1
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
3
|
Sinha S, Elbaz‐Alon Y, Avinoam O. Ca 2+ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS J 2022; 289:6531-6542. [PMID: 35689496 PMCID: PMC9795905 DOI: 10.1111/febs.16552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Muscle regeneration is essential for vertebrate muscle homeostasis and recovery after injury. During regeneration, muscle stem cells differentiate into myocytes, which then fuse with pre-existing muscle fibres. Hence, differentiation, fusion and contraction must be tightly regulated during regeneration to avoid the disastrous consequences of premature fusion of myocytes to actively contracting fibres. Cytosolic calcium (Ca2+ ), which is coupled to both induction of myogenic differentiation and contraction, has more recently been implicated in the regulation of myocyte-to-myotube fusion. In this viewpoint, we propose that Ca2+ -mediated coordination of differentiation, fusion and contraction is a feature selected in the amniotes to facilitate muscle regeneration.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yael Elbaz‐Alon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Wang J, Wang C, Xie H, Feng X, Wei L, Wang B, Li T, Pi M, Gong L. Case Report: Tetralogy of Fallot in a Chinese Family Caused by a Novel Missense Variant of MYOM2. Front Cardiovasc Med 2022; 9:863650. [PMID: 35872890 PMCID: PMC9300848 DOI: 10.3389/fcvm.2022.863650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rare genetic variants have been identified to be important contributors to the risk of Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease (CHD). But relatively limited familial studies with small numbers of TOF cases have been reported to date. In this study, we aimed to identify novel pathogenic genes and variants that caused TOF in a Chinese family using whole exome sequencing (WES). Methods A Chinese family whose twins were affected by TOF were recruited for this study. A WES was performed for the affected twins, their healthy brother, and parents to identify the potential pathogenic mutated gene(s). Heterozygous variants carried by the twins, but not the unaffected brother, were retained. Public databases were used to assess the frequencies of the selected variants, and online prediction tools were accessed to predict the influences of these variants on protein function. The final candidate variant was further confirmed by Sanger sequencing in other members of the family. Results After several filtering processes, a heterozygous missense variant in the MYOM2 gene (NM_003970.4:c.3097C>T:p.R1033C) was identified and confirmed by Sanger sequencing in the affected twins and their unaffected father, suggesting an inheritance pattern with incomplete penetrance. The variant was found to be extremely rare in the public databases. Furthermore, the mutated site was highly conserved among mammals, and as shown using multiple online prediction tools, this variant was predicted to be a detrimental variant. Conclusion We assessed a family with TOF caused by a rare heterozygous missense variant of MYOM2. Our findings not only further confirm the significant role of genetics in the incidence of TOF but also expand the spectrum of the gene variants that lead to TOF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Haiyang Xie
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Feng
- Department of Echocardiography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wei
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Mingan Pi
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Mingan Pi
| | - Li Gong
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Gong
| |
Collapse
|
5
|
Lamber EP, Guicheney P, Pinotsis N. The role of the M-band myomesin proteins in muscle integrity and cardiac disease. J Biomed Sci 2022; 29:18. [PMID: 35255917 PMCID: PMC8900313 DOI: 10.1186/s12929-022-00801-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Transversal structural elements in cross-striated muscles, such as the M-band or the Z-disc, anchor and mechanically stabilize the contractile apparatus and its minimal unit—the sarcomere. The ability of proteins to target and interact with these structural sarcomeric elements is an inevitable necessity for the correct assembly and functionality of the myofibrillar apparatus. Specifically, the M-band is a well-recognized mechanical and signaling hub dealing with active forces during contraction, while impairment of its function leads to disease and death. Research on the M-band architecture is focusing on the assembly and interactions of the three major filamentous proteins in the region, mainly the three myomesin proteins including their embryonic heart (EH) isoform, titin and obscurin. These proteins form the basic filamentous network of the M-band, interacting with each other as also with additional proteins in the region that are involved in signaling, energetic or mechanosensitive processes. While myomesin-1, titin and obscurin are found in every muscle, the expression levels of myomesin-2 (also known as M-protein) and myomesin-3 are tissue specific: myomesin-2 is mainly expressed in the cardiac and fast skeletal muscles, while myomesin-3 is mainly expressed in intermediate muscles and specific regions of the cardiac muscle. Furthermore, EH-myomesin apart from its role during embryonic stages, is present in adults with specific cardiac diseases. The current work in structural, molecular, and cellular biology as well as in animal models, provides important details about the assembly of myomesin-1, obscurin and titin, the information however about the myomesin-2 and -3, such as their interactions, localization and structural details remain very limited. Remarkably, an increasing number of reports is linking all three myomesin proteins and particularly myomesin-2 to serious cardiovascular diseases suggesting that this protein family could be more important than originally thought. In this review we will focus on the myomesin protein family, the myomesin interactions and structural differences between isoforms and we will provide the most recent evidence why the structurally and biophysically unexplored myomesin-2 and myomesin-3 are emerging as hot targets for understanding muscle function and disease.
Collapse
|
6
|
Cass JA, Williams CD, Irving TC, Lauga E, Malingen S, Daniel TL, Sponberg SN. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys J 2021; 120:4079-4090. [PMID: 34384761 DOI: 10.1016/j.bpj.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.
