1
|
Bharath LP, Regan T, Conway R. Regulation of Immune Cell Function by Nicotinamide Nucleotide Transhydrogenase. Am J Physiol Cell Physiol 2022; 322:C666-C673. [PMID: 35138175 PMCID: PMC8977145 DOI: 10.1152/ajpcell.00607.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox homeostasis is elemental for the normal physiology of all cell types. Cells use multiple mechanisms to regulate the redox balance tightly. The onset and progression of many metabolic and aging-associated diseases occur due to the dysregulation of redox homeostasis. Thus, it is critical to identify and therapeutically target mechanisms that precipitate abnormalities in redox balance. Reactive oxygen species (ROS) produced within the immune cells regulate homeostasis, hyperimmune and hypoimmune cell responsiveness, apoptosis, immune response to pathogens, and tumor immunity. Immune cells have both cytosolic and organelle-specific redox regulatory systems to maintain appropriate levels of ROS. Nicotinamide nucleotide transhydrogenase (NNT) is an essential mitochondrial redox regulatory protein. Dysregulation of NNT function prevents immune cells from mounting an adequate immune response to pathogens, promotes a chronic inflammatory state associated with aging and metabolic diseases, and initiates conditions related to a dysregulated immune system such as autoimmunity. While many studies have reported on NNT in different cell types, including cancer cells, relatively few studies have explored NNT in immune cells. This review provides an overview of NNT and focuses on the current knowledge of NNT in the immune cells.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| | - Thomas Regan
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| | - Rachel Conway
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| |
Collapse
|
2
|
Zöller J, Hong S, Eisinger ML, Anderson M, Radloff M, Desch K, Gennis R, Langer JD. Ligand binding and conformational dynamics of the E. coli nicotinamide nucleotide transhydrogenase revealed by hydrogen/deuterium exchange mass spectrometry. Comput Struct Biotechnol J 2022; 20:5430-5439. [PMID: 36212541 PMCID: PMC9529548 DOI: 10.1016/j.csbj.2022.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenases are integral membrane proteins that utilizes the proton motive force to reduce NADP+ to NADPH while converting NADH to NAD+. Atomic structures of various transhydrogenases in different ligand-bound states have become available, and it is clear that the molecular mechanism involves major conformational changes. Here we utilized hydrogen/deuterium exchange mass spectrometry (HDX-MS) to map ligand binding sites and analyzed the structural dynamics of E. coli transhydrogenase. We found different allosteric effects on the protein depending on the bound ligand (NAD+, NADH, NADP+, NADPH). The binding of either NADP+ or NADPH to domain III had pronounced effects on the transmembrane helices comprising the proton-conducting channel in domain II. We also made use of cyclic ion mobility separation mass spectrometry (cyclic IMS-MS) to maximize coverage and sensitivity in the transmembrane domain, showing for the first time that this technique can be used for HDX-MS studies. Using cyclic IMS-MS, we increased sequence coverage from 68 % to 73 % in the transmembrane segments. Taken together, our results provide important new insights into the transhydrogenase reaction cycle and demonstrate the benefit of this new technique for HDX-MS to study ligand binding and conformational dynamics in membrane proteins.
