined effects of transcriptional regulation, gene replication and chaperone mediated RNA silencing in the SgrS regulatory network. This more complete kinetic description, simulated stochastically, recapitulates experimentally observed cellular heterogeneity and characterizes the binding of SgrS to the chaperone protein Hfq as a slow process that not only stabilizes SgrS but also may be critical in restructuring the sRNA to facilitate association with its target ptsG mRNA.
Collapse
Affiliation(s)
- David M Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Anustup Poddar
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.,HHMI Investigator Program, Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taekjip Ha
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.,HHMI Investigator Program, Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Hapeshi A, Healey JRJ, Mulley G, Waterfield NR. Temperature Restriction in Entomopathogenic Bacteria. Front Microbiol 2020; 11:548800. [PMID: 33101227 PMCID: PMC7554251 DOI: 10.3389/fmicb.2020.548800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature plays an important role in bacteria-host interactions and can be a determining factor for host switching. In this study we sought to investigate the reasons behind growth temperature restriction in the entomopathogenic enterobacterium Photorhabdus. Photorhabdus has a complex dual symbiotic and pathogenic life cycle. The genus consists of 19 species but only one subgroup, previously all classed together as Photorhabdus asymbiotica, have been shown to cause human disease. These clinical isolates necessarily need to be able to grow at 37°C, whilst the remaining species are largely restricted to growth temperatures below 34°C and are therefore unable to infect mammalian hosts. Here, we have isolated spontaneous mutant lines of Photorhabdus laumondii DJC that were able to grow up to 36-37°C. Following whole genome sequencing of 29 of these mutants we identified a single gene, encoding a protein with a RecG-like helicase domain that for the majority of isolates contained single nucleotide polymorphisms. Importantly, provision of the wild-type allele of this gene in trans restored the temperature restriction, confirming the mutations are recessive, and the dominant effect of the protein product of this gene. The gene appears to be part of a short three cistron operon, which we have termed the Temperature Restricting Locus (TRL). Transcription reporter strains revealed that this operon is induced upon the switch from 30 to 36°C, leading to replication arrest of the bacteria. TRL is absent from all of the human pathogenic species so far examined, although its presence is not uniform in different strains of the Photorhabdus luminescens subgroup. In a wider context, the presence of this gene is not limited to Photorhabdus, being found in phylogenetically diverse proteobacteria. We therefore suggest that this system may play a more fundamental role in temperature restriction in diverse species, relating to as yet cryptic aspects of their ecological niches and life cycle requirements.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Joseph R. J. Healey
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Geraldine Mulley
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nicholas R. Waterfield
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
13
|
Azam MS, Vanderpool CK. Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020; 114:391-408. [PMID: 32291821 DOI: 10.1111/mmi.14514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.
Collapse
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Panja S, Małecka EM, Santiago-Frangos A, Woodson SA. Quantitative Analysis of RNA Chaperone Activity by Native Gel Electrophoresis and Fluorescence Spectroscopy. Methods Mol Biol 2020; 2106:19-39. [PMID: 31889249 PMCID: PMC8015265 DOI: 10.1007/978-1-0716-0231-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diverse types of RNA-binding proteins chaperone the interactions of noncoding RNAs by increasing the rate of RNA base pairing and by stabilizing the final RNA duplex. The E. coli protein Hfq facilitates interactions between small noncoding RNAs and their target mRNAs. The chaperone and RNA annealing activity of Hfq and other RNA chaperones can be evaluated by determining the kinetics of RNA base pairing in the presence and absence of the protein. This chapter presents protocols for measuring RNA annealing kinetics using electrophoretic gel mobility shift assays (EMSA), stopped-flow fluorescence, and fluorescence anisotropy. EMSA is low cost and can resolve reaction intermediates of natural small RNAs and mRNA fragments, as long as the complexes are sufficiently long-lived (≥10 s) to be trapped during electrophoresis. Stopped-flow fluorescence can detect annealing reactions between 1 ms and 30 s and is best suited for measuring the rapid annealing of oligoribonucleotides. Fluorescence anisotropy reports the physical size of the complex and is well-suited for monitoring the association and dissociation of RNA from Hfq during the chaperone cycle.
