1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gao J, Ouyang C, Zhao J, Han Y, Guo Q, Liu X, Zhang T, Duan M, Wang X, Xu C. Coexpressing the Signal Peptide of Vip3A and the Trigger Factor of Bacillus thuringiensis Enhances the Production Yield and Solubility of eGFP in Escherichia coli. Front Microbiol 2022; 13:892428. [PMID: 35923407 PMCID: PMC9342664 DOI: 10.3389/fmicb.2022.892428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many fusion tags have been developed to improve the expression of recombinant proteins. Besides the translocation of cargo proteins, the signal peptides (SPs) of some secretory proteins, such as the ssTorA and Iasp, have been used as an inclusion body tag (IB-tag) or the recombinant expression enhancer in the cytosol of E. coli. In this study, the approach to utilize the SP of Vip3A (Vasp) from Bacillus thuringiensis (Bt) as a fusion tag was investigated. The results showed that either the Vasp or its predicted N- (VN), H- (VH), and C-regions (VC), as well as their combinations (VNH, VNC, and VHC), were able to significantly enhance the production yield of eGFP. However, the hydrophobic region of the Vasp (VH and/or VC) made more than half of the eGFP molecules aggregated (VeGFP, VHeGFP, VCeGFP, VNHeGFP, VNCeGFP, and VHCeGFP). Interestingly, the addition of the Bt trigger factor (BtTF) led to the neutralization of the negative impact and solubilization of the fusion proteins. Therefore, the coexpression of Vasp or its derivates with the chaperone BtTF could be a novel dual-enhancement system for the production yield and solubility of recombinant proteins. Notably, EcTF was unable to impact the solubility of Vasp or its derivates guided proteins, suggesting its different specificities on the recognition or interaction. Additionally, this study also suggested that the translocation of Vip3 in the host cell would be regulated by the BtTF-involved model.
Collapse
Affiliation(s)
- Jianhua Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Chunping Ouyang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Juanli Zhao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Yan Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Qinghua Guo
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Xuan Liu
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Tianjiao Zhang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Ming Duan
- Experimental Teaching Center, Shanxi Agricultural University, Jinzhong, China
| | - Xingchun Wang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
- Xingchun Wang
| | - Chao Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Chao Xu
| |
Collapse
|
3
|
Seinen AB, Spakman D, van Oijen AM, Driessen AJM. Cellular dynamics of the SecA ATPase at the single molecule level. Sci Rep 2021; 11:1433. [PMID: 33446830 PMCID: PMC7809386 DOI: 10.1038/s41598-021-81081-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Dian Spakman
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Comparison of Single and Multiple Turnovers of SecYEG in Escherichia coli. J Bacteriol 2020; 202:JB.00462-20. [PMID: 32989086 DOI: 10.1128/jb.00462-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Precursor proteins are translocated across the cytoplasmic membrane in Escherichia coli by the general secretory, or Sec, pathway. The main components of the pathway are the integral membrane heterotrimeric SecYEG complex and the peripheral membrane ATPase, SecA. In this study, we have applied an in vitro assay using inverted cytoplasmic membrane vesicles to investigate the complex cycle that leads to translocation. We compared the apparent rate constants for nine precursors under two experimental conditions, single turnover and multiple turnovers. For each precursor, the rate constant for a single turnover was higher than for multiple turnovers, indicating that a different step limits the rate under the two conditions. We conclude that the rate-limiting step for a single turnover is an early step in the initial phase of transit through the channel, whereas the rate of multiple turnovers is limited by the resetting of the translocon. The presence of the chaperone SecB during multiple turnovers increased the maximal amplitude translocated for the three precursor species tested, pGBP, pPhoA, and proOmpA, and also increased the apparent rate constants for both pGBP and pPhoA. The rate constant for proOmpA was decreased by the presence of SecB.IMPORTANCE Vastly different experimental techniques and conditions have been used to study export in E. coli We demonstrated that altering experimental conditions can change the step that is observed during study. Investigators should consider specific experimental conditions when comparing data from different laboratories, as well as when comparing data from different experiments within a laboratory. We have shown that each precursor species has inherent properties that determine the translocation rate; thus generalizations from studies of a single species must be made with caution. A summary of advantages and disadvantages in use of nine precursors is presented.