Collapse
Affiliation(s)
- Julie A Cass
- Allen Institute for Cell Science, Seattle, Washington; Department of Biology, University of Washington, Seattle, Washington
| | - C David Williams
- Department of Biology, University of Washington, Seattle, Washington; Applied ML Group, Microsoft CSE, Redmond, Washington
| | - Thomas C Irving
- BioCAT and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sage Malingen
- Department of Biology, University of Washington, Seattle, Washington
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington.
| | - Simon N Sponberg
- School of Physics & School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
7
|
Hang C, Song Y, Li Y, Zhang S, Chang Y, Bai R, Saleem A, Jiang M, Lu W, Lan F, Cui M. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J Cell Mol Med 2021; 25:1661-1676. [PMID: 33452765 PMCID: PMC7875908 DOI: 10.1111/jcmm.16268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Myomesin-1 (encoded by MYOM1 gene) is expressed in almost all cross-striated muscles, whose family (together with myomesin-2 and myomesin-3) helps to cross-link adjacent myosin to form the M-line in myofibrils. However, little is known about its biological function, causal relationship and mechanisms underlying the MYOM1-related myopathies (especially in the heart). Regrettably, there is no MYMO1 knockout model for its study so far. A better and further understanding of MYOM1 biology is urgently needed. Here, we used CRISPR/Cas9 gene-editing technology to establish an MYOM1 knockout human embryonic stem cell line (MYOM1-/- hESC), which was then differentiated into myomesin-1 deficient cardiomyocytes (MYOM1-/- hESC-CMs) in vitro. We found that myomesin-1 plays an important role in sarcomere assembly, contractility regulation and cardiomyocytes development. Moreover, myomesin-1-deficient hESC-CMs can recapitulate myocardial atrophy phenotype in vitro. Based on this model, not only the biological function of MYOM1, but also the aetiology, pathogenesis, and potential treatments of myocardial atrophy caused by myomesin-1 deficiency can be studied.
Collapse
Affiliation(s)
- Chengwen Hang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Yuanxiu Song
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Ya’nan Li
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Siyao Zhang
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Yun Chang
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Rui Bai
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Amina Saleem
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Mengqi Jiang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Wenjing Lu
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Feng Lan
- Beijing Lab for Cardiovascular Precision MedicineAnzhen HospitalCapital Medical UniversityBeijingChina
| | - Ming Cui
- Department of CardiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
8
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
9
|
Auxerre-Plantié E, Nielsen T, Grunert M, Olejniczak O, Perrot A, Özcelik C, Harries D, Matinmehr F, Dos Remedios C, Mühlfeld C, Kraft T, Bodmer R, Vogler G, Sperling SR. Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart. Dis Model Mech 2020; 13:dmm045377. [PMID: 33033063 PMCID: PMC7758640 DOI: 10.1242/dmm.045377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
The causal genetic underpinnings of congenital heart diseases, which are often complex and multigenic, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 (MYOM2) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar M-band of the sarcomere, and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 [herein referred to as Drosophila myomesin and myosin binding protein (dMnM)] may be an ortholog of MYOM2, as well as other myosin binding proteins. Its partial loss of function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc (MYH6/7) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart.This article has an associated First Person interview with Emilie Auxerre-Plantié and Tanja Nielsen, joint first authors of the paper.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Tanja Nielsen
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Olga Olejniczak
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Cemil Özcelik
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Dennis Harries
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Faramarz Matinmehr
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Cristobal Dos Remedios
- Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Theresia Kraft
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Georg Vogler
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Silke R Sperling
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
10
|
de Souza MM, Zerlotini A, Rocha MIP, Bruscadin JJ, Diniz WJDS, Cardoso TF, Cesar ASM, Afonso J, Andrade BGN, Mudadu MDA, Mokry FB, Tizioto PC, de Oliveira PSN, Niciura SCM, Coutinho LL, Regitano LCDA. Allele-specific expression is widespread in Bos indicus muscle and affects meat quality candidate genes. Sci Rep 2020; 10:10204. [PMID: 32576896 PMCID: PMC7311436 DOI: 10.1038/s41598-020-67089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.