Collapse
|
3
|
Energy transfer between the nicotinamide nucleotide transhydrogenase and ATP synthase of Escherichia coli. Sci Rep 2021; 11:21234. [PMID: 34707181 PMCID: PMC8551311 DOI: 10.1038/s41598-021-00651-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Membrane bound nicotinamide nucleotide transhydrogenase (TH) catalyses the hydride transfer from NADH to NADP+. Under physiological conditions, this reaction is endergonic and must be energized by the pmf, coupled to transmembrane proton transport. Recent structures of transhydrogenase holoenzymes suggest new mechanistic details, how the long-distance coupling between hydride transfer in the peripheral nucleotide binding sites and the membrane-localized proton transfer occurs that now must be tested experimentally. Here, we provide protocols for the efficient expression and purification of the Escherichia coli transhydrogenase and its reconstitution into liposomes, alone or together with the Escherichia coli F1F0 ATP synthase. We show that E. coli transhydrogenase is a reversible enzyme that can also work as a NADPH-driven proton pump. In liposomes containing both enzymes, NADPH driven H+-transport by TH is sufficient to instantly fuel ATP synthesis, which adds TH to the pool of pmf generating enzymes. If the same liposomes are energized with ATP, NADPH production by TH is stimulated > sixfold both by a pH gradient or a membrane potential. The presented protocols and results reinforce the tight coupling between hydride transfer in the peripheral nucleotide binding sites and transmembrane proton transport and provide powerful tools to investigate their coupling mechanism.
Collapse
|
4
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat Commun 2019; 10:2222. [PMID: 31110237 PMCID: PMC6527550 DOI: 10.1038/s41467-019-09691-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/08/2022] Open
Abstract
Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. Enzyme substrates and products often diffuse too rapidly to assess the catalytic implications of these movements. Here, the authors characterise the structural basis of product and substrate diffusion for an exo-hydrolase and discover a substrate-product assisted processive catalytic mechanism.
Collapse
|
6
|
Zhang Q, Padayatti PS, Leung JH. Proton-Translocating Nicotinamide Nucleotide Transhydrogenase: A Structural Perspective. Front Physiol 2017; 8:1089. [PMID: 29312000 PMCID: PMC5742237 DOI: 10.3389/fphys.2017.01089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide nucleotide transhydrogenase (TH) is an enzyme complex in animal mitochondria and bacteria that utilizes the electrochemical proton gradient across membranes to drive the production of NADPH. The enzyme plays an important role in maintaining the redox balance of cells with implications in aging and a number of human diseases. TH exists as a homodimer with each protomer containing a proton-translocating transmembrane domain and two soluble nucleotide binding domains that mediate hydride transfer between NAD(H) and NADP(H). The three-domain architecture of TH is conserved across species but polypeptide composition differs substantially. The complex domain coupling mechanism of TH is not fully understood despite extensive biochemical and structural characterizations. Herein the progress is reviewed, focusing mainly on structural findings from 3D crystallization of isolated soluble domains and more recently of the transmembrane domain and the holo-enzyme from Thermus thermophilus. A structural perspective and impeding challenges in further elucidating the mechanism of TH are discussed.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Padayatti PS, Leung JH, Mahinthichaichan P, Tajkhorshid E, Ishchenko A, Cherezov V, Soltis SM, Jackson JB, Stout CD, Gennis RB, Zhang Q. Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure 2017. [PMID: 28648609 DOI: 10.1016/j.str.2017.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP+ in bacteria and eukaryotes. Here we solved a 2.2-Å crystal structure of the TH transmembrane domain (Thermus thermophilus) at pH 6.5. This structure exhibits conformational changes of helix positions from a previous structure solved at pH 8.5, and reveals internal water molecules interacting with residues implicated in proton translocation. Together with molecular dynamics simulations, we show that transient water flows across a narrow pore and a hydrophobic "dry" region in the middle of the membrane channel, with key residues His42α2 (chain A) being protonated and Thr214β (chain B) displaying a conformational change, respectively, to gate the channel access to both cytoplasmic and periplasmic chambers. Mutation of Thr214β to Ala deactivated the enzyme. These data provide new insights into the gating mechanism of proton translocation in TH.
