1
|
Guillon C, Robert X, Gouet P. "It's Only a Model": When Protein Structure Predictions Need Experimental Validation, the Case of the HTLV-1 Tax Protein. Pathogens 2024; 13:241. [PMID: 38535584 PMCID: PMC10976231 DOI: 10.3390/pathogens13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 02/11/2025] Open
Abstract
Human T-cell Leukemia Virus type 1 (HTLV-1) is a human retrovirus responsible for leukaemia in 5 to 10% of infected individuals. Among the viral proteins, Tax has been described as directly involved in virus-induced leukemogenesis. Tax is therefore an interesting therapeutic target. However, its 3D structure is still unknown and this hampers the development of drug-design-based therapeutic strategies. Several algorithms are available that can be used to predict the structure of proteins, particularly with the recent appearance of artificial intelligence (AI)-driven pipelines. Here, we review how the structure of Tax is predicted by several algorithms using distinct modelling strategies. We discuss the consequences for the understanding of Tax structure/function relationship, and more generally for the use of structure models for modular and/or flexible proteins, which are frequent in retroviruses.
Collapse
Affiliation(s)
- Christophe Guillon
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, 69007 Lyon, France; (X.R.); (P.G.)
| | | | | |
Collapse
|
2
|
T. RR, Smith JC. Structural patterns in class 1 major histocompatibility complex‐restricted nonamer peptide binding to T‐cell receptors. Proteins 2022; 90:1645-1654. [DOI: 10.1002/prot.26343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Rajitha Rajeshwar T.
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville Tennessee USA
- UT/ORNL Center for Molecular Biophysics Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Jeremy C. Smith
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville Tennessee USA
- UT/ORNL Center for Molecular Biophysics Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
3
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. Identification of SARS-CoV-2 Vaccine Epitopes Predicted to Induce Long-Term Population-Scale Immunity. Cell Rep Med 2020; 1:100036. [PMID: 32835302 PMCID: PMC7276303 DOI: 10.1016/j.xcrm.2020.100036] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Here we propose a SARS-CoV-2 vaccine design concept based on identification of highly conserved regions of the viral genome and newly acquired adaptations, both predicted to generate epitopes presented on major histocompatibility complex (MHC) class I and II across the vast majority of the population. We further prioritize genomic regions that generate highly dissimilar peptides from the human proteome and are also predicted to produce B cell epitopes. We propose sixty-five 33-mer peptide sequences, a subset of which can be tested using DNA or mRNA delivery strategies. These include peptides that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor and within a newly evolved furin cleavage site thought to increase membrane fusion. Validation and implementation of this vaccine concept could specifically target specific vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the population.
Collapse
Affiliation(s)
- Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John M. Warrington
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alvin Farrel
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. A SARS-CoV-2 Vaccination Strategy Focused on Population-Scale Immunity. SSRN 2020:3575161. [PMID: 32714112 PMCID: PMC7366814 DOI: 10.2139/ssrn.3575161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/05/2020] [Indexed: 11/15/2022]
Abstract
Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.
Collapse
Affiliation(s)
- Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - John M. Warrington
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alvin Farrel
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104
| |
Collapse
|
5
|
Yarmarkovich M, Warrington JM, Farrel A, Maris JM. A SARS-CoV-2 Vaccination Strategy Focused on Population-Scale Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.31.018978. [PMID: 32511347 PMCID: PMC7255782 DOI: 10.1101/2020.03.31.018978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.