Collapse
Affiliation(s)
- Marcela Maria de Souza
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Adhemar Zerlotini
- Bioinformatic Multi-user Laboratory, Embrapa Informática Agropecuária, Campinas, SP, Brazil
| | - Marina Ibelli Pereira Rocha
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jennifer Jessica Bruscadin
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Wellison Jarles da Silva Diniz
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Juliana Afonso
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Fabiana Barichello Mokry
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
12
|
Prill K, Carlisle C, Stannard M, Windsor Reid PJ, Pilgrim DB. Myomesin is part of an integrity pathway that responds to sarcomere damage and disease. PLoS One 2019; 14:e0224206. [PMID: 31644553 PMCID: PMC6808450 DOI: 10.1371/journal.pone.0224206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey Carlisle
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Megan Stannard
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Kang SH, Aoki T, Kwak G. Molecular-Spring Shape-Memory Polymer Based on Energy Elasticity and Local Phase Transition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sang-Hoon Kang
- Department of Polymer Science and Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | - Toshiki Aoki
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, and Center for Transdisciplinary Research, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Giseop Kwak
- Department of Polymer Science and Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
14
|
Wen W, Zhao Z, Li R, Guan J, Zhou Z, Luo X, Suman SP, Sun Q. Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks. Mol Biol Rep 2019; 46:2857-2866. [DOI: 10.1007/s11033-019-04732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
15
|
Ousaka N, Shimizu K, Suzuki Y, Iwata T, Itakura M, Taura D, Iida H, Furusho Y, Mori T, Yashima E. Spiroborate-Based Double-Stranded Helicates: Meso-to-Racemo Isomerization and Ion-Triggered Springlike Motion of the Racemo-Helicate. J Am Chem Soc 2018; 140:17027-17039. [DOI: 10.1021/jacs.8b08268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kaori Shimizu
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshimasa Suzuki
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Manabu Itakura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroki Iida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshio Furusho
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
16
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
17
|
Bollen IAE, Ehler E, Fleischanderl K, Bouwman F, Kempers L, Ricke-Hoch M, Hilfiker-Kleiner D, Dos Remedios CG, Krüger M, Vink A, Asselbergs FW, van Spaendonck-Zwarts KY, Pinto YM, Kuster DWD, van der Velden J. Myofilament Remodeling and Function Is More Impaired in Peripartum Cardiomyopathy Compared with Dilated Cardiomyopathy and Ischemic Heart Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2645-2658. [PMID: 28935576 DOI: 10.1016/j.ajpath.2017.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/09/2023]
Abstract
Peripartum cardiomyopathy (PPCM) and dilated cardiomyopathy (DCM) show similarities in clinical presentation. However, although DCM patients do not recover and slowly deteriorate further, PPCM patients show either a fast cardiac deterioration or complete recovery. The aim of this study was to assess if underlying cellular changes can explain the clinical similarities and differences in the two diseases. We, therefore, assessed sarcomeric protein expression, modification, titin isoform shift, and contractile behavior of cardiomyocytes in heart tissue of PPCM and DCM patients and compared these with nonfailing controls. Heart samples from ischemic heart disease (ISHD) patients served as heart failure control samples. Passive force was only increased in PPCM samples compared with controls, whereas PPCM, DCM, and ISHD samples all showed increased myofilament Ca2+ sensitivity. Length-dependent activation was significantly impaired in PPCM compared with controls, no impairment was observed in ISHD samples, and DCM samples showed an intermediate response. Contractile impairments were caused by impaired protein kinase A (PKA)-mediated phosphorylation because exogenous PKA restored all parameters to control levels. Although DCM samples showed reexpression of EH-myomesin, an isoform usually only expressed in the heart before birth, PPCM and ISHD did not. The lack of EH-myomesin, combined with low PKA-mediated phosphorylation of myofilament proteins and increased compliant titin isoform, may explain the increase in passive force and blunted length-dependent activation of myofilaments in PPCM samples.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Karin Fleischanderl
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Floor Bouwman
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Lanette Kempers
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G Dos Remedios
- Bosch Institute, Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Karin Y van Spaendonck-Zwarts
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Yigal M Pinto
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Medical Center Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
18
|
Rusu M, Hu Z, Taylor KA, Trinick J. Structure of isolated Z-disks from honeybee flight muscle. J Muscle Res Cell Motil 2017; 38:241-250. [PMID: 28733815 PMCID: PMC5660141 DOI: 10.1007/s10974-017-9477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
The Z-disk is a complex structure comprising some 40 proteins that are involved in the transmission of force developed during muscle contraction and in important signalling pathways that govern muscle homeostasis. In the Z-disk the ends of antiparallel thin filaments from adjacent sarcomeres are crosslinked by α-actinin. The structure of the Z-disk lattice varies greatly throughout the animal kingdom. In vertebrates the thin filaments form a tetragonal lattice, whereas invertebrate flight muscle has a hexagonal lattice. The width of the Z-disk varies considerably and correlates with the number of α-actinin bridges. A detailed description at a high resolution of the Z-disk lattice is needed in order to better understand muscle function and disease. The molecular architecture of the Z-disk lattice in honeybee (Apis mellifera) is known from plastic embedded thin sections to a resolution of 7 nm, which is not sufficient to dock component protein crystal structures. It has been shown that sectioning is a damaging process that leads to the loss of finer details present in biological specimens. However, the Apis Z-disk is a thin structure (120 nm) suitable for cryo EM. We have isolated intact honeybee Z-disks from indirect flight muscle, thus obviating the need of plastic sectioning. We have employed cryo electron tomography and image processing to investigate the arrangement of proteins within the hexagonal lattice of the Apis Z-disk. The resolution obtained, ~6 nm, was probably limited by damage caused by the harshness of the conditions used to extract the myofibrils and isolate the Z-disks.