Collapse
|
5
|
Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12246-12256. [PMID: 31448613 PMCID: PMC10906442 DOI: 10.1021/acs.langmuir.9b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
8
|
Substrate Proteins Take Shape at an Improved Bacterial Translocon. J Bacteriol 2018; 201:JB.00618-18. [PMID: 30322856 DOI: 10.1128/jb.00618-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
Characterization of Sec-dependent bacterial protein transport has often relied on an in vitro protein translocation system comprised in part of Escherichia coli inverted inner membrane vesicles or, more recently, purified SecYEG translocons reconstituted into liposomes using mostly a single substrate (proOmpA). A paper published in this issue (P. Bariya and L. Randall, J Bacteriol 201:e00493-18, 2019, https://doi.org/10.1128/JB.00493-18) finds that inclusion of SecA protein during SecYEG proteoliposome reconstitution dramatically improves the number of active translocons. This experimentally useful and intriguing result that may arise from SecA membrane integration properties is discussed here. Furthermore, determination of the rate-limiting transport step for nine different substrates implicates the mature region distal to the signal peptide in the observed rate constant differences, indicating that more nuanced transport models that respond to differences in protein sequence and structure are needed.
Collapse
|
9
|
Coassembly of SecYEG and SecA Fully Restores the Properties of the Native Translocon. J Bacteriol 2018; 201:JB.00493-18. [PMID: 30275279 DOI: 10.1128/jb.00493-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, a highly conserved channel transports proteins across membranes. In Escherichia coli, that channel is SecYEG. Many investigations of this protein complex have used purified SecYEG reconstituted into proteoliposomes. How faithfully do activities of reconstituted systems reflect the properties of SecYEG in the native membrane environment? We investigated by comparing three in vitro systems: the native membrane environment of inner membrane vesicles and two methods of reconstitution. One method was the widely used reconstitution of SecYEG alone into lipid bilayers. The other was our method of coassembly of SecYEG with SecA, the ATPase of the translocase. For nine different precursor species we assessed parameters that characterize translocation: maximal amplitude of competent precursor translocated, coupling of energy to transfer, and apparent rate constant. In addition, we investigated translocation in the presence and absence of chaperone SecB. For all nine precursors, SecYEG coassembled with SecA was as active as SecYEG in native membrane for each of the parameters studied. Effects of SecB on transport of precursors faithfully mimicked observations made in vivo From investigation of the nine different precursors, we conclude that the apparent rate constant, which reflects the step that limits the rate of translocation, is dependent on interactions with the translocon of portions of the precursors other than the leader. In addition, in some cases the rate-limiting step is altered by the presence of SecB. Candidates for the rate-limiting step that are consistent with our data are discussed.IMPORTANCE This work presents a comprehensive quantification of the parameters of transport by the Sec general secretory system in the three in vitro systems. The standard reconstitution used by most investigators can be enhanced to yield six times as many active translocons simply by adding SecA to SecYEG during reconstitution. This robust system faithfully reflects the properties of translocation in native membrane vesicles. We have expanded the number of precursors studied to nine. This has allowed us to conclude that the rate constant for translocation varies with precursor species.
Collapse
|
10
|
Marín E, Haesaert A, Padilla L, Adán J, Hernáez ML, Monteoliva L, Gil C. Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics. Front Microbiol 2018; 9:975. [PMID: 29867878 PMCID: PMC5962675 DOI: 10.3389/fmicb.2018.00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV). This infection is responsible for a wide range of public health costs and is associated with several adverse outcomes during pregnancy. Improving our understanding of G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell surface using a shaving approach. The 261 G. vaginalis proteins identified using this approach were analyzed with bioinformatic tools to detect characteristic motifs from surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17 proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins). One third of the identified proteins were found to have at least one typical motif of surface-exposed proteins. Furthermore, the subcellular location was examined using two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17% of the identified proteins as surface-associated proteins. Interestingly, we identified 13 members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in the translocation of various substrates across membranes. To validate the location of the G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies against Escherichia coli GroEL was performed to reveal the extracellular location of the moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna protein were produced and used to validate the location of Cna on the surface of the G. vaginalis. These high affinity anti-Cna mAb represent a useful tool for the study of this pathogenic microorganism and the BV.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Annelies Haesaert
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Padilla
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Jaume Adán
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
11
|
Findik BT, Smith VF, Randall LL. Penetration into membrane of amino-terminal region of SecA when associated with SecYEG in active complexes. Protein Sci 2018; 27:681-691. [PMID: 29247569 DOI: 10.1002/pro.3362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022]
Abstract
The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino-terminal region of SecA with membrane. We use site-directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co-assembled into lipids with SecYEG to yield highly active translocons, the N-terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N-terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N-terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.