Collapse
Affiliation(s)
- Subrata Panja
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- GeneDx, Gaithersburg, MD, USA
| | - Ewelina M Małecka
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Santiago-Frangos
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Cameron TA, Matz LM, Sinha D, De Lay NR. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res 2019; 47:8821-8837. [PMID: 31329973 PMCID: PMC7145675 DOI: 10.1093/nar/gkz616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In many Gram-negative and some Gram-positive bacteria, small regulatory RNAs (sRNAs) that bind the RNA chaperone Hfq have a pivotal role in modulating virulence, stress responses, metabolism and biofilm formation. These sRNAs recognize transcripts through base-pairing, and sRNA–mRNA annealing consequently alters the translation and/or stability of transcripts leading to changes in gene expression. We have previously found that the highly conserved 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) has an indispensable role in paradoxically stabilizing Hfq-bound sRNAs and promoting their function in gene regulation in Escherichia coli. Here, we report that PNPase contributes to the degradation of specific short mRNA fragments, the majority of which bind Hfq and are derived from targets of sRNAs. Specifically, we found that these mRNA-derived fragments accumulate in the absence of PNPase or its exoribonuclease activity and interact with PNPase. Additionally, we show that mutations in hfq or in the seed pairing region of some sRNAs eliminated the requirement of PNPase for their stability. Altogether, our results are consistent with a model that PNPase degrades mRNA-derived fragments that could otherwise deplete cells of Hfq-binding sRNAs through pairing-mediated decay.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Conditional Hfq Association with Small Noncoding RNAs in Pseudomonas aeruginosa Revealed through Comparative UV Cross-Linking Immunoprecipitation Followed by High-Throughput Sequencing. mSystems 2019; 4:4/6/e00590-19. [PMID: 31796567 PMCID: PMC6890931 DOI: 10.1128/msystems.00590-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome. Bacterial small noncoding RNAs (sRNAs) play posttranscriptional regulatory roles in cellular responses to changing environmental cues and in adaptation to harsh conditions. Generally, the RNA-binding protein Hfq helps sRNAs associate with target mRNAs to modulate their translation and to modify global RNA pools depending on physiological state. Here, a combination of in vivo UV cross-linking immunoprecipitation followed by high-throughput sequencing (CLIP-seq) and total RNA-seq showed that Hfq interacts with different regions of the Pseudomonas aeruginosa transcriptome under planktonic versus biofilm conditions. In the present approach, P. aeruginosa Hfq preferentially interacted with repeats of the AAN triplet motif at mRNA 5′ untranslated regions (UTRs) and sRNAs and U-rich sequences at rho-independent terminators. Further transcriptome analysis suggested that the association of sRNAs with Hfq is primarily a function of their expression levels, strongly supporting the notion that the pool of Hfq-associated RNAs is equilibrated by RNA concentration-driven cycling on and off Hfq. Overall, our combinatorial CLIP-seq and total RNA-seq approach highlights conditional sRNA associations with Hfq as a novel aspect of posttranscriptional regulation in P. aeruginosa. IMPORTANCE The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome.
Collapse
|
17
|
Hu X, Li X, Yang L, Zhu Y, Shi Y, Li Y, Wang H, Gong Q. Conformation and mechanical property of rpoS mRNA inhibitory stem studied by optical tweezers and X-ray scattering. PLoS One 2019; 14:e0222938. [PMID: 31557220 PMCID: PMC6762075 DOI: 10.1371/journal.pone.0222938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023] Open
Abstract
3' downstream inhibitory stem plays a crucial role in locking rpoS mRNA 5' untranslated region in a self-inhibitory state. Here, we used optical tweezers to study the unfolding/refolding of rpoS inhibitory stem in the absence and presence of Mg2+. We found adding Mg2+ decreased the free energy of the RNA junction without re-arranging its secondary structure, through confirming that this RNA formed a canonical RNA three-way junction. We suspected increased free energy might change the relative orientation of different stems of rpoS and confirmed this by small angle X-ray scattering. Such changed conformation may improve Hfq-bridged annealing between sRNA and rpoS RNA inhibitory stem. We established a convenient route to analyze the changes of RNA conformation and folding dynamics by combining optical tweezers with X-ray scattering methods. This route can be easily applied in the studies of other RNA structure and ligand-RNA.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Xuanling Li
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Lingna Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yilin Zhu
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Yunyu Shi
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yinmei Li
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Haowei Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Qingguo Gong
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
18
|
Kim W, Choi JS, Kim D, Shin D, Suk S, Lee Y. Mechanisms for Hfq-Independent Activation of rpoS by DsrA, a Small RNA, in Escherichia coli. Mol Cells 2019; 42:426-439. [PMID: 31085808 PMCID: PMC6537650 DOI: 10.14348/molcells.2019.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Many small RNAs (sRNAs) regulate gene expression by base pairing to their target messenger RNAs (mRNAs) with the help of Hfq in Escherichia coli. The sRNA DsrA activates translation of the rpoS mRNA in an Hfq-dependent manner, but this activation ability was found to partially bypass Hfq when DsrA is overproduced. The precise mechanism by which DsrA bypasses Hfq is unknown. In this study, we constructed strains lacking all three rpoS-activating sRNAs (i.e., ArcZ, DsrA, and RprA) in hfq+ and Hfq- backgrounds, and then artificially regulated the cellular DsrA concentration in these strains by controlling its ectopic expression. We then examined how the expression level of rpoS was altered by a change in the concentration of DsrA. We found that the translation and stability of the rpoS mRNA are both enhanced by physiological concentrations of DsrA regardless of Hfq, but that depletion of Hfq causes a rapid degradation of DsrA and thereby decreases rpoS mRNA stability. These results suggest that the observed Hfq dependency of DsrA-mediated rpoS activation mainly results from the destabilization of DsrA in the absence of Hfq, and that DsrA itself contributes to the translational activation and stability of the rpoS mRNA in an Hfq-independent manner.