Collapse
Affiliation(s)
- Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Laboratory for Structural Biology of GPCRs, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - C David Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Jackson JB, Leung JH, Stout CD, Schurig-Briccio LA, Gennis RB. Review and Hypothesis. New insights into the reaction mechanism of transhydrogenase: Swivelling the dIII component may gate the proton channel. FEBS Lett 2015; 589:2027-33. [PMID: 26143375 DOI: 10.1016/j.febslet.2015.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
The membrane protein transhydrogenase in animal mitochondria and bacteria couples reduction of NADP⁺ by NADH to proton translocation. Recent X-ray data on Thermus thermophilus transhydrogenase indicate a significant difference in the orientations of the two dIII components of the enzyme dimer (Leung et al., 2015). The character of the orientation change, and a review of information on the kinetics and thermodynamics of transhydrogenase, indicate that dIII swivelling might assist in the control of proton gating by the redox state of bound NADP⁺/NADPH during enzyme turnover.
Collapse
Affiliation(s)
- J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | - Charles D Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | | | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Leung JH, Schurig-Briccio LA, Yamaguchi M, Moeller A, Speir JA, Gennis RB, Stout CD. Structural biology. Division of labor in transhydrogenase by alternating proton translocation and hydride transfer. Science 2015; 347:178-81. [PMID: 25574024 DOI: 10.1126/science.1260451] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NADPH/NADP(+) (the reduced form of NADP(+)/nicotinamide adenine dinucleotide phosphate) homeostasis is critical for countering oxidative stress in cells. Nicotinamide nucleotide transhydrogenase (TH), a membrane enzyme present in both bacteria and mitochondria, couples the proton motive force to the generation of NADPH. We present the 2.8 Å crystal structure of the transmembrane proton channel domain of TH from Thermus thermophilus and the 6.9 Å crystal structure of the entire enzyme (holo-TH). The membrane domain crystallized as a symmetric dimer, with each protomer containing a putative proton channel. The holo-TH is a highly asymmetric dimer with the NADP(H)-binding domain (dIII) in two different orientations. This unusual arrangement suggests a catalytic mechanism in which the two copies of dIII alternatively function in proton translocation and hydride transfer.
Collapse
Affiliation(s)
- Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Mutsuo Yamaguchi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Arne Moeller
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey A Speir
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Charles D Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
|
11
|
Jackson JB. A review of the binding-change mechanism for proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1839-46. [PMID: 22538293 DOI: 10.1016/j.bbabio.2012.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 11/17/2022]
Abstract
Proton-translocating transhydrogenase is found in the inner membranes of animal mitochondria, and in the cytoplasmic membranes of many bacteria. It catalyses hydride transfer from NADH to NADP(+) coupled to inward proton translocation. Evidence is reviewed suggesting the enzyme operates by a "binding-change" mechanism. Experiments with Escherichia coli transhydrogenase indicate the enzyme is driven between "open" and "occluded" states by protonation and deprotonation reactions associated with proton translocation. In the open states NADP(+)/NADPH can rapidly associate with, or dissociate from, the enzyme, and hydride transfer is prevented. In the occluded states bound NADP(+)/NADPH cannot dissociate, and hydride transfer is allowed. Crystal structures of a complex of the nucleotide-binding components of Rhodospirillum rubrum transhydrogenase show how hydride transfer is enabled and disabled at appropriate steps in catalysis, and how release of NADP(+)/NADPH is restricted in the occluded state. Thermodynamic and kinetic studies indicate that the equilibrium constant for hydride transfer on the enzyme is elevated as a consequence of the tight binding of NADPH relative to NADP(+). The protonation site in the translocation pathway must face the outside if NADP(+) is bound, the inside if NADPH is bound. Chemical shift changes detected by NMR may show where alterations in protein conformation resulting from NADP(+) reduction are initiated. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
12
|
McDonald NA, Subramani C, Caldwell ST, Zainalabdeen NY, Cooke G, Rotello VM. Simultaneous hydrogen bonding and π-stacking interactions between flavin/porphyrin host–guest systems. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Huxley L, Quirk PG, Cotton NPJ, White SA, Jackson JB. The specificity of proton-translocating transhydrogenase for nicotinamide nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:85-94. [PMID: 20732298 DOI: 10.1016/j.bbabio.2010.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022]
Abstract
In its forward direction, transhydrogenase couples the reduction of NADP(+) by NADH to the outward translocation of protons across the membrane of bacteria and animal mitochondria. The enzyme has three components: dI and dIII protrude from the membrane and dII spans the membrane. Hydride transfer takes place between nucleotides bound to dI and dIII. Studies on the kinetics of a lag phase at the onset of a "cyclic reaction" catalysed by complexes of the dI and dIII components of transhydrogenase from Rhodospirillum rubrum, and on the kinetics of fluorescence changes associated with nucleotide binding, reveal two features. Firstly, the binding of NADP(+) and NADPH to dIII is extremely slow, and is probably limited by the conversion of the occluded to the open state of the complex. Secondly, dIII can also bind NAD(+) and NADH. Extrapolating to the intact enzyme this binding to the "wrong" site could lead to slip: proton translocation without change in the nucleotide redox state, which would have important consequences for bacterial and mitochondrial metabolism.