Collapse
Affiliation(s)
- Mara Rusu
- Astbury Center, University of Leeds, Leeds, LS2 9JT, UK
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - John Trinick
- Astbury Center, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
20
|
Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. ACTA ACUST UNITED AC 2016; 219:135-45. [PMID: 26792323 DOI: 10.1242/jeb.124941] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia
| |
Collapse
|
21
|
Suzuki Y, Nakamura T, Iida H, Ousaka N, Yashima E. Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates. J Am Chem Soc 2016; 138:4852-9. [DOI: 10.1021/jacs.6b00787] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshimasa Suzuki
- Department
of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Nakamura
- Department
of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroki Iida
- Department
of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department
of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department
of Molecular Design
and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Rouillon J, Poupiot J, Zocevic A, Amor F, Léger T, Garcia C, Camadro JM, Wong B, Pinilla R, Cosette J, Coenen-Stass AML, Mcclorey G, Roberts TC, Wood MJA, Servais L, Udd B, Voit T, Richard I, Svinartchouk F. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies. Hum Mol Genet 2015; 24:4916-32. [PMID: 26060189 PMCID: PMC4527491 DOI: 10.1093/hmg/ddv214] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/04/2015] [Indexed: 12/24/2022] Open
Abstract
Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
| | | | | | | | - Thibaut Léger
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, University Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Brenda Wong
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | - Graham Mcclorey
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics Oxford, Oxford, OX1 3QX, UK
| | - Laurent Servais
- Service of Clinical Trials and Databases, Institut de Myologie, Paris, France
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Thomas Voit
- UPMC Inserm, UMRS 974, CNRS FRE 3617, Paris, France, Université Pierre et Marie Curie- Paris 6, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France and
| | | | | |
Collapse
|
23
|
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 2015; 25:1785-1800. [PMID: 25958780 DOI: 10.1111/mec.13231] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological and behavioural transition undertaken by juveniles in preparation for seaward migration. O. mykiss is experimentally tractable and displays intra- and interpopulation variation in migration propensity. Migratory individuals can produce nonmigratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulphite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (nonmigratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were high in magnitude, with up to 62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with migration-related traits in any species.
Collapse
Affiliation(s)
- Melinda R Baerwald
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Mariah H Meek
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Molly R Stephens
- School of Natural Sciences, University of California - Merced, Merced, CA, 95343
| | - Raman P Nagarajan
- GlaxoSmithKline, Cancer Epigenetics Discovery Performance Unit, Collegeville, PA 19426
| | - Alisha M Goodbla
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | | | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164
| | - Bernie May
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112
| |
Collapse
|
24
|
Xiao S, Gräter F. Molecular basis of the mechanical hierarchy in myomesin dimers for sarcomere integrity. Biophys J 2015; 107:965-73. [PMID: 25140432 PMCID: PMC4142248 DOI: 10.1016/j.bpj.2014.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023] Open
Abstract
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunoglobulin (Ig) domains, and the dimer interface at myomesin's 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼ 15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.
Collapse
Affiliation(s)
- Senbo Xiao
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Chinese Academy of Sciences-Max-Planck-Society Partner Institute and Key Laboratory for Computational Biology, Shanghai, China; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Dixon DM, Choi J, El-Ghazali A, Park SY, Roos KP, Jordan MC, Fishbein MC, Comai L, Reddy S. Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep 2015; 5:9042. [PMID: 25761764 PMCID: PMC4356957 DOI: 10.1038/srep09042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1ΔE2/ΔE2) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2–4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1ΔE2/ΔE2 mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease.
Collapse
Affiliation(s)
- Donald M Dixon
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ayea El-Ghazali
- 1] Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA [2] Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Park
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lucio Comai
- Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
26
|
Pluess M, Daeubler G, Dos Remedios CG, Ehler E. Adaptations of cytoarchitecture in human dilated cardiomyopathy. Biophys Rev 2015; 7:25-32. [PMID: 28509975 PMCID: PMC4322184 DOI: 10.1007/s12551-014-0146-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy is characterised by a histological phenotype of myocyte disarray, but heart tissue samples from patients with dilated cardiomyopathy (DCM) often look comparatively similar to those from healthy individuals apart from conspicuous regions of fibrosis and necrosis. We have previously investigated subcellular alterations in the cytoarchitecture of mouse models of dilated cardiomyopathy and found that both the organisation and composition of the intercalated disc, i.e. the specialised type of cell-cell contact in the heart, is altered. There is also is a change in the composition of the M-band of the sarcomere due to an expression shift towards the more extensible embryonic heart (EH)-myomesin isoform. Analysis of human samples from the Sydney Human Heart Tissue Bank have revealed similar structural findings and also provided evidence for a dramatic change in overall cardiomyocyte size control, which has also been seen in the mouse. Together these changes in cytoarchitecture probably contribute to the decreased functional output that is seen in DCM.
Collapse
Affiliation(s)
- Marlene Pluess
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Gregor Daeubler
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | | | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
27
|
Weeland CJ, van den Hoogenhof MM, Beqqali A, Creemers EE. Insights into alternative splicing of sarcomeric genes in the heart. J Mol Cell Cardiol 2015; 81:107-13. [PMID: 25683494 DOI: 10.1016/j.yjmcc.2015.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial layer in gene expression, greatly expanding protein diversity and governing complex biological processes in the cardiomyocyte. At the core of cardiac contraction, the physical properties of the sarcomere are carefully orchestrated through alternative splicing to fit the varying demands on the heart. By the recent discovery of RBM20 and RBM24, two major heart and skeletal muscle-restricted splicing factors, it became evident that alternative splicing events in the heart occur in regulated networks rather than in isolated events. Analysis of knockout mice of these splice factors has shed light on the importance of these fundamental processes in the heart. In this review, we discuss recent advances in our understanding of the role and regulation of alternative splicing in the developing and diseased heart, specifically within the sarcomere. Through various examples (titin, myomesin, troponin T, tropomyosin and LDB3) we illustrate how alternative splicing regulates the functional properties of the sarcomere. Finally, we evaluate opportunities and obstacles to modulate alternative splicing in therapeutic approaches for cardiac disease.