Collapse
Affiliation(s)
- Wonkyong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jee Soo Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Daun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Doohang Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Shinae Suk
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
19
|
Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc Natl Acad Sci U S A 2019; 116:10978-10987. [PMID: 31076551 PMCID: PMC6561178 DOI: 10.1073/pnas.1814428116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many bacteria, the RNA chaperone protein Hfq binds to hundreds of small noncoding RNAs and improves their efficacy by aiding base pairing to target mRNAs. Hfq proteins contain a variable C-terminal domain (CTD), usually structurally disordered, which was recently demonstrated to inhibit Hfq from mediating nonspecific RNA annealing. We obtained a new structure that shows how this inhibition is achieved in Caulobacter crescentus Hfq. The structural data and chaperone assays provide an initial view of the little-known mechanism of small RNA regulation in Caulobacter. In addition, this work demonstrates how the Hfq CTD has evolved to meet the needs for species-specific selectivity in RNA binding and pairing of regulatory RNAs with cognate targets. We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.
Collapse
|
20
|
Hoekzema M, Romilly C, Holmqvist E, Wagner EGH. Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation. EMBO J 2019; 38:embj.2018101199. [PMID: 30833291 PMCID: PMC6443205 DOI: 10.15252/embj.2018101199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023] Open
Abstract
Small RNAs post‐transcriptionally regulate many processes in bacteria. Base‐pairing of sRNAs near ribosome‐binding sites in mRNAs inhibits translation, often requiring the RNA chaperone Hfq. In the canonical model, Hfq simultaneously binds sRNAs and mRNA targets to accelerate pairing. Here, we show that the Escherichia coli sRNAs OmrA and OmrB inhibit translation of the diguanylate cyclase DgcM (previously: YdaM), a player in biofilm regulation. In OmrA/B repression of dgcM, Hfq is not required as an RNA interaction platform, but rather unfolds an inhibitory RNA structure that impedes OmrA/B binding. This restructuring involves distal face binding of Hfq and is supported by RNA structure mapping. A corresponding mutant protein cannot support inhibition in vitro and in vivo; proximal and rim mutations have negligible effects. Strikingly, OmrA/B‐dependent translational inhibition in vitro is restored, in complete absence of Hfq, by a deoxyoligoribonucleotide that base‐pairs to the biochemically mapped Hfq site in dgcM mRNA. We suggest that Hfq‐dependent RNA structure remodeling can promote sRNA access, which represents a mechanism distinct from an interaction platform model.
Collapse
Affiliation(s)
- Mirthe Hoekzema
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Abstract
RNA-binding proteins chaperone the biological functions of noncoding RNA by reducing RNA misfolding, improving matchmaking between regulatory RNA and targets, and exerting quality control over RNP biogenesis. Recent studies of Escherichia coli CspA, HIV NCp, and E. coli Hfq are beginning to show how RNA-binding proteins remodel RNA structures. These different protein families use common strategies for disrupting or annealing RNA double helices, which can be used to understand the mechanisms by which proteins chaperone RNA-dependent regulation in bacteria.
Collapse
|
22
|
Sinha D, Matz LM, Cameron TA, De Lay NR. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2018; 24:1496-1511. [PMID: 30061117 PMCID: PMC6191717 DOI: 10.1261/rna.067181.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.