Collapse
|
6
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
7
|
Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2203-2213. [PMID: 28923982 DOI: 10.4049/jimmunol.1700744] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Sarah Catherine B Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
8
|
Blevins SJ, Baker BM. Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands. Front Mol Biosci 2017; 4:2. [PMID: 28197404 PMCID: PMC5281623 DOI: 10.3389/fmolb.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
In cellular immunity, clonally distributed T cell receptors (TCRs) engage complexes of peptides bound to major histocompatibility complex proteins (pMHCs). In the interactions of TCRs with pMHCs, regions of restricted and variable diversity align in a structurally complex fashion. Many studies have used mutagenesis to attempt to understand the "roles" played by various interface components in determining TCR recognition properties such as specificity and cross-reactivity. However, these measurements are often complicated or even compromised by the weak affinities TCRs maintain toward pMHC. Here, we demonstrate how global analysis of multiple datasets can be used to significantly extend the accuracy and precision of such TCR binding experiments. Application of this approach should positively impact efforts to understand TCR recognition and facilitate the creation of mutational databases to help engineer TCRs with tuned molecular recognition properties. We also show how global analysis can be used to analyze double mutant cycles in TCR-pMHC interfaces, which can lead to new insights into immune recognition.
Collapse
Affiliation(s)
- Sydney J Blevins
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame Notre Dame, IN, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame Notre Dame, IN, USA
| |
Collapse
|
9
|
Spear TT, Riley TP, Lyons GE, Callender GG, Roszkowski JJ, Wang Y, Simms PE, Scurti GM, Foley KC, Murray DC, Hellman LM, McMahan RH, Iwashima M, Garrett-Mayer E, Rosen HR, Baker BM, Nishimura MI. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 2016; 100:545-57. [PMID: 26921345 DOI: 10.1189/jlb.2a1215-561r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA;
| | - Timothy P Riley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gretchen E Lyons
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hugo R Rosen
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc Natl Acad Sci U S A 2016; 113:E1276-85. [PMID: 26884163 DOI: 10.1073/pnas.1522069113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How T-cell receptors (TCRs) can be intrinsically biased toward MHC proteins while simultaneously display the structural adaptability required to engage diverse ligands remains a controversial puzzle. We addressed this by examining αβ TCR sequences and structures for evidence of physicochemical compatibility with MHC proteins. We found that human TCRs are enriched in the capacity to engage a polymorphic, positively charged "hot-spot" region that is almost exclusive to the α1-helix of the common human class I MHC protein, HLA-A*0201 (HLA-A2). TCR binding necessitates hot-spot burial, yielding high energetic penalties that must be offset via complementary electrostatic interactions. Enrichment of negative charges in TCR binding loops, particularly the germ-line loops encoded by the TCR Vα and Vβ genes, provides this capacity and is correlated with restricted positioning of TCRs over HLA-A2. Notably, this enrichment is absent from antibody genes. The data suggest a built-in TCR compatibility with HLA-A2 that biases receptors toward, but does not compel, particular binding modes. Our findings provide an instructional example for how structurally pliant MHC biases can be encoded within TCRs.
Collapse
|
11
|
Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 2016; 17:87-94. [PMID: 26523866 PMCID: PMC4684756 DOI: 10.1038/ni.3310] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
The T cell antigen receptor (TCR)-peptide-major histocompatibility complex (MHC) interface is composed of conserved and diverse regions, yet the relative contribution of each in shaping recognition by T cells remains unclear. Here we isolated cross-reactive peptides with limited homology, which allowed us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR's cross-reactivity was rooted in highly similar recognition of an apical 'hot-spot' position in the peptide with tolerance of sequence variation at ancillary positions. Furthermore, we found a striking structural convergence onto a germline-mediated interaction between the TCR CDR1α region and the MHC α2 helix in twelve TCR-peptide-MHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hot spot, might place limits on peptide antigen cross-reactivity.