Collapse
Affiliation(s)
- Cornelis J Weeland
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | | - Abdelaziz Beqqali
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Huang A, Bhattacharya A, Binder K. Conformations, transverse fluctuations, and crossover dynamics of a semi-flexible chain in two dimensions. J Chem Phys 2014; 140:214902. [DOI: 10.1063/1.4879537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, Artemenko K. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics 2014; 108:55-64. [PMID: 24846852 DOI: 10.1016/j.jprot.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive muscle paralysis. Currently clinical tools for ALS diagnostics do not perform well enough and their improvement is needed. The objective of this study was to identify specific protein alterations related to the development of ALS using tiny muscle biopsies. We applied a shotgun proteomics and quantitative dimethyl labeling in order to analyze the global changes in human skeletal muscle proteome of ALS versus healthy subjects for the first time. 235 proteins were quantified and 11 proteins were found significantly regulated in ALS muscles. These proteins are involved in muscle development and contraction, metabolic processes, enzyme activity, regulation of apoptosis and transport activity. In order to eliminate a risk to confuse ALS with other denervations, muscle biopsies of patients with postpolio syndrome and Charcot-Marie-Tooth disease (negative controls) were compared to those of ALS and controls. Only few proteins significantly regulated in ALS patients compared to controls were affected differently in negative controls. These proteins (BTB and kelch domain-containing protein 10, myosin light chain 3, glycogen debranching enzyme, transitional endoplasmic reticulum ATPase), individually or as a panel, could be selected for estimation of ALS diagnosis and development. BIOLOGICAL SIGNIFICANCE ALS is a devastating neurodegenerative disease, and luckily, very rare: only one to two people out of 100,000 develop ALS yearly. This fact, however, makes studies of ALS very challenging since it is very difficult to collect the representative set of clinical samples and this may take up to several years. In this study we collected the muscle biopsies from 12 ALS patients and compared the ALS muscle proteome against the one from control subjects. We suggested the efficient method for such comprehensive quantitative analysis by LC-MS and performed it for the first time using human ALS material. This gel- and antibody-free method can be widely applied for muscle proteome studies and has been used by us for revealing of the specific protein alterations associated with ALS.
Collapse
Affiliation(s)
- Kristin Elf
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ingela Nygren
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Askmark
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Can T, Faas L, Ashford DA, Dowle A, Thomas J, O'Toole P, Blanco G. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci 2014; 12:25. [PMID: 25071420 PMCID: PMC4113200 DOI: 10.1186/1477-5956-12-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.
Collapse
Affiliation(s)
- Tugba Can
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Laura Faas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - David A Ashford
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jerry Thomas
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Peter O'Toole
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
31
|
Wu G, Clerens S, Farouk MM. LC MS/MS identification of large structural proteins from bull muscle and their degradation products during post mortem storage. Food Chem 2014; 150:137-44. [DOI: 10.1016/j.foodchem.2013.10.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 10/17/2013] [Accepted: 10/26/2013] [Indexed: 11/25/2022]
|
32
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
33
|
Glyakina AV, Balabaev NK, Galzitskaya OV. Experimental and theoretical studies of mechanical unfolding of different proteins. BIOCHEMISTRY (MOSCOW) 2014; 78:1216-27. [PMID: 24460936 DOI: 10.1134/s0006297913110023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical properties of proteins are important for a wide range of biological processes including cell adhesion, muscle contraction, and protein translocation across biological membranes. It is necessary to reveal how proteins achieve their required mechanical stability under natural conditions in order to understand the biological processes and also to use the knowledge for constructing new biomaterials for medical and industrial purposes. In this connection, it is important to know how a protein will behave in response to various impacts. Theoretical and experimental works on mechanical unfolding of globular proteins will be considered in detail in this review.
Collapse
Affiliation(s)
- A V Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
34
|
Karsai Á, Kellermayer MSZ, Harris SP. Cross-species mechanical fingerprinting of cardiac myosin binding protein-C. Biophys J 2014; 104:2465-75. [PMID: 23746519 DOI: 10.1016/j.bpj.2013.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/19/2013] [Accepted: 04/08/2013] [Indexed: 01/22/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a member of the immunoglobulin (Ig) superfamily of proteins and consists of 8 Ig- and 3 fibronectin III (FNIII)-like domains along with a unique regulatory sequence referred to as the MyBP-C motif or M-domain. We previously used atomic force microscopy to investigate the mechanical properties of murine cMyBP-C expressed using a baculovirus/insect cell expression system. Here, we investigate whether the mechanical properties of cMyBP-C are conserved across species by using atomic force microscopy to manipulate recombinant human cMyBP-C and native cMyBP-C purified from bovine heart. Force versus extension data obtained in velocity-clamp experiments showed that the mechanical response of the human recombinant protein was remarkably similar to that of the bovine native cMyBP-C. Ig/Fn-like domain unfolding events occurred in a hierarchical fashion across a threefold range of forces starting at relatively low forces of ~50 pN and ending with the unfolding of the highest stability domains at ~180 pN. Force-extension traces were also frequently marked by the appearance of anomalous force drops suggestive of additional mechanical complexity such as structural coupling among domains. Both recombinant and native cMyBP-C exhibited a prominent segment ~100 nm-long that could be stretched by forces <50 pN before the unfolding of Ig- and FN-like domains. Combined with our previous observations of mouse cMyBP-C, these results establish that although the response of cMyBP-C to mechanical load displays a complex pattern, it is highly conserved across species.