Collapse
Affiliation(s)
- Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Riboregulator elements as tools to engineer gene expression in cyanobacteria. Appl Microbiol Biotechnol 2018; 102:7717-7723. [DOI: 10.1007/s00253-018-9221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
|
25
|
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1475. [PMID: 29633565 PMCID: PMC6002925 DOI: 10.1002/wrna.1475] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022]
Abstract
Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the antR mRNA. J Bacteriol 2018; 200:JB.00704-17. [PMID: 29507088 DOI: 10.1128/jb.00704-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, P. aeruginosa transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1H)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of antR, which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of antR, demonstrating that the PrrF sRNAs interact with the antR 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The P. aeruginosa Hfq protein interacted with UA-rich sequences in both PrrF sRNAs (Kd [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the antR mRNA (0.3 μM), and PrrF was able to bind to antR mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the antR UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in P. aeruginosaIMPORTANCE The iron-responsive PrrF sRNAs play a central role in regulating P. aeruginosa iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the antR mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in P. aeruginosa.
Collapse
|
27
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs. Methods Mol Biol 2018. [PMID: 29484604 DOI: 10.1007/978-1-4939-7634-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA biology and RNA engineering are subjects of growing interest due to recent advances in our understanding of the diverse cellular functions of RNAs, including their roles as genetic regulators. The noncoding small RNAs (sRNAs) of bacteria are a fundamental basis of regulatory control that can regulate gene expression via antisense base-pairing to one or more target mRNAs. The sRNAs can be customized to generate a range of mRNA translation rates and stabilities. The sRNAs can be applied as a platform for metabolic engineering, to control expression of genes of interest by following relatively straightforward design rules (Kushwaha et al., ACS Synth Biol 5:795-809, 2016). However, the ab initio design of functional sRNAs to precise specifications of gene control is not yet possible. Consequently, there is a need for tools to rapidly profile uncharacterized sRNAs in vivo, to screen sRNAs against "new/novel" targets, and (in the case of metabolic engineering) to develop engineered sRNAs for regulatory function against multiple desired mRNA targets. To address this unmet need, we previously constructed a modular genetic system for assaying sRNA activity in vivo against specifiable mRNA sequences, using microtiter plate assays for high-throughput productivity. This sRNA design platform consists of three modular plasmids: one plasmid contains an inducible sRNA and the RNA chaperone Hfq; the second contains an inducible fluorescent reporter protein and a LacY mutant transporter protein for inducer molecules; and the third plasmid contains a second inducible fluorescent reporter protein. The second reporter gene makes it possible to screen for sRNA regulators that have activity against multiple mRNAs. We describe the protocol for engineering sRNAs with novel regulatory activity using this system. This sRNA prototyping regimen could also be employed for validating predicted mRNA targets of uncharacterized, naturally occurring sRNAs or for testing hypotheses about the predicted roles of genes, including essential genes, in cellular metabolism and other processes, by using customized antisense sRNAs to knock down or tune down gene expression.
Collapse
|
29
|
Gans J, Osborne J, Cheng J, Djapgne L, Oglesby-Sherrouse AG. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells. Methods Mol Biol 2018; 1737:341-350. [PMID: 29484602 DOI: 10.1007/978-1-4939-7634-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.
Collapse
Affiliation(s)
- Jonathan Gans
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jonathan Osborne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Juliet Cheng
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Louise Djapgne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | |
Collapse
|
30
|
Negrete A, Shiloach J. Improving E. coli growth performance by manipulating small RNA expression. Microb Cell Fact 2017; 16:198. [PMID: 29137641 PMCID: PMC5686845 DOI: 10.1186/s12934-017-0810-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
Efficient growth of E. coli, especially for production of recombinant proteins, has been a challenge for the biotechnological industry since the early 1970s. By employing multiple approaches, such as different media composition, various growth strategies and specific genetic manipulations, it is now possible to grow bacteria to concentrations exceeding 100 g/L and to achieve high concentrations of recombinant proteins. Although the growth conditions are carefully monitored and maintained, it is likely that during the growth process cells are exposed to periodic stress conditions, created by fluctuations in pH, dissolved oxygen, temperature, glucose, and salt concentration. These stress circumstances which can occur especially in large volume bioreactors, may affect the growth and production process. In the last several years, it has been recognized that small non-coding RNAs can act as regulators of bacterial gene expression. These molecules are found to be specifically involved in E. coli response to different environmental stress conditions; but so far, have not been used for improving production strains. The review provides summary of small RNAs identified on petri dish or in shake flask culture that can potentially affect growth characteristics of E. coli grown in bioreactor. Among them MicC and MicF that are involved in response to temperature changes, RyhB that responds to iron concentration, Gady which is associated with lower pH, Sgrs that is coupled with glucose transport and OxyS that responds to oxygen concentration. The manipulation of some of these small RNAs for improving growth of E. coli in Bioreactor is described in the last part of the review. Overexpression of SgrS was associated with improved growth and reduced acetate expression, over expression of GadY improved cell growth at acidic conditions and over expression of OxyS reduced the effect of oxidative stress. One of the possible advantages of manipulating sRNAs for improving cell growth is that the modifications occur at a post-translational level. Therefore, the use of sRNAs may exert minimal effect on the overall bacterial metabolism. The elucidation of the physiological role of newly discovered sRNAs will open new possibilities for creating strains with improved growth and production capabilities.