Collapse
Affiliation(s)
- Lucinda Huxley
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
14
|
Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1276-88. [PMID: 19505432 DOI: 10.1016/j.bbabio.2009.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated. Of metal ions tested they were effective in the order Pb(2+)>Cu(2+)>Zn(2+)=Cd(2+)>Ni(2+)>Co(2+). The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn(2+)-binding site(s). A mutant in which betaHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn(2+). Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn(2+)-induced FTIR difference spectra of the betaHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that betaHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.
Collapse
|
15
|
Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomembr 2008; 40:463-73. [PMID: 18972197 DOI: 10.1007/s10863-008-9170-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Proton-translocating transhydrogenases, reducing NADP(+) by NADH through hydride transfer, are membrane proteins utilizing the electrochemical proton gradient for NADPH generation. The enzymes have important physiological roles in the maintenance of e.g. reduced glutathione, relevant for essentially all cell types. Following X-ray crystallography and structural resolution of the soluble substrate-binding domains, mechanistic aspects of the hydride transfer are beginning to be resolved. However, the structure of the intact enzyme is unknown. Key questions regarding the coupling mechanism, i.e., the mechanism of proton translocation, are addressed using the separately expressed substrate-binding domains. Important aspects are therefore which functions and properties of mainly the soluble NADP(H)-binding domain, but also the NAD(H)-binding domain, are relevant for proton translocation, how the soluble domains communicate with the membrane domain, and the mechanism of proton translocation through the membrane domain.
Collapse
|
16
|
Gill EE, Diaz-Triviño S, Barberà MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ. Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 2008; 66:1306-20. [PMID: 18045382 DOI: 10.1111/j.1365-2958.2007.05979.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.
Collapse
Affiliation(s)
- Erin E Gill
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Biochemistry and Molecular Biology, Dalhousie University, B3H 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Obiozo UM, Brondijk THC, White AJ, van Boxel G, Dafforn TR, White SA, Jackson JB. Substitution of Tyrosine 146 in the dI Component of Proton-translocating Transhydrogenase Leads to Reversible Dissociation of the Active Dimer into Inactive Monomers. J Biol Chem 2007; 282:36434-43. [PMID: 17911104 DOI: 10.1074/jbc.m705433200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The protein has three components: dI binds NADH, dIII binds NADP+, and dII spans the membrane. Transhydrogenase is a "dimer" of two dI-dII-dIII "monomers"; x-ray structures suggested that the two catalytic sites alternate during turnover. Invariant Tyr146 in recombinant dI of Rhodospirillum rubrum transhydrogenase was substituted with Phe and Ala (proteins designated dI.Y146F and dI.Y146A, respectively). Analytical ultracentrifuge experiments and differential scanning calorimetry show that dI.Y146A more readily dissociates into monomers than wild-type dI. Analytical ultracentrifuge and Trp fluorescence experiments indicate that the dI.Y146A monomers bind NADH much more weakly than dimers. Wild-type dI and dI.Y146F reconstituted activity to dI-depleted membranes with similar characteristics. However, dI.Y146A reconstituted activity in its dimeric form but not in its monomeric form, this despite monomers retaining their native fold and binding to the dI-depleted membranes. It is suggested that transhydrogenase reconstructed with monomers of dI.Y146A is catalytically compromised, at least partly as a consequence of the lowered affinity for NADH, and this results from lost interactions between the nucleotide binding site and the protein beta-hairpin upon dissociation of the dI dimer. The importance of these interactions and their coupling to dI domain rotation in the mechanism of action of transhydrogenase is emphasized. Two peaks in the 1H NMR spectrum of wild-type dI are broadened in dI.Y146A and are tentatively assigned to S-methyl groups of Met resonances in the beta-hairpin, consistent with the segmental mobility of this feature in the structure.