Collapse
|
12
|
The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat Commun 2013; 4:1948. [PMID: 23736024 PMCID: PMC3708045 DOI: 10.1038/ncomms2948] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/30/2013] [Indexed: 02/03/2023] Open
Abstract
αβ T cell receptors (TCRs) recognize peptides presented by major histocompatibility complex (MHC) proteins using multiple complementarity determining region (CDR) loops. TCRs display an array of poorly understood recognition properties, including specificity, cross-reactivity, and MHC restriction. Here we report a comprehensive thermodynamic deconstruction of the interaction between the A6 TCR and the Tax peptide presented by the class I MHC HLA-A*0201, uncovering the physical basis for the receptor's recognition properties. Broadly, our findings are in conflict with widely-held generalities regarding TCR recognition, such as the relative contributions of central and peripheral peptide residues and the roles of the hypervariable and germline CDR loops in engaging peptide and MHC. Instead we find that the recognition properties of the receptor emerge from the need to engage the composite peptide/MHC surface, with the receptor utilizing its CDR loops in a cooperative fashion such that specificity, cross-reactivity, and MHC restriction are inextricably linked.
Collapse
|
13
|
Zoete V, Irving M, Ferber M, Cuendet MA, Michielin O. Structure-Based, Rational Design of T Cell Receptors. Front Immunol 2013; 4:268. [PMID: 24062738 PMCID: PMC3770923 DOI: 10.3389/fimmu.2013.00268] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157–165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, KD = ∼1 − 5 μM. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function, in line with the “half-life” model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.
Collapse
Affiliation(s)
- V Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics , Lausanne , Switzerland
| | | | | | | | | |
Collapse
|
14
|
Baker BM, Scott DR, Blevins SJ, Hawse WF. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol Rev 2013; 250:10-31. [PMID: 23046120 DOI: 10.1111/j.1600-065x.2012.01165.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past two decades, structural biology has shown how T-cell receptors engage peptide/major histocompatibility complex (MHC) complexes and provided insight into the mechanisms underlying antigen specificity and cross-reactivity. Here we review and contextualize our contributions, which have emphasized the influence of structural changes and molecular flexibility. A repeated observation is the presence of conformational melding, in which the T-cell receptor (TCR), peptide, and in some cases, MHC protein cooperatively adjust in order for recognition to proceed. The structural changes reflect the intrinsic dynamics of the unligated proteins. Characterization of the dynamics of unligated TCR shows how binding loop motion can influence TCR cross-reactivity as well as specificity towards peptide and MHC. Examination of peptide dynamics indicates not only peptide-specific variation but also a peptide dependence to MHC flexibility. This latter point emphasizes that the TCR engages a composite peptide/MHC surface and that physically the receptor makes little distinction between the peptide and MHC. Much additional evidence for this can be found within the database of available structures, including our observations of a peptide dependence to the TCR binding mode and structural compensations for altered interatomic interactions, in which lost TCR-peptide interactions are replaced with TCR-MHC interactions. The lack of a hard-coded physical distinction between peptide and MHC has implications not only for specificity and cross-reactivity but also the mechanisms underlying MHC restriction as well as attempts to modulate and control TCR recognition.
Collapse
Affiliation(s)
- Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA.
| | | | | | | |
Collapse
|
15
|
Allerbring EB, Duru AD, Uchtenhagen H, Madhurantakam C, Tomek MB, Grimm S, Mazumdar PA, Friemann R, Uhlin M, Sandalova T, Nygren PÅ, Achour A. Unexpected T-cell recognition of an altered peptide ligand is driven by reversed thermodynamics. Eur J Immunol 2012; 42:2990-3000. [PMID: 22837158 DOI: 10.1002/eji.201242588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 11/07/2022]
Abstract
The molecular basis underlying T-cell recognition of MHC molecules presenting altered peptide ligands is still not well-established. A hierarchy of T-cell activation by MHC class I-restricted altered peptide ligands has been defined using the T-cell receptor P14 specific for H-2D(b) in complex with the immunodominant lymphocytic choriomeningitis virus peptide gp33 (KAVYNFATM). While substitution of tyrosine to phenylalanine (Y4F) or serine (Y4S) abolished recognition by P14, the TCR unexpectedly recognized H-2D(b) in complex with the alanine-substituted semiagonist Y4A, which displayed the most significant structural modification. The observed functional hierarchy gp33 > Y4A > Y4S = Y4F was neither due to higher stabilization capacity nor to differences in structural conformation. However, thermodynamic analysis demonstrated that while recognition of the full agonist H-2D(b) /gp33 was strictly enthalpy driven, recognition of the weak agonist H-2D(b) /Y4A was instead entropy driven with a large reduction in the favorable enthalpy term. The fourfold larger negative heat capacity derived for the interaction of P14 with H-2D(b) /gp33 compared with H-2D(b) /Y4A can possibly be explained by higher water entrapment at the TCR/MHC interface, which is also consistent with the measured opposite entropy contributions for the interactions of P14 with both MHCs. In conclusion, this study demonstrates that P14 makes use of different strategies to adapt to structural modifications in the MHC/peptide complex.