Collapse
Affiliation(s)
- Bahar T Findik
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Virginia F Smith
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, 21402
| | - Linda L Randall
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
12
|
Marsh BP, Chada N, Sanganna Gari RR, Sigdel KP, King GM. The Hessian Blob Algorithm: Precise Particle Detection in Atomic Force Microscopy Imagery. Sci Rep 2018; 8:978. [PMID: 29343783 PMCID: PMC5772630 DOI: 10.1038/s41598-018-19379-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 11/09/2022] Open
Abstract
Imaging by atomic force microscopy (AFM) offers high-resolution descriptions of many biological systems; however, regardless of resolution, conclusions drawn from AFM images are only as robust as the analysis leading to those conclusions. Vital to the analysis of biomolecules in AFM imagery is the initial detection of individual particles from large-scale images. Threshold and watershed algorithms are conventional for automatic particle detection but demand manual image preprocessing and produce particle boundaries which deform as a function of user-defined parameters, producing imprecise results subject to bias. Here, we introduce the Hessian blob to address these shortcomings. Combining a scale-space framework with measures of local image curvature, the Hessian blob formally defines particle centers and their boundaries, both to subpixel precision. Resulting particle boundaries are independent of user defined parameters, with no image preprocessing required. We demonstrate through direct comparison that the Hessian blob algorithm more accurately detects biomolecules than conventional AFM particle detection techniques. Furthermore, the algorithm proves largely insensitive to common imaging artifacts and noise, delivering a stable framework for particle analysis in AFM.
Collapse
Affiliation(s)
- Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 OWA, United Kingdom
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Raghavendar Reddy Sanganna Gari
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, United States of America
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America. .,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, United States of America.
| |
Collapse
|
13
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
14
|
Findik BT, Randall LL. Determination of the intracellular concentration of the export chaperone SecB in Escherichia coli. PLoS One 2017; 12:e0183231. [PMID: 28850586 PMCID: PMC5574556 DOI: 10.1371/journal.pone.0183231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
SecB, a small tetrameric chaperone in Escherichia coli, plays a crucial role during protein export via the general secretory pathway by binding precursor polypeptides in a nonnative conformation and passing them to SecA, the ATPase of the translocon. The dissociation constants for the interactions are known; however to relate studies in vitro to export in a living cell requires knowledge of the concentrations of the proteins in the cell. Presently in the literature there is no report of a rigorous determination of the intracellular concentration of SecB. The values available vary over 60 fold and the details of the techniques used are not given. Here we use quantitative immunoblotting to determine the level of SecB expressed from the chromosome in E.coli grown in two commonly used media. In rich medium SecB was present at 1.6 ± 0.2 μM and in minimal medium at 2.5 ± 0.6 μM. These values allow studies of SecB carried out in vitro to be applied to the situation in the cell as SecB interacts with its binding partners to move precursor polypeptides through the export pathway.
Collapse
Affiliation(s)
- Bahar T. Findik
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chada N, Sigdel KP, Gari RRS, Matin TR, Randall LL, King GM. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins. Sci Rep 2015; 5:12550. [PMID: 26228793 PMCID: PMC4521160 DOI: 10.1038/srep12550] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | | | - Tina Rezaie Matin
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Linda L Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Gavin M King
- 1] Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA [2] Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| |
Collapse
|
16
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
17
|
Suo Y, Hardy SJS, Randall LL. The basis of asymmetry in the SecA:SecB complex. J Mol Biol 2014; 427:887-900. [PMID: 25534082 DOI: 10.1016/j.jmb.2014.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
During export in Escherichia coli, SecB, a homotetramer structurally organized as a dimer of dimers, forms a complex with two protomers of SecA, which is the ATPase that provides energy to transfer a precursor polypeptide through the membrane via the SecYEG translocon. There are two areas of contact on SecB that stabilize the SecA:SecB complex: the flat sides of the SecB tetramer and the C-terminal 13 residues of SecB. These contacts within the complex are distributed asymmetrically. Breaking contact between SecA and the sides of SecB results in release of only one protomer of SecA yielding a complex of stoichiometry SecA1:SecB4. This complex mediates export; however, the coupling of ATP hydrolysis to movements of the precursor through the translocon is much less efficient than the coupling by the SecA2:SecB4 complex. Here we used heterotetrameric species of SecB to understand the source of the asymmetry in the contacts and its role in the functioning of the complex. The model of interactions presented suggests a way that binding between SecA and SecB might decrease the affinity of precursor polypeptides for SecB and facilitate the transfer to SecA.