Collapse
Affiliation(s)
- U Mirian Obiozo
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Bhakta T, Whitehead SJ, Snaith JS, Dafforn TR, Wilkie J, Rajesh S, White SA, Jackson JB. Structures of the dI2dIII1 complex of proton-translocating transhydrogenase with bound, inactive analogues of NADH and NADPH reveal active site geometries. Biochemistry 2007; 46:3304-18. [PMID: 17323922 DOI: 10.1021/bi061843r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.
Collapse
Affiliation(s)
- Tina Bhakta
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW. Controlled 2D crystallization of membrane proteins using methyl-β-cyclodextrin. J Struct Biol 2007; 157:321-8. [PMID: 16979348 DOI: 10.1016/j.jsb.2006.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/26/2022]
Abstract
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.
Collapse
Affiliation(s)
- Gian A Signorell
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Wilson R, Obiozo UM, Quirk PG, Besra GS, Jackson JB. A hybrid of the transhydrogenases from Rhodospirillum rubrum and Mycobacterium tuberculosis catalyses rapid hydride transfer but not the complete, proton-translocating reaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:215-23. [PMID: 16624251 DOI: 10.1016/j.bbabio.2006.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/05/2006] [Indexed: 11/28/2022]
Abstract
All transhydrogenases appear to have three components: dI, which binds NAD(H), and dIII, which binds NADP(H), protrude from the membrane, and dII spans the membrane. However, the polypeptide composition of the enzymes varies amongst species. The transhydrogenases of Mycobacterium tuberculosis and of Rhodospirillum rubrum have three polypeptides. Sequence analysis indicates that an ancestral three-polypeptide enzyme evolved into transhydrogenases with either two polypeptides (such as the Escherichia coli enzyme) or one polypeptide (such as the mitochondrial enzyme). The fusion steps in each case probably led to the development of an additional transmembrane helix. A hybrid transhydrogenase was constructed from the dI component of the M. tuberculosis enzyme and the dII and dIII components of the R. rubrum enzyme. The hybrid catalyses cyclic transhydrogenation but not the proton-translocating, reverse reaction. This shows that nucleotide-binding/release at the NAD(H) site, and hydride transfer, are fully functional but that events associated with NADP(H) binding/release are compromised. It is concluded that sequence mismatch in the hybrid prevents a conformational change between dI and dIII which is essential for the step accompanying proton translocation.