Collapse
Affiliation(s)
- Alejandro Negrete
- Biotechnology Core Laboratory, NIDDK, NIH, Bethesda, MD, 20892, USA.,MilliporeSigma, Carlsbad, CA, 92009, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, NIDDK, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J, Shi Y. The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Res 2017; 45:9625-9639. [PMID: 28934467 PMCID: PMC5766208 DOI: 10.1093/nar/gkx570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.
Collapse
Affiliation(s)
- Pengzhi Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaodan Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Lingna Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yitong Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
32
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
33
|
Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 2017; 31:1382-1395. [PMID: 28794186 PMCID: PMC5580658 DOI: 10.1101/gad.302547.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Here, Chen et al. show an example of Hfq repressing translation in the absence of sRNAs via major remodeling of the mRNA. They demonstrate that, by interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis. Mismatch repair (MMR) is a conserved mechanism exploited by cells to correct DNA replication errors both in growing cells and under nongrowing conditions. Hfq (host factor for RNA bacteriophage Qβ replication), a bacterial Lsm family RNA-binding protein, chaperones RNA–RNA interactions between regulatory small RNAs (sRNAs) and target messenger RNAs (mRNAs), leading to alterations of mRNA translation and/or stability. Hfq has been reported to post-transcriptionally repress the DNA MMR gene mutS in stationary phase, possibly limiting MMR to allow increased mutagenesis. Here we report that Hfq deploys dual mechanisms to control mutS expression. First, Hfq binds directly to an (AAN)3 motif within the mutS 5′ untranslated region (UTR), repressing translation in the absence of sRNA partners both in vivo and in vitro. Second, Hfq acts in a canonical pathway, promoting base-pairing of ArcZ sRNA with the mutS leader to inhibit translation. Most importantly, using pathway-specific mutS chromosomal alleles that specifically abrogate either regulatory pathway or both, we demonstrate that tight control of MutS levels in stationary phase contributes to stress-induced mutagenesis. By interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Lahiry A, Stimple SD, Wood DW, Lease RA. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation. ACS Synth Biol 2017; 6:648-658. [PMID: 28067500 DOI: 10.1021/acssynbio.6b00261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based genetic system to create and assay dual-acting retargeted-sRNA variants. The variants can be assayed for coordinate translational regulation of two alternate mRNA leaders fused to independent reporter genes. Accordingly, we began with the well-characterized E. coli native DsrA sRNA. The merits of using DsrA include its well-characterized separation of function into two independently folded stem-loop domains, wherein alterations at one stem do not necessarily abolish activity at the other stem. Expression of the sRNA and each reporter mRNA was independently controlled by small inducer molecules, allowing precise quantification of the regulatory effects of each sRNA:mRNA interaction in vivo with a microtiter plate assay. Using this system, we semirationally designed DsrA variants screened in E. coli for their ability to regulate key mRNA leader sequences from the Clostridium acetobutylicum n-butanol synthesis pathway. To coordinate intervention at two points in a metabolic pathway, we created bifunctional sRNA prototypes by combining sequences from two singly retargeted DsrA variants. This approach constitutes a platform for designing sRNAs to specifically target arbitrary mRNA transcript sequences, and thus provides a generalizable tool for retargeting and characterizing multitarget sRNAs for metabolic engineering.
Collapse
Affiliation(s)
- Ashwin Lahiry
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Samuel D. Stimple
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - David W. Wood
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Richard A. Lease
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci U S A 2016; 113:E6089-E6096. [PMID: 27681631 DOI: 10.1073/pnas.1613053113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.