Collapse
Affiliation(s)
- Yuying Suo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Simon J S Hardy
- Department of Biology, University of York, York YO10 5DD, UK
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5:666. [PMID: 25538690 PMCID: PMC4257090 DOI: 10.3389/fmicb.2014.00666] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin–antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Gouridis G, Karamanou S, Sardis MF, Schärer MA, Capitani G, Economou A. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 2014; 52:655-66. [PMID: 24332176 DOI: 10.1016/j.molcel.2013.10.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/15/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
Most secretory preproteins exit bacterial cells through the protein translocase, comprising the SecYEG channel and the dimeric peripheral ATPase motor SecA. Energetic coupling to work remains elusive. We now demonstrate that translocation is driven by unusually dynamic quaternary changes in SecA. The dimer occupies several successive states with distinct protomer arrangements. SecA docks on SecYEG as a dimer and becomes functionally asymmetric. Docking occurs via only one protomer. The second protomer allosterically regulates downstream steps. Binding of one preprotein signal peptide to the SecYEG-docked SecA protomer elongates the SecA dimer and triggers the translocase holoenzyme to obtain a lower activation energy conformation. ATP hydrolysis monomerizes the triggered SecA dimer, causing mature chain trapping and processive translocation. This is a unique example of one protein exploiting quaternary dynamics to become a substrate receptor, a "loading clamp," and a "processive motor." This mechanism has widespread implications on protein translocases, chaperones, and motors.
Collapse
Affiliation(s)
- Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | | | - Guido Capitani
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Singh R, Kraft C, Jaiswal R, Sejwal K, Kasaragod VB, Kuper J, Bürger J, Mielke T, Luirink J, Bhushan S. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J Biol Chem 2014; 289:7190-7199. [PMID: 24443566 DOI: 10.1074/jbc.m113.506634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.
Collapse
Affiliation(s)
- Rajkumar Singh
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Christian Kraft
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Rahul Jaiswal
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Kushal Sejwal
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Jörg Bürger
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Ziegelstrasse 5-8, 10117 Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Ziegelstrasse 5-8, 10117 Berlin, Germany
| | - Joen Luirink
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Shashi Bhushan
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany; Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
21
|
D'Lima NG, Teschke CM. ADP-dependent conformational changes distinguish Mycobacterium tuberculosis SecA2 from SecA1. J Biol Chem 2013; 289:2307-17. [PMID: 24297168 DOI: 10.1074/jbc.m113.533323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, most secreted proteins are exported through the SecYEG translocon by the SecA ATPase motor via the general secretion or "Sec" pathway. The identification of an additional SecA protein, particularly in Gram-positive pathogens, has raised important questions about the role of SecA2 in both protein export and establishment of virulence. We previously showed in Mycobacterium tuberculosis, the causative agent of tuberculosis, the accessory SecA2 protein possesses ATPase activity that is required for bacterial survival in host macrophages, highlighting its importance in virulence. Here, we show that SecA2 binds ADP with much higher affinity than SecA1 and releases the nucleotide more slowly. Nucleotide binding also regulates movement of the precursor-binding domain in SecA2, unlike in SecA1 or conventional SecA proteins. This conformational change involving closure of the clamp in SecA2 may provide a mechanism for the cell to direct protein export through the conventional SecA1 pathway under normal growth conditions while preventing ordinary precursor proteins from interacting with the specialized SecA2 ATPase.
Collapse
|
22
|
Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species. Proc Natl Acad Sci U S A 2013; 110:11815-20. [PMID: 23818593 DOI: 10.1073/pnas.1303289110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.
Collapse
|
23
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
24
|
Zhou Q, Sun S, Tai P, Sui SF. Structural characterization of the complex of SecB and metallothionein-labeled proOmpA by cryo-electron microscopy. PLoS One 2012; 7:e47015. [PMID: 23056562 PMCID: PMC3464278 DOI: 10.1371/journal.pone.0047015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
ProOmpA is a preprotein that is translocated across the plasma membrane by the general secretory pathway in Escherichia coli. The molecular chaperon SecB in Sec pathway can recognize and bind proOmpA for its translocation. However, the structure of the SecB/proOmpA complex remains unknown. Here, we constructed an uncleavable proOmpA fused with metallothionein at its C-terminus and labeled it with metals in vitro for the study of cryo-electron microscopy. Using single particle cryo-electron microscopy, we reconstructed 3D structure of the stable SecB/proOmpA complex. The structure shows that the major portion of preprotein locates on one side of SecB tetramer, resulting in an asymmetric binding pattern. This work also provides a possible approach to the structure determination of small protein complexes by cryo-electron microscopy.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Phang Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. ACTA ACUST UNITED AC 2011; 18:685-98. [PMID: 21700205 DOI: 10.1016/j.chembiol.2011.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed.
Collapse
|
26
|
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 2011; 19:430-9. [PMID: 21397193 DOI: 10.1016/j.str.2010.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022]
Abstract
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.
Collapse
|
27
|
Wowor AJ, Yu D, Kendall DA, Cole JL. Energetics of SecA dimerization. J Mol Biol 2011; 408:87-98. [PMID: 21315086 PMCID: PMC3070768 DOI: 10.1016/j.jmb.2011.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/17/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Transport of many proteins to extracytoplasmic locations occurs via the general secretion (Sec) pathway. In Escherichia coli, this pathway is composed of the SecYEG protein-conducting channel and the SecA ATPase. SecA plays a central role in binding the signal peptide region of preproteins, directing preproteins to membrane-bound SecYEG and promoting translocation coupled with ATP hydrolysis. Although it is well established that SecA is crucial for preprotein transport and thus cell viability, its oligomeric state during different stages of transport remains ill defined. We have characterized the energetics of SecA dimerization as a function of salt concentration and temperature and defined the linkage of SecA dimerization and signal peptide binding using analytical ultracentrifugation. The use of a new fluorescence detector permitted an analysis of SecA dimerization down to concentrations as low as 50 nM. The dimer dissociation constants are strongly dependent on salt. Linkage analysis indicates that SecA dimerization is coupled to the release of about five ions, demonstrating that electrostatic interactions play an important role in stabilizing the SecA dimer interface. Binding of signal peptide reduces SecA dimerization affinity, such that K(d) increases about 9-fold from 0.28 μM in the absence of peptide to 2.68 μM in the presence of peptide. The weakening of the SecA dimer that accompanies signal peptide binding may poise the SecA dimer to dissociate upon binding to SecYEG.
Collapse
Affiliation(s)
- Andy J. Wowor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Dongmei Yu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Debra A. Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
28
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
29
|
Tang Y, Pan X, Chen Y, Tai PC, Sui SF. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PLoS One 2011; 6:e16498. [PMID: 21304597 PMCID: PMC3029384 DOI: 10.1371/journal.pone.0016498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/20/2010] [Indexed: 12/01/2022] Open
Abstract
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xijiang Pan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Phang C. Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Orientation of SecA and SecB in complex, derived from disulfide cross-linking. J Bacteriol 2010; 193:190-6. [PMID: 21037004 DOI: 10.1128/jb.00975-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is the ATPase that acts as the motor for protein export in the general secretory, or Sec, system of Escherichia coli. The tetrameric cytoplasmic chaperone SecB binds to precursors of exported proteins before they can become stably folded and delivers them to SecA. During this delivery step, SecB binds to SecA. The complex between SecA and SecB that is maximally active in translocation contains two protomers of SecA bound to a tetramer of SecB. The aminoacyl residues on each protein that are involved in binding the other have previously been identified by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy; however, that study provided no information concerning the relative orientation of the proteins within the complex. Here we used our extensive collection of single-cysteine variants of the two proteins and subjected pairwise combinations of SecA and SecB to brief oxidation to identify residues in close proximity. These data were used to generate a model for the orientation of the two proteins within the complex.
Collapse
|
31
|
Randall LL, Henzl MT. Direct identification of the site of binding on the chaperone SecB for the amino terminus of the translocon motor SecA. Protein Sci 2010; 19:1173-9. [PMID: 20512970 DOI: 10.1002/pro.392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane-embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N-terminal residues 2 through 11 of SecA and the C-terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.
Collapse
Affiliation(s)
- Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
32
|
du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:851-65. [PMID: 20801097 DOI: 10.1016/j.bbamem.2010.08.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- David J F du Plessis
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
33
|
Characterization of interactions between proteins using site-directed spin labeling and electron paramagnetic resonance spectroscopy. Methods Mol Biol 2010; 619:173-90. [PMID: 20419411 PMCID: PMC5814136 DOI: 10.1007/978-1-60327-412-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Site-directed spin-labeling and the analysis of proteins by electron paramagnetic resonance spectroscopy provides a powerful tool for identifying sites of contact within protein complexes at the resolution of aminoacyl side chains. Here we describe the method as we have used it to study interactions of proteins involved in export via the Sec secretory system in Escherichia coli. The method is amendable to the study of most protein interactions.
Collapse
|
34
|
Lilly AA, Crane JM, Randall LL. Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands. Protein Sci 2009; 18:1860-8. [PMID: 19569227 DOI: 10.1002/pro.197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SecB, a remarkable chaperone involved in protein export, binds diverse ligands rapidly with high affinity and low specificity. Site-directed spin labeling and electron paramagnetic resonance spectroscopy were used to investigate the surface of interaction on the export chaperone SecB. We examined SecB in complex with the unfolded precursor form of outer membrane protein OmpA as well as with a truncated version of OmpA that includes the transmembrane domain and lacks both the signal peptide and the periplasmic domain. In addition, we studied the binding of SecB to the unfolded mature form of galactose-binding protein, a soluble periplasmic protein. We have previously used the same strategy to map the binding surface for the precursor of galactose-binding protein. We show that for all ligands tested the patterns of contact are the same.
Collapse
Affiliation(s)
- Angela A Lilly
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
35
|
Bechtluft P, Nouwen N, Tans SJ, Driessen AJM. SecB--a chaperone dedicated to protein translocation. MOLECULAR BIOSYSTEMS 2009; 6:620-7. [PMID: 20237639 DOI: 10.1039/b915435c] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SecB is a molecular chaperone in Gram-negative bacteria dedicated to the post-translational translocation of proteins across the cytoplasmic membrane. The entire surface of this chaperone is used for both of its native functions in protein targeting and unfolding. Single molecule studies revealed how SecB affects the folding pathway of proteins and how it prevents the tertiary structure formation and aggregation to support protein translocation.
Collapse
Affiliation(s)
- Philipp Bechtluft
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Das S, Stivison E, Folta-Stogniew E, Oliver D. Reexamination of the role of the amino terminus of SecA in promoting its dimerization and functional state. J Bacteriol 2008; 190:7302-7. [PMID: 18723626 PMCID: PMC2580686 DOI: 10.1128/jb.00593-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/12/2008] [Indexed: 11/20/2022] Open
Abstract
The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecADelta8 lacking residues 2 to 8, SecADelta11 lacking residues 2 to 11, and SecADelta11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues. We demonstrated that whether SecADelta11 or SecADelta11/N95 was functional for promoting cell growth depended solely on the vivo level of the protein, which appeared to govern residual dimerization. All three SecA mutant proteins were defective for promoting cell growth unless they were highly overproduced. Cell fractionation revealed that SecADelta11 and SecADelta11/N95 were proficient in membrane association, although the formation of integral membrane SecA was reduced. The presence of a modestly higher level of SecADelta11/N95 in the membrane and the ability of this protein to form dimers, as detected by chemical cross-linking, were consistent with the higher level of secA expression and better growth of the SecADelta11/N95 mutant than of the SecADelta11 mutant. Biochemical studies showed that SecADelta11 and SecADelta11/N95 had identical dimerization defects, while SecADelta8 was intermediate between these proteins and wild-type SecA in terms of dimer formation. Furthermore, both SecADelta11 and SecADelta11/N95 were equally defective in translocation ATPase specific activity. Our studies showed that the nonessential carboxyl-terminal 70 residues of SecA play no role in its dimerization, while increasing the truncation of the amino-terminal region of SecA from 8 to 11 residues results in increased defects in SecA dimerization and poor in vivo function unless the protein is highly overexpressed. They also clarified a number of conflicting previous reports and support the essential nature of the SecA dimer.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
37
|
Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, Purcell AW, Buchanan SK, Lithgow T. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 2008; 32:995-1009. [PMID: 18759741 PMCID: PMC2635482 DOI: 10.1111/j.1574-6976.2008.00130.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/23/2008] [Accepted: 07/18/2008] [Indexed: 11/17/2022] Open
Abstract
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.
Collapse
Affiliation(s)
- Xenia Gatsos
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Andrew J Perry
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Khatira Anwari
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Pavel Dolezal
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - P Peter Wolynec
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Vladimir A Likić
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| |
Collapse
|
38
|
Maximal efficiency of coupling between ATP hydrolysis and translocation of polypeptides mediated by SecB requires two protomers of SecA. J Bacteriol 2008; 191:978-84. [PMID: 18978043 DOI: 10.1128/jb.01321-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.
Collapse
|
39
|
Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A. Assembly of the translocase motor onto the preprotein-conducting channel. Mol Microbiol 2008; 70:311-22. [PMID: 18761620 PMCID: PMC2603171 DOI: 10.1111/j.1365-2958.2008.06402.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial protein secretion is catalysed by the SecYEG protein-conducting channel complexed with the SecA ATPase motor. To gain insight into the SecA-SecYEG interaction we used peptide arrays, thermodynamic quantification, mutagenesis and functional assays. Our data reveal that: (i) SecA binds with low affinity on several, peripheral, exposed SecYEG sites. This largely electrostatic association is modulated by temperature and nucleotides. (ii) Binding sites cluster in five major binding 'regions': three that are exclusively cytoplasmic and two that reach the periplasm. (iii) Both the N-terminal and c-terminal regions of SecA participate in binding interactions and share some sites. (iv) Several of these sites are essential for translocase catalysis. Our data provide residue-level dissection of the SecYEG-SecA interaction. Two models of assembly of SecA on dimeric SecYEG are discussed.
Collapse
Affiliation(s)
- Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology-FoRTH, PO Box 1385, Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
40
|
Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 2008; 382:74-87. [PMID: 18602400 PMCID: PMC2633600 DOI: 10.1016/j.jmb.2008.06.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
Abstract
In all living cells, regulated passage across membranes of specific proteins occurs through a universally conserved secretory channel. In bacteria and chloroplasts, the energy for the mechanical work of moving polypeptides through that channel is provided by SecA, a regulated ATPase. Here, we use site-directed spin labeling and electron paramagnetic resonance spectroscopy to identify the interactive surface used by SecA for each of the diverse binding partners encountered during the dynamic cycle of export. Although the binding sites overlap, resolution at the level of aminoacyl side chains allows us to identify contacts that are unique to each partner. Patterns of constraint and mobilization of residues on that interactive surface suggest a conformational change that may underlie the coupling of ATP hydrolysis to precursor translocation.
Collapse
Affiliation(s)
- Dylan B. Cooper
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Virginia F. Smith
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Jennine M. Crane
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Hilary C. Roth
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Angela A. Lilly
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
41
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
42
|
ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol 2008; 190:4880-7. [PMID: 18487341 DOI: 10.1128/jb.00412-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.
Collapse
|
43
|
Additional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli. J Bacteriol 2007; 190:1413-8. [PMID: 18065528 DOI: 10.1128/jb.01633-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is an essential component in the Sec-dependent protein translocation pathway and, together with ATP, provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. Previous studies established that SecA undergoes monomer-dimer equilibrium in solution. However, the oligomeric state of functional SecA during the protein translocation process is controversial. In this study, we provide additional evidence that SecA functions as a dimer in the membrane by (i) demonstration of the capability of the presumably monomeric SecA derivative to be cross-linked as dimers in vitro and in vivo, (ii) complementation of the growth of a secA(Ts) mutant with another nonfunctional SecA or (iii) in vivo complementation and in vitro function of a genetically tandem SecA dimer that does not dissociate into monomers, and (iv) formation of similar ring-like structures by the tandem SecA dimer and SecA in the presence of lipid bilayers. We conclude that SecA functions as a dimer in the membrane and dissociation into monomers is not necessary during protein translocation.
Collapse
|
44
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
45
|
Chen Y, Tai PC, Sui SF. The active ring-like structure of SecA revealed by electron crystallography: conformational change upon interaction with SecB. J Struct Biol 2007; 159:149-53. [PMID: 17419072 PMCID: PMC2691388 DOI: 10.1016/j.jsb.2007.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/02/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
SecA is a multifunctional protein involved in protein translocation in bacteria. The structure of SecA on membrane is dramatically altered compared with that in solution, accompanying with functional changes. We previously reported the formation of a novel ring-like structure of SecA on lipid layers, which may constitute part of the preprotein translocation channel. In the present work, two-dimensional crystallization of Escherichia coli SecA on lipid monolayers was performed to reveal the structural details of SecA on lipid layers and to investigate its function. The 2D crystals composed of ring-like structures were obtained by specific interaction between SecA and negatively charged lipid. The 2D projection map and 3D reconstruction from negative stained 2D crystals exhibited a distinct open channel-like structure of SecA, with an outer diameter of 7 nm and an inner diameter of 2 nm, providing the structural evidence for SecA importance in forming the part of the translocation channel. This pore structure is altered after transferring crystals to the SecB solution, indicating that the lipid-specific SecA structure has the SecB binding activity. The strategy developed here provides a promising technique for studying structure of SecA complex with its ligand on membrane.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biological Sciences & Biotechnology, State-Key Laboratory of Biomembranes and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Phang C. Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303
| | - Sen-Fang Sui
- Department of Biological Sciences & Biotechnology, State-Key Laboratory of Biomembranes and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Or E, Rapoport T. Cross-linked SecA dimers are not functional in protein translocation. FEBS Lett 2007; 581:2616-20. [PMID: 17511989 PMCID: PMC2755086 DOI: 10.1016/j.febslet.2007.04.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 03/17/2007] [Accepted: 04/27/2007] [Indexed: 11/29/2022]
Abstract
The ATPase SecA is involved in post-translational protein translocation through the SecY channel across the bacterial inner membrane. SecA is a dimer that can dissociate into monomers with translocation activity. Here, we have addressed whether dissociation of the SecA dimer is required for translocation. We show that a dimer in which the two subunits are cross-linked by disulfide bridges is inactive in protein translocation, translocation ATPase, and binding to a lipid bilayer. In contrast, upon reduction of the disulfide bridges, the resulting monomers regain these activities. These data support the notion that dissociation of SecA dimers into monomers occurs during protein translocation.
Collapse
Affiliation(s)
- Eran Or
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Tom Rapoport
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
47
|
Rusch SL, Kendall DA. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:5-12. [PMID: 17011510 PMCID: PMC2712355 DOI: 10.1016/j.bbamem.2006.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/27/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Many proteins synthesized in the cytoplasm ultimately function in non-cytoplasmic locations. In Escherichia coli, the general secretory (Sec) pathway transports the vast majority of these proteins. Two fundamental components of the Sec transport pathway are the SecYEG heterotrimeric complex that forms the channel through the cytoplasmic membrane, and SecA, the ATPase that drives the preprotein to and across the membrane. This review focuses on what is known about the oligomeric states of these core Sec components and how the oligomeric state might change during the course of the translocation of a preprotein.
Collapse
Affiliation(s)
- Sharyn L. Rusch
- Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125, USA
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125, USA
| |
Collapse
|
48
|
Papanikolau Y, Papadovasilaki M, Ravelli RBG, McCarthy AA, Cusack S, Economou A, Petratos K. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J Mol Biol 2006; 366:1545-57. [PMID: 17229438 DOI: 10.1016/j.jmb.2006.12.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/12/2006] [Accepted: 12/17/2006] [Indexed: 01/31/2023]
Abstract
SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.
Collapse
Affiliation(s)
- Yannis Papanikolau
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, PO Box 1385, 71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
49
|
Crane JM, Suo Y, Lilly AA, Mao C, Hubbell WL, Randall LL. Sites of interaction of a precursor polypeptide on the export chaperone SecB mapped by site-directed spin labeling. J Mol Biol 2006; 363:63-74. [PMID: 16962134 PMCID: PMC2925277 DOI: 10.1016/j.jmb.2006.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Patel CN, Smith VF, Randall LL. Characterization of three areas of interactions stabilizing complexes between SecA and SecB, two proteins involved in protein export. Protein Sci 2006; 15:1379-86. [PMID: 16731972 PMCID: PMC2265093 DOI: 10.1110/ps.062141006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The general secretory, Sec, system translocates precursor polypeptides from the cytosol across the cytoplasmic membrane in Escherichia coli. SecB, a small cytosolic chaperone, captures the precursor polypeptides before they fold and delivers them to the membrane translocon through interactions with SecA. Both SecB and SecA display twofold symmetry and yet the complex between the two is stabilized by contacts that are distributed asymmetrically. Two distinct regions of interaction have been defined previously and here we identify a third. Calorimetric studies of complexes stabilized by different subsets of these interactions were carried out to determine the binding affinities and the thermodynamic parameters that underlie them. We show here that there is no change in affinity when either one of two contact areas out of the three is lacking. This fact and the asymmetry of the binding contacts may be important to the function of the complex in protein export.
Collapse
Affiliation(s)
- Chetan N Patel
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|