Collapse
Affiliation(s)
- Eva B Allerbring
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gras S, Wilmann PG, Chen Z, Halim H, Liu YC, Kjer-Nielsen L, Purcell AW, Burrows SR, McCluskey J, Rossjohn J. A structural basis for varied αβ TCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. THE JOURNAL OF IMMUNOLOGY 2011; 188:311-21. [PMID: 22140258 DOI: 10.4049/jimmunol.1102686] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EBV is a ubiquitous and persistent human pathogen, kept in check by the cytotoxic T cell response. In this study, we investigated how three TCRs, which differ in their T cell immunodominance hierarchies and gene usage, interact with the same EBV determinant (FLRGRAYGL), bound to the same Ag-presenting molecule, HLA-B8. We found that the three TCRs exhibit differing fine specificities for the viral Ag. Further, via structural and biophysical approaches, we demonstrated that the viral Ag provides the greatest energetic contribution to the TCR-peptide-HLA interaction, while focusing on a few adjacent HLA-based interactions to further tune fine-specificity requirements. Thus, the TCR engages the peptide-HLA with the viral Ag as the main glue, such that neighboring TCR-MHC interactions are recruited as a supportive adhesive. Collectively, we provide a portrait of how the host's adaptive immune response differentially engages a common viral Ag.
Collapse
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J Mol Biol 2011; 414:385-400. [PMID: 22019736 DOI: 10.1016/j.jmb.2011.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/21/2022]
Abstract
αβ T-cell receptors (TCRs) recognize multiple antigenic peptides bound and presented by major histocompatibility complex molecules. TCR cross-reactivity has been attributed in part to the flexibility of TCR complementarity-determining region (CDR) loops, yet there have been limited direct studies of loop dynamics to determine the extent of its role. Here we studied the flexibility of the binding loops of the αβ TCR A6 using crystallographic, spectroscopic, and computational methods. A significant role for flexibility in binding and cross-reactivity was indicated only for the CDR3α and CDR3β hypervariable loops. Examination of the energy landscapes of these two loops indicated that CDR3β possesses a broad, smooth energy landscape, leading to rapid sampling in the free TCR of a range of conformations compatible with different ligands. The landscape for CDR3α is more rugged, resulting in more limited conformational sampling that leads to specificity for a reduced set of peptides as well as the major histocompatibility complex protein. In addition to informing on the mechanisms of cross-reactivity and specificity, the energy landscapes of the two loops indicate a complex mechanism for TCR binding, incorporating elements of both conformational selection and induced fit in a manner that blends features of popular models for TCR recognition.
Collapse
|
18
|
Cuendet MA, Zoete V, Michielin O. How T cell receptors interact with peptide-MHCs: A multiple steered molecular dynamics study. Proteins 2011; 79:3007-24. [DOI: 10.1002/prot.23104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 12/11/2022]
|
19
|
Borbulevych OY, Santhanagopolan SM, Hossain M, Baker BM. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. THE JOURNAL OF IMMUNOLOGY 2011; 187:2453-63. [PMID: 21795600 DOI: 10.4049/jimmunol.1101268] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells engineered to express TCRs specific for tumor Ags can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Although DMF4 binds the two with a different orientation, altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity toward both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same Ags and the finding that TCR-binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity.