Collapse
|
36
|
Nikulin A, Mikhailina A, Lekontseva N, Balobanov V, Nikonova E, Tishchenko S. Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii. J Biomol Struct Dyn 2016; 35:1615-1628. [PMID: 27187760 DOI: 10.1080/07391102.2016.1189849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.
Collapse
Affiliation(s)
- Alexey Nikulin
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Alisa Mikhailina
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Natalia Lekontseva
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Vitalii Balobanov
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Ekaterina Nikonova
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Svetlana Tishchenko
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| |
Collapse
|
37
|
Cech GM, Szalewska-Pałasz A, Kubiak K, Malabirade A, Grange W, Arluison V, Węgrzyn G. The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator. Front Mol Biosci 2016; 3:36. [PMID: 27517037 PMCID: PMC4963395 DOI: 10.3389/fmolb.2016.00036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
The Hfq protein was discovered in Escherichia coli as a host factor for bacteriophage Qβ RNA replication. Subsequent studies indicated that Hfq is a pleiotropic regulator of bacterial gene expression. The regulatory role of Hfq is ascribed mainly to its function as an RNA-chaperone, facilitating interactions between bacterial non-coding RNA and its mRNA target. Thus, it modulates mRNA translation and stability. Nevertheless, Hfq is able to interact with DNA as well. Its role in the regulation of DNA-related processes has been demonstrated. In this mini-review, it is discussed how Hfq interacts with DNA and what is the role of this protein in regulation of DNA transactions. Particularly, Hfq has been demonstrated to be involved in the control of ColE1 plasmid DNA replication, transposition, and possibly also transcription. Possible mechanisms of these Hfq-mediated regulations are described and discussed.
Collapse
Affiliation(s)
- Grzegorz M Cech
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | - Krzysztof Kubiak
- Department of Molecular Biology, University of GdańskGdańsk, Poland; Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA Saclay Gif-sur-Yvette, France
| | - Wilfried Grange
- IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Veronique Arluison
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| |
Collapse
|
38
|
Wroblewska Z, Olejniczak M. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA (NEW YORK, N.Y.) 2016; 22:979-94. [PMID: 27154968 PMCID: PMC4911921 DOI: 10.1261/rna.055251.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.
Collapse
Affiliation(s)
- Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
39
|
Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011. [PMID: 27044921 PMCID: PMC5207318 DOI: 10.15252/embj.201593360] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular roles of many RNA‐binding proteins in bacterial post‐transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP‐seq) have begun to revolutionize the transcriptome‐wide mapping of eukaryotic RNA‐binding protein target sites. We have applied CLIP‐seq to chart the target landscape of two major bacterial post‐transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single‐nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3′‐located Rho‐independent terminators as a universal motif involved in Hfq–RNA interactions. Additionally, Hfq preferentially binds 5′ to sRNA‐target sites in mRNAs, and 3′ to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA–mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA‐target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP‐seq approach will bring new insights into post‐transcriptional gene regulation by RNA‐binding proteins in diverse bacterial species.
Collapse
Affiliation(s)
- Erik Holmqvist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Lei Li
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Cayrol B, Fortas E, Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb) 2015; 7:128-41. [PMID: 25407044 DOI: 10.1039/c4ib00102h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial actin-homolog MreB is a key player in bacterial cell-wall biosynthesis and is required for the maintenance of the rod-like morphology of Escherichia coli. However, how MreB cellular levels are adjusted to growth conditions is poorly understood. Here, we show that DsrA, an E. coli small noncoding RNA (sRNA), is involved in the post-transcriptional regulation of mreB. DsrA is required for the downregulation of MreB cellular concentration during environmentally induced slow growth-rates, mainly growth at low temperature and during the stationary phase. DsrA interacts in an Hfq-dependent manner with the 5' region of mreB mRNA, which contains signals for translation initiation and thereby affects mreB translation and stability. Moreover, as DsrA is also involved in the regulation of two transcriptional regulators, σ(S) and the nucleoid associated protein H-NS, which negatively regulate mreB transcription, it also indirectly contributes to mreB transcriptional down-regulation. By using quantitative analyses, our results evidence the complexity of this regulation and the tangled interplay between transcriptional and post-transcriptional control. As transcription factors and sRNA-mediated post-transcriptional regulators use different timescales, we propose that the sRNA pathway helps to adapt to changes in temperature, but also indirectly mediates long-term regulation of MreB concentration. The tight regulation and fine-tuning of mreB gene expression in response to cellular stresses is discussed in regard to the effect of the MreB protein on cell elongation.