Collapse
Affiliation(s)
- Árpád Karsai
- University of California - Davis, Davis, CA, USA
| | | | | |
Collapse
|
35
|
Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:219-42. [PMID: 25081620 DOI: 10.1016/b978-0-12-394624-9.00009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining proteins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
37
|
Martin-Perez M, Fernandez-Borras J, Ibarz A, Millan-Cubillo A, Felip O, de Oliveira E, Blasco J. New insights into fish swimming: a proteomic and isotopic approach in gilthead sea bream. J Proteome Res 2012; 11:3533-47. [PMID: 22681184 DOI: 10.1021/pr3002832] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Moderate exercise enhances fish growth, although underlying physiological mechanisms are not fully known. Here we performed a proteomic and metabolic study in white (WM) and red (RM) muscle of gilthead sea bream juveniles swimming at 1.5 body lengths per second. Continuous swimming for four weeks enhanced fish growth without increasing food intake. Exercise affected muscle energy stores by decreasing lipid and glycogen contents in WM and RM, respectively. Protein synthesis capacity (RNA/protein), energy use (estimated by lipid-δ(13)C and glycogen-δ(13)C), and enzymatic aerobic capacity increased in WM, while protein turnover (expressed by δ(15)N-fractionation) did not change. RM showed no changes in any of these parameters. 2D-PAGE analysis showed that almost 15% of sarcoplasmic protein spots from WM and RM differed in response to exercise, most being over-expressed in WM and under-expressed in RM. Protein identification by MALDI-TOF/TOF-MS and LC-MS/MS revealed exercise-induced enhancement of several pathways in WM (carbohydrate catabolism, protein synthesis, muscle contraction, and detoxification) and under-expression of others in RM (energy production, muscle contraction, and homeostatic processes). The mechanism underpinning the phenotypic response to exercise sheds light on the adaptive processes of fish muscles, being the sustained-moderate swimming induced in gilthead sea bream achieved mainly by WM, thus reducing the work load of RM and improving swimming performance and food conversion efficiency.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Xarxa de Referencia de Recerca i Desenvolupament en Aqüicultura de la Generalitat de Catalunya, Departament de Fisiologia i Immunologia Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The muscle M-band protein myomesin comprises a 36-nm long filament made of repetitive immunoglobulin–helix modules that can stretch to 2.5-fold this length, demonstrating substantial molecular elasticity. Skeletal and cardiac muscles are remarkable biological machines that support and move our bodies and power the rhythmic work of our lungs and hearts. As well as producing active contractile force, muscles are also passively elastic, which is essential to their performance. The origins of both active contractile and passive elastic forces can be traced to the individual proteins that make up the highly ordered structure of muscle. In this Primer, we describe the organization of sarcomeres—the structural units that produce contraction—and the nature of the proteins that make muscle elastic. In particular, we focus on an elastic protein called myomesin, whose novel modular architecture helps explain elasticity.
Collapse
Affiliation(s)
- Larissa Tskhovrebova
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, Leeds University, Leeds, United Kingdom
| | - John Trinick
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, Leeds University, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Karsai A, Kellermayer MSZ, Harris SP. Mechanical unfolding of cardiac myosin binding protein-C by atomic force microscopy. Biophys J 2012; 101:1968-77. [PMID: 22004751 DOI: 10.1016/j.bpj.2011.08.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 01/22/2023] Open
Abstract
Cardiac myosin-binding protein-C (cMyBP-C) is a thick-filament-associated protein that performs regulatory and structural roles within cardiac sarcomeres. It is a member of the immunoglobulin (Ig) superfamily of proteins consisting of eight Ig- and three fibronectin (FNIII)-like domains, along with a unique regulatory sequence referred to as the M-domain, whose structure is unknown. Domains near the C-terminus of cMyBP-C bind tightly to myosin and mediate the association of cMyBP-C with thick (myosin-containing) filaments, whereas N-terminal domains, including the regulatory M-domain, bind reversibly to myosin S2 and/or actin. The ability of MyBP-C to bind to both myosin and actin raises the possibility that cMyBP-C cross-links myosin molecules within the thick filament and/or cross-links myosin and thin (actin-containing) filaments together. In either scenario, cMyBP-C could be under mechanical strain. However, the physical properties of cMyBP-C and its behavior under load are completely unknown. Here, we investigated the mechanical properties of recombinant baculovirus-expressed cMyBP-C using atomic force microscopy to assess the stability of individual cMyBP-C molecules in response to stretch. Force-extension curves showed the presence of long extensible segment(s) that became stretched before the unfolding of individual Ig and FNIII domains, which were evident as sawtooth peaks in force spectra. The forces required to unfold the Ig/FNIII domains at a stretch rate of 500 nm/s increased monotonically from ∼30 to ∼150 pN, suggesting a mechanical hierarchy among the different Ig/FNIII domains. Additional experiments using smaller recombinant proteins showed that the regulatory M-domain lacks significant secondary or tertiary structure and is likely an intrinsically disordered region of cMyBP-C. Together, these data indicate that cMyBP-C exhibits complex mechanical behavior under load and contains multiple domains with distinct mechanical properties.