Collapse
Affiliation(s)
- Rosalind Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
21
|
Brondijk THC, van Boxel GI, Mather OC, Quirk PG, White SA, Jackson JB. The role of invariant amino acid residues at the hydride transfer site of proton-translocating transhydrogenase. J Biol Chem 2006; 281:13345-13354. [PMID: 16533815 DOI: 10.1074/jbc.m513230200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples proton translocation across a membrane to hydride transfer between NADH and NADP+. Previous x-ray structures of complexes of the nucleotide-binding components of transhydrogenase ("dI2dIII1" complexes) indicate that the dihydronicotinamide ring of NADH can move from a distal position relative to the nicotinamide ring of NADP+ to a proximal position. The movement might be responsible for gating hydride transfer during proton translocation. We have mutated three invariant amino acids, Arg-127, Asp-135, and Ser-138, in the NAD(H)-binding site of Rhodospirillum rubrum transhydrogenase. In each mutant, turnover by the intact enzyme is strongly inhibited. Stopped-flow experiments using dI2dIII1 complexes show that inhibition results from a block in the steps associated with hydride transfer. Mutation of Asp-135 and Ser-138 had no effect on the binding affinity of either NAD+ or NADH, but mutation of Arg-127 led to much weaker binding of NADH and slightly weaker binding of NAD+. X-ray structures of dI2dIII1 complexes carrying the mutations showed that their effects were restricted to the locality of the bound NAD(H). The results are consistent with the suggestion that in wild-type protein movement of the Arg-127 side chain, and its hydrogen bonding to Asp-135 and Ser-138, stabilizes the dihydronicotinamide of NADH in the proximal position for hydride transfer.
Collapse
Affiliation(s)
- T Harma C Brondijk
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gijs I van Boxel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Owen C Mather
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Philip G Quirk
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Scott A White
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - J Baz Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
22
|
Johansson T, Oswald C, Pedersen A, Törnroth S, Okvist M, Karlsson BG, Rydström J, Krengel U. X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from Escherichia coli. J Mol Biol 2005; 352:299-312. [PMID: 16083909 DOI: 10.1016/j.jmb.2005.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 07/05/2005] [Accepted: 07/07/2005] [Indexed: 11/30/2022]
Abstract
The dimeric integral membrane protein nicotinamide nucleotide transhydrogenase is required for cellular regeneration of NADPH in mitochondria and prokaryotes, for detoxification and biosynthesis purposes. Under physiological conditions, transhydrogenase couples the reversible reduction of NADP+ by NADH to an inward proton translocation across the membrane. Here, we present crystal structures of the NAD(H)-binding domain I of transhydrogenase from Escherichia coli, in the absence as well as in the presence of oxidized and reduced substrate. The structures were determined at 1.9-2.0 A resolution. Overall, the structures are highly similar to the crystal structure of a previously published NAD(H)-binding domain, from Rhodospirillum rubrum transhydrogenase. However, this particular domain is unique, since it is covalently connected to the integral-membrane part of transhydrogenase. Comparative studies between the structures of the two species reveal extensively differing surface properties and point to the possible importance of a rigid peptide (PAPP) in the connecting linker for conformational coupling. Further, the kinetic analysis of a deletion mutant, from which the protruding beta-hairpin was removed, indicates that this structural element is important for catalytic activity, but not for domain I:domain III interaction or dimer formation. Taken together, these results have important implications for the enzyme mechanism of the large group of transhydrogenases, including mammalian enzymes, which contain a connecting linker between domains I and II.
Collapse
Affiliation(s)
- Tomas Johansson
- Department of Chemistry and Bioscience, Chalmers University of Technology, P.O. Box 462, SE-405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Carroll JB, Jordan BJ, Xu H, Erdogan B, Lee L, Cheng L, Tiernan C, Cooke G, Rotello VM. Model Systems for Flavoenzyme Activity: Site-Isolated Redox Behavior in Flavin-Functionalized Random Polystyrene Copolymers. Org Lett 2005; 7:2551-4. [PMID: 15957888 DOI: 10.1021/ol0505407] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A model system has been developed to study the redox behaviors of flavin derivatives appended onto random polystyrene copolymers through "click" chemistry strategies. The results demonstrate that flavin units attached onto polymers exhibit site-isolated redox behaviors, yielding new materials with electrochemically tunable associations (K(a)(ox) = 450 M(-)(1), K(a)(red) = 18,200 M(-)(1)) to complementary diamidopyridine (DAP) functionality.
Collapse
Affiliation(s)
- Joseph B Carroll
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|