Collapse
Affiliation(s)
- Bastien Cayrol
- Laboratoire Léon Brillouin, CEA - Centre de Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lalaouna D, Morissette A, Carrier MC, Massé E. DsrA regulatory RNA represses bothhnsandrbsDmRNAs through distinct mechanisms inEscherichia coli. Mol Microbiol 2015; 98:357-69. [DOI: 10.1111/mmi.13129] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 12/26/2022]
Affiliation(s)
- David Lalaouna
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Audrey Morissette
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Marie-Claude Carrier
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Eric Massé
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| |
Collapse
|
42
|
Sagawa S, Shin JE, Hussein R, Lim HN. Paradoxical suppression of small RNA activity at high Hfq concentrations due to random-order binding. Nucleic Acids Res 2015; 43:8502-15. [PMID: 26261213 PMCID: PMC4787825 DOI: 10.1093/nar/gkv777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/20/2015] [Indexed: 11/15/2022] Open
Abstract
Small RNAs (sRNAs) are important regulators of gene expression during bacterial stress and pathogenesis. sRNAs act by forming duplexes with mRNAs to alter their translation and degradation. In some bacteria, duplex formation is mediated by the Hfq protein, which can bind the sRNA and mRNA in each pair in a random order. Here we investigate the consequences of this random-order binding and experimentally demonstrate that it can counterintuitively cause high Hfq concentrations to suppress rather than promote sRNA activity in Escherichia coli. As a result, maximum sRNA activity occurs when the Hfq concentration is neither too low nor too high relative to the sRNA and mRNA concentrations (‘Hfq set-point’). We further show with models and experiments that random-order binding combined with the formation of a dead-end mRNA–Hfq complex causes high concentrations of an mRNA to inhibit its own duplex formation by sequestering Hfq. In such cases, maximum sRNA activity requires an optimal mRNA concentration (‘mRNA set-point’) as well as an optimal Hfq concentration. The Hfq and mRNA set-points generate novel regulatory properties that can be harnessed by native and synthetic gene circuits to provide greater control over sRNA activity, generate non-monotonic responses and enhance the robustness of expression.
Collapse
Affiliation(s)
- Shiori Sagawa
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Jung-Eun Shin
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Razika Hussein
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Han N Lim
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
43
|
Panja S, Santiago-Frangos A, Schu DJ, Gottesman S, Woodson SA. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing. J Mol Biol 2015. [PMID: 26196441 DOI: 10.1016/j.jmb.2015.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs.
Collapse
Affiliation(s)
- Subrata Panja
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Andrew Santiago-Frangos
- Cell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel J Schu
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5132, Bethesda, MD 20892 USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5132, Bethesda, MD 20892 USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Cell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
Wang L, Wang W, Li F, Zhang J, Wu J, Gong Q, Shi Y. Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq. Nucleic Acids Res 2015; 43:2400-11. [PMID: 25670676 PMCID: PMC4344510 DOI: 10.1093/nar/gkv072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σs subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell.
Collapse
Affiliation(s)
- Lijun Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Weiwei Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
45
|
Małecka EM, Stróżecka J, Sobańska D, Olejniczak M. Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry 2015; 54:1157-70. [PMID: 25582129 DOI: 10.1021/bi500741d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial regulatory RNAs require the chaperone protein Hfq to enable their pairing to mRNAs. Recent data showed that there is a hierarchy among sRNAs in the competition for access to Hfq, which could be important for the tuning of sRNA-dependent translation regulation. Here, seven structurally different sRNAs were compared using filter-based competition assays. Moreover, chimeric sRNA constructs were designed to identify structure elements important for competition performance. The data showed that besides the 3'-terminal oligouridine sequences also the 5'-terminal structure elements of sRNAs were essential for their competition performance. When the binding of sRNAs to Hfq mutants was compared, the data showed the important role of the proximal and rim sites of Hfq for the binding of six out of seven sRNAs. However, ChiX sRNA, which was the most efficient competitor, bound Hfq in a unique way using the opposite-distal and proximal-faces of this ring-shaped protein. The data indicated that the simultaneous binding to the opposite faces of Hfq was enabled by separate adenosine-rich and uridine-rich sequences in the long, single-stranded region of ChiX. Overall, the results suggest that the individual structural composition of sRNAs serves to tune their performance to different levels resulting in a hierarchy of sRNAs in the competition for access to the Hfq protein.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań , Umultowska 89, 61-614 Poznań, Poland
| | | | | | | |
Collapse
|
46
|
Multiple approaches for the investigation of bacterial small regulatory RNAs self-assembly. Methods Mol Biol 2015; 1297:21-42. [PMID: 25895993 DOI: 10.1007/978-1-4939-2562-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNAs are flexible molecules involved in a multitude of roles in the cell. Specifically, noncoding RNAs (i.e., RNAs that do not encode a protein) have important functions in the regulation of biological processes such as RNA decay, translation, or protein translocation. In bacteria, most of those noncoding RNAs have been shown to be critical for posttranscriptional control through their binding to the untranslated regions of target mRNAs. Recent evidence shows that some of these noncoding RNAs have the propensity to self-assemble in prokaryotes. Although the function of this self-assembly is not known and may vary from one RNA to another, it offers new insights into riboregulation pathways. We present here the various approaches that can be used for the detection and analysis of bacterial small noncoding RNA self-assemblies.