Collapse
Affiliation(s)
- Oleg Y Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
20
|
Lask A, Goichberg P, Cohen A, Goren-Arbel R, Milstein O, Aviner S, Feine I, Ophir E, Reich-Zeliger S, Hagin D, Klein T, Nagler A, Berrebi A, Reisner Y. TCR-independent killing of B cell malignancies by anti-third-party CTLs: the critical role of MHC-CD8 engagement. THE JOURNAL OF IMMUNOLOGY 2011; 187:2006-14. [PMID: 21753148 DOI: 10.4049/jimmunol.1100095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that anti-third-party CTLs (stimulated under IL-2 deprivation against cells with an MHC class I [MHC-I] background different from that of the host and the donor) are depleted of graft-versus-host reactivity and can eradicate B cell chronic lymphocytic leukemia cells in vitro or in an HU/SCID mouse model. We demonstrated in the current study that human allogeneic or autologous anti-third-party CTLs can also efficiently eradicate primary non-Hodgkin B cell lymphoma by inducing slow apoptosis of the pathological cells. Using MHC-I mutant cell line as target cells, which are unrecognizable by the CTL TCR, we demonstrated directly that this killing is TCR independent. Strikingly, this unique TCR-independent killing is induced through lymphoma MHC-I engagement. We further showed that this killing mechanism begins with durable conjugate formation between the CTLs and the tumor cells, through rapid binding of tumor ICAM-1 to the CTL LFA-1 molecule. This conjugation is followed by a slower second step of MHC-I-dependent apoptosis, requiring the binding of the MHC-I α2/3 C region on tumor cells to the CTL CD8 molecule for killing to ensue. By comparing CTL-mediated killing of Daudi lymphoma cells (lacking surface MHC-I expression) to Daudi cells with reconstituted surface MHC-I, we demonstrated directly for the first time to our knowledge, in vitro and in vivo, a novel role for MHC-I in the induction of lymphoma cell apoptosis by CTLs. Additionally, by using different knockout and transgenic strains, we further showed that mouse anti-third-party CTLs also kill lymphoma cells using similar unique TCR-independence mechanism as human CTLs, while sparing normal naive B cells.
Collapse
Affiliation(s)
- Assaf Lask
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Douat-Casassus C, Borbulevych O, Tarbe M, Gervois N, Jotereau F, Baker BM, Quideau S. Crystal structures of HLA-A*0201 complexed with Melan-A/MART-1(26(27L)-35) peptidomimetics reveal conformational heterogeneity and highlight degeneracy of T cell recognition. J Med Chem 2010; 53:7061-6. [PMID: 20806940 PMCID: PMC2951488 DOI: 10.1021/jm100683p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing interest in using tumor associated antigens presented by class I major histocompatibility complex (MHC-I) proteins as cancer vaccines. As native peptides are poorly stable in biological fluids, researchers have sought to engineer synthetic peptidomimetics with greater biostability. Here, we demonstrate that antigenic peptidomimetics of the Melan-A/MART-1(26(27L)-35) melanoma antigen adopt strikingly different conformations when bound to MHC-I, highlighting the degeneracy of T cell recognition and revealing the challenges associated with mimicking native peptide conformation.
Collapse
Affiliation(s)
- Céline Douat-Casassus
- Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255) and Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Oleg Borbulevych
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame IN 46556, USA
| | - Marion Tarbe
- Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255) and Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Nadine Gervois
- INSERM, U601, Université de Nantes, 44322 Nantes, France
| | | | - Brian M. Baker
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame IN 46556, USA
| | - Stéphane Quideau
- Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255) and Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
22
|
Borbulevych OY, Do P, Baker BM. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Mol Immunol 2010; 47:2519-24. [PMID: 20619457 PMCID: PMC2930271 DOI: 10.1016/j.molimm.2010.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/09/2010] [Accepted: 06/12/2010] [Indexed: 01/28/2023]
Abstract
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex.
Collapse
Affiliation(s)
- Oleg Y. Borbulevych
- Department of Chemistry and Biochemistry, 251, Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - Priscilla Do
- Department of Chemistry and Biochemistry, 251, Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, 251, Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
- Walther Cancer Research Center, 251, Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
23
|
Jones LL, Colf LA, Bankovich AJ, Stone JD, Gao YG, Chan CM, Huang RH, Garcia KC, Kranz DM. Different thermodynamic binding mechanisms and peptide fine specificities associated with a panel of structurally similar high-affinity T cell receptors. Biochemistry 2008; 47:12398-408. [PMID: 18973345 PMCID: PMC2680728 DOI: 10.1021/bi801349g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the mechanisms that govern T cell receptor (TCR)-peptide MHC (pMHC) binding and the role that different regions of the TCR play in affinity and antigen specificity, we have studied the TCR from T cell clone 2C. High-affinity mutants of the 2C TCR that bind QL9-L(d) as a strong agonist were generated previously by site-directed mutagenesis of complementarity determining regions (CDRs) 1beta, 2alpha, 3alpha, or 3beta. We performed isothermal titration calorimetry to assess whether they use similar thermodynamic mechanisms to achieve high affinity for QL9-L(d). Four of the five TCRs examined bound to QL9-L(d) in an enthalpically driven, entropically unfavorable manner. In contrast, the high-affinity CDR1beta mutant resembled the wild-type 2C TCR interaction, with favorable entropy. To assess fine specificity, we measured the binding and kinetics of these mutants for both QL9-L(d) and a single amino acid peptide variant of QL9, called QL9-Y5-L(d). While 2C and most of the mutants had equal or higher affinity for the Y5 variant than for QL9, mutant CDR1beta exhibited 8-fold lower affinity for Y5 compared to QL9. To examine possible structural correlates of the thermodynamic and fine specificity signatures of the TCRs, the structure of unliganded QL9-L(d) was solved and compared to structures of the 2C TCR/QL9-L(d) complex and three high-affinity TCR/QL9-L(d) complexes. Our findings show that the QL9-L(d) complex does not undergo major conformational changes upon binding. Thus, subtle changes in individual CDRs account for the diverse thermodynamic and kinetic binding mechanisms and for the different peptide fine specificities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David M. Kranz
- Address correspondence to this author. Phone: 217-244-2821. Fax: 217-244-5858. E-mail:
| |
Collapse
|
24
|
Jones LL, Colf LA, Stone JD, Garcia KC, Kranz DM. Distinct CDR3 conformations in TCRs determine the level of cross-reactivity for diverse antigens, but not the docking orientation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6255-64. [PMID: 18941216 PMCID: PMC2598777 DOI: 10.4049/jimmunol.181.9.6255] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells are known to cross-react with diverse peptide MHC Ags through their alphabeta TCR. To explore the basis of such cross-reactivity, we examined the 2C TCR that recognizes two structurally distinct ligands, SIY-K(b) and alloantigen QL9-L(d). In this study we characterized the cross-reactivity of several high-affinity 2C TCR variants that contained mutations only in the CDR3alpha loop. Two of the TCR lost their ability to cross-react with the reciprocal ligand (SIY-K(b)), whereas another TCR (m67) maintained reactivity with both ligands. Crystal structures of four of the TCRs in complex with QL9-L(d) showed that CDR1, CDR2, and CDR3beta conformations and docking orientations were remarkably similar. Although the CDR3alpha loop of TCR m67 conferred a 2000-fold higher affinity for SIY-K(b), the TCR maintained the same docking angle on QL9-L(d) as the 2C TCR. Thus, CDR3alpha dictated the affinity and level of cross-reactivity, yet it did so without affecting the conserved docking orientation.