Collapse
Affiliation(s)
- Arpád Karsai
- University of California-Davis, Davis, California, USA
| | | | | |
Collapse
|
40
|
Fast-folding alpha-helices as reversible strain absorbers in the muscle protein myomesin. Proc Natl Acad Sci U S A 2011; 108:14139-44. [PMID: 21825161 DOI: 10.1073/pnas.1105734108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The highly oriented filamentous protein network of muscle constantly experiences significant mechanical load during muscle operation. The dimeric protein myomesin has been identified as an important M-band component supporting the mechanical integrity of the entire sarcomere. Recent structural studies have revealed a long α-helical linker between the C-terminal immunoglobulin (Ig) domains My12 and My13 of myomesin. In this paper, we have used single-molecule force spectroscopy in combination with molecular dynamics simulations to characterize the mechanics of the myomesin dimer comprising immunoglobulin domains My12-My13. We find that at forces of approximately 30 pN the α-helical linker reversibly elongates allowing the molecule to extend by more than the folded extension of a full domain. High-resolution measurements directly reveal the equilibrium folding/unfolding kinetics of the individual helix. We show that α-helix unfolding mechanically protects the molecule homodimerization from dissociation at physiologically relevant forces. As fast and reversible molecular springs the myomesin α-helical linkers are an essential component for the structural integrity of the M band.
Collapse
|
41
|
Riss U. Theory of long distance interaction between antibodies and antigens. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:987-1005. [PMID: 21717254 DOI: 10.1007/s00249-011-0718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/22/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
Measuring the kinetics of antigen-antibody bindings we found an unexpected effect that can be explained by an automatic long distance detection of antigens by antibodies over up to 2 mm. We have developed a theory based on phase locking of THz waves, which leads antibodies automatically to their antigens. A mathematical proof of principle is done.
Collapse
|
42
|
Koebis M, Ohsawa N, Kino Y, Sasagawa N, Nishino I, Ishiura S. Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy type 1. Genes Cells 2011; 16:961-72. [PMID: 21794030 DOI: 10.1111/j.1365-2443.2011.01542.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by a CTG repeat expansion in the 3'-UTR of dystrophia myotonica-protein kinase. Aberrant regulation of alternative splicing is a characteristic feature of DM. Dozens of genes have been found to be abnormally spliced; however, few reported splicing abnormalities explain the phenotypes of DM1 patients. Thus, we hypothesized that other, unknown abnormal splicing events exist. Here, by using exon array, we identified aberrant inclusion of myomesin 1 (MYOM1) exon 17a as a novel splicing abnormality in DM1 muscle. A cellular splicing assay with a MYOM1 minigene revealed that not only MBNL1-3 but also CELF1 and 2 decreased the inclusion of MYOM1 exon 17a in HEK293T cells. Expression of expanded CUG repeat impeded MBNL1 activity but did not affect CELF1 activity on the splicing of MYOM1 minigene. Our results suggest that the downregulation of MBNL proteins should lead to the abnormal splicing of MYOM1 exon 17a in DM1 muscle.
Collapse
Affiliation(s)
- Michinori Koebis
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Irving T, Wu Y, Bekyarova T, Farman GP, Fukuda N, Granzier H. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension. Biophys J 2011; 100:1499-508. [PMID: 21402032 DOI: 10.1016/j.bpj.2011.01.059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 01/28/2023] Open
Abstract
We studied the effect of titin-based passive tension on sarcomere structure by simultaneously measuring passive tension and low-angle x-ray diffraction patterns on passive fiber bundles from rabbit skinned psoas muscle. We used a stretch-hold-release protocol with measurement of x-ray diffraction patterns at various passive tension levels during the hold phase before and after passive stress relaxation. Measurements were performed in relaxing solution without and with dextran T-500 to compress the lattice toward physiological levels. The myofilament lattice spacing was measured in the A-band (d(1,0)) and Z-disk (d(Z)) regions of the sarcomere. The axial spacing of the thick-filament backbone was determined from the sixth myosin meridional reflection (M6) and the equilibrium positions of myosin heads from the fourth myosin layer line peak position and the I(1,1)/I(1,0) intensity ratio. Total passive tension was measured during the x-ray experiments, and a differential extraction technique was used to determine the relations between collagen- and titin-based passive tension and sarcomere length. Within the employed range of sarcomere lengths (∼2.2-3.4 μm), titin accounted for >80% of passive tension. X-ray results indicate that titin compresses both the A-band and Z-disk lattice spacing with viscoelastic behavior when fibers are swollen after skinning, and elastic behavior when the lattice is reduced with dextran. Titin also increases the axial thick-filament spacing, M6, in an elastic manner in both the presence and absence of dextran. No changes were detected in either I(1,1)/I(1,0) or the position of peaks on the fourth myosin layer line during passive stress relaxation. Passive tension and M6 measurements were converted to thick-filament compliance, yielding a value of ∼85 m/N, which is several-fold larger than the thick-filament compliance determined by others during the tetanic tension plateau of activated intact muscle. This difference can be explained by the fact that thick filaments are more compliant at low tension (passive muscle) than at high tension (tetanic tension). The implications of our findings are discussed.
Collapse
Affiliation(s)
- Thomas Irving
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schoenauer R, Emmert MY, Felley A, Ehler E, Brokopp C, Weber B, Nemir M, Faggian GG, Pedrazzini T, Falk V, Hoerstrup SP, Agarkova I. EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol 2011; 106:233-47. [PMID: 21069531 PMCID: PMC3032906 DOI: 10.1007/s00395-010-0131-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 11/05/2022]
Abstract
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = -0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.