Collapse
|
47
|
Kierzek R, Turner DH, Kierzek E. Microarrays for identifying binding sites and probing structure of RNAs. Nucleic Acids Res 2014; 43:1-12. [PMID: 25505162 PMCID: PMC4288193 DOI: 10.1093/nar/gku1303] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure-function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.
Collapse
Affiliation(s)
- Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
48
|
Abstract
The Sm-like protein Hfq (host factor Q-beta phage) facilitates regulation by bacterial small noncoding RNAs (sRNAs) in response to stress and other environmental signals. Here, we present a low-resolution model of Escherichia coli Hfq bound to the rpoS mRNA, a bacterial stress response gene that is targeted by three different sRNAs. Selective 2'-hydroxyl acylation and primer extension, small-angle X-ray scattering, and Monte Carlo molecular dynamics simulations show that the distal face and lateral rim of Hfq interact with three sites in the rpoS leader, folding the RNA into a compact tertiary structure. These interactions are needed for sRNA regulation of rpoS translation and position the sRNA target adjacent to an sRNA binding region on the proximal face of Hfq. Our results show how Hfq specifically distorts the structure of the rpoS mRNA to enable sRNA base pairing and translational control.
Collapse
|
49
|
Tree JJ, Granneman S, McAteer SP, Tollervey D, Gally DL. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 2014; 55:199-213. [PMID: 24910100 PMCID: PMC4104026 DOI: 10.1016/j.molcel.2014.05.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022]
Abstract
In bacteria, Hfq is a core RNA chaperone that catalyzes the interaction of mRNAs with regulatory small RNAs (sRNAs). To determine in vivo RNA sequence requirements for Hfq interactions, and to study riboregulation in a bacterial pathogen, Hfq was UV crosslinked to RNAs in enterohemorrhagic Escherichia coli (EHEC). Hfq bound repeated trinucleotide motifs of A-R-N (A-A/G-any nucleotide) often associated with the Shine-Dalgarno translation initiation sequence in mRNAs. These motifs overlapped or were adjacent to the mRNA sequences bound by sRNAs. In consequence, sRNA-mRNA duplex formation will displace Hfq, promoting recycling. Fifty-five sRNAs were identified within bacteriophage-derived regions of the EHEC genome, including some of the most abundant Hfq-interacting sRNAs. One of these (AgvB) antagonized the function of the core genome regulatory sRNA, GcvB, by mimicking its mRNA substrate sequence. This bacteriophage-encoded "anti-sRNA" provided EHEC with a growth advantage specifically in bovine rectal mucus recovered from its primary colonization site in cattle.
Collapse
Affiliation(s)
- Jai J Tree
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sander Granneman
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK; Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3JD, UK
| | - Sean P McAteer
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - David L Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
50
|
Wenner N, Maes A, Cotado-Sampayo M, Lapouge K. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 2014; 16:1053-68. [PMID: 24308329 PMCID: PMC4253122 DOI: 10.1111/1462-2920.12272] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Collapse
Affiliation(s)
- Nicolas Wenner
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Alexandre Maes
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Marta Cotado-Sampayo
- Fasteris SACh. du Pont-du-Centenaire 109, Case postale 28, Plan-les-Ouates, CH-1228, Switzerland
| | - Karine Lapouge
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
- *For correspondence. E-mail ; Tel. (+41) (0) 21 692 5601; Fax (+41) (0) 21 692 5605
| |
Collapse
|