Collapse
Affiliation(s)
- Lindsay L Jones
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
25
|
Armstrong K, Piepenbrink K, Baker B. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem J 2008; 415:183-96. [PMID: 18800968 PMCID: PMC2782316 DOI: 10.1042/bj20080850] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 01/07/2023]
Abstract
A necessary feature of the immune system, TCR (T-cell receptor) cross-reactivity has been implicated in numerous autoimmune pathologies and is an underlying cause of transplant rejection. Early studies of the interactions of alphabeta TCRs (T-cell receptors) with their peptide-MHC ligands suggested that conformational plasticity in the TCR CDR (complementarity determining region) loops is a dominant contributor to T-cell cross-reactivity. Since these initial studies, the database of TCRs whose structures have been solved both bound and free is now large enough to permit general conclusions to be drawn about the extent of TCR plasticity and the types and locations of motion that occur. In the present paper, we review the conformational differences between free and bound TCRs, quantifying the structural changes that occur and discussing their possible roles in specificity and cross-reactivity. We show that, rather than undergoing major structural alterations or 'folding' upon binding, the majority of TCR CDR loops shift by relatively small amounts. The structural changes that do occur are dominated by hinge-bending motions, with loop remodelling usually occurring near loop apexes. As predicted from previous studies, the largest changes are in the hypervariable CDR3alpha and CDR3beta loops, although in some cases the germline-encoded CDR1alpha and CDR2alpha loops shift in magnitudes that approximate those of the CDR3 loops. Intriguingly, the smallest shifts are in the germline-encoded loops of the beta-chain, consistent with recent suggestions that the TCR beta domain may drive ligand recognition.
Collapse
Affiliation(s)
- Kathryn M. Armstrong
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Kurt H. Piepenbrink
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Brian M. Baker
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- †Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
26
|
Armstrong KM, Insaidoo FK, Baker BM. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. J Mol Recognit 2008; 21:275-87. [PMID: 18496839 DOI: 10.1002/jmr.896] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
alphabeta T-cell receptors (TCRs) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van't Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases, the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but also for understanding specifics of individual interactions and the engineering of TCRs with desired molecular recognition properties.
Collapse
Affiliation(s)
- Kathryn M Armstrong
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
27
|
|
28
|
Ishizuka J, Stewart-Jones GBE, van der Merwe A, Bell JI, McMichael AJ, Jones EY. The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vbeta domain. Immunity 2008; 28:171-82. [PMID: 18275829 DOI: 10.1016/j.immuni.2007.12.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 11/17/2007] [Accepted: 12/10/2007] [Indexed: 01/19/2023]
Abstract
Immunodominant and public T cell receptor (TCR) usage is relatively common in many viral diseases yet surprising in the context of the large naive TCR repertoire. We examined the highly conserved Vbeta17:Valpha10.2 JM22 T cell response to the influenza matrix peptide (58-66)-HLA-A*0201 (HLA-A2-flu) through extensive kinetic, thermodynamic, and structural analyses. We found several conformational adjustments that accompany JM22-HLA-A2-flu binding and identified a binding "hotspot" within the Vbeta domain of the TCR. Within this hotspot, key germline-encoded CDR1 and CDR2 loop residues and a crucial but commonly coded residue in the hypervariable region of CDR3 provide the basis for the substantial bias in the selection of the germline-encoded Vbeta17 domain. The chances of having a substantial number of T cells in the naive repertoire that have HLA-A2-flu-specific Vbeta17 receptors may consequently be relatively high, thus explaining the immunodominant usage of this clonotype.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Crystallography, X-Ray
- HLA-A Antigens/chemistry
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Immunodominant Epitopes/immunology
- Influenza A virus/immunology
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Jeffrey Ishizuka
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
29
|
Miller PJ, Pazy Y, Conti B, Riddle D, Appella E, Collins EJ. Single MHC mutation eliminates enthalpy associated with T cell receptor binding. J Mol Biol 2007; 373:315-27. [PMID: 17825839 PMCID: PMC2065754 DOI: 10.1016/j.jmb.2007.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/07/2007] [Accepted: 07/10/2007] [Indexed: 01