Collapse
Affiliation(s)
- Roman Schoenauer
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Maximilian Y. Emmert
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Allison Felley
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, King’s College London, London, UK
| | - Chad Brokopp
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Benedikt Weber
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Mohamed Nemir
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Giuseppe G. Faggian
- Division of Cardiac Surgery and Cardiology, University of Verona, Verona, Italy
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Volkmar Falk
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Irina Agarkova
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2011; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
46
|
Siegert R, Perrot A, Keller S, Behlke J, Michalewska-Włudarczyk A, Wycisk A, Tendera M, Morano I, Ozcelik C. A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties. Biochem Biophys Res Commun 2011; 405:473-9. [PMID: 21256114 DOI: 10.1016/j.bbrc.2011.01.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
Abstract
Myomesin plays an important structural and functional role in the M-band of striated muscles. The C-terminal domain 13 of myomesin dimerises and forms antiparallel strands which cross-link neighboring Myosin filaments and titin in the M-line of the sarcomeres. These interactions stabilise the contractile apparatus during striated muscle contraction. Since myomesin is an important component of the M-band we screened the myomesin gene for genetic variants in patients with hypertrophic cardiomyopathy (HCM). We identified the missense mutation V1490I in domain 12 of myomesin in a family with inherited HCM. Analytical ultracentrifugation experiments, circular dichroism spectra, and surface plasmon resonance spectroscopy of myomesin fragments were carried out to investigate the effects of the mutation V1490I on structure and function of myomesin domains 11-13 and 12-13. Both the wild type and mutated myomesin domains My11-13 revealed similar secondary structures and formed stable dimers. Mutated myomesin domains My11-13 and My12-13 dimers revealed a reduced thermal stability and a significantly decreased dimerisation affinity, showing disturbed functional properties of V1490I mutated myomesin. However, monomeric myomesin domains My11-12, i.e. without dimerisation domain 13 showed no difference in thermal stability between wild type and V1490I mutated myomesin. In conclusion, the V1490I mutation associated with HCM lead to myomesin proteins with abnormal functional properties which affect dimerisation properties of myomesin domain 13. These effects may contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Romy Siegert
- Max-Delbrück-Center for Molecular Medicine, Department of Molecular Muscle Physiology, Robert-Rössle Str.10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Al-Khayat HA, Kensler RW, Morris EP, Squire JM. Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis. J Mol Biol 2010; 403:763-76. [PMID: 20851129 PMCID: PMC3314970 DOI: 10.1016/j.jmb.2010.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 01/22/2023]
Abstract
The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6′, M4′, M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London, UK.
| | | | | | | |
Collapse
|
48
|
Bernick EP, Zhang PJ, Du S. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 2010; 11:70. [PMID: 20849610 PMCID: PMC2954953 DOI: 10.1186/1471-2121-11-70] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/17/2010] [Indexed: 02/01/2023] Open
Abstract
Background Unc-45 is a myosin chaperone and a Hsp90 co-chaperone that plays a key role in muscle development. Genetic and biochemical studies in C. elegans have demonstrated that Unc-45 facilitates the process of myosin folding and assembly in body wall muscles. Loss or overexpression of Unc-45 in C. elegans results in defective myofibril organization. In the zebrafish Danio rerio, unc-45b, a homolog of C. elegans unc-45, is expressed in both skeletal and cardiac muscles. Earlier studies indicate that mutation or knockdown of unc-45b expression in zebrafish results in a phenotype characterized by a loss of both thick and thin filament organization in skeletal and cardiac muscle. The effects of unc-45b knockdown on other sarcomeric structures and the phenotype of Unc-45b overexpression, however, are poorly understood in vertebrates. Results Both knockdown and overexpression provide useful tools to study gene function during animal development. Using such methods, we characterized the role of Unc-45b in myofibril assembly of skeletal muscle in Danio rerio. We showed that, in addition to thick and thin filament defects, knockdown of unc-45b expression disrupted sarcomere organization in M-lines and Z-lines of skeletal muscles in zebrafish embryos. Western blotting analysis showed that myosin protein levels were significantly decreased in unc-45b knockdown embryos. Similarly, embryos overexpressing Unc-45b also exhibited severely disorganized myosin thick filaments. Disruption of thick filament organization by Unc-45b overexpression depends on the C-terminal UCS domain in Unc-45b required for interaction with myosin. Deletion of the C-terminal UCS domain abolished the disruptive activity of Unc-45b in myosin thick filament organization. In contrast, deletion of the N-terminal TPR domain required for binding with Hsp90α had no effect. Conclusion Collectively, these studies indicate that the expression levels of Unc-45b must be precisely regulated to ensure normal myofibril organization. Loss or overexpression of Unc-45b leads to defective myofibril organization.
Collapse
Affiliation(s)
- Elena P Bernick
- University of Maryland School of Medicine Interdisciplinary Training Program in Muscle Biology, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
49
|
Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. Nat Chem 2010; 2:444-9. [DOI: 10.1038/nchem.649] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/23/2010] [Indexed: 11/09/2022]
|
50
|
Shabarchin AA, Tsaturyan AK. Proposed role of the M-band in sarcomere mechanics and mechano-sensing: a model study. Biomech Model Mechanobiol 2009; 9:163-75. [DOI: 10.1007/s10237-009-0167-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 07/22/2009] [Indexed: 01/18/2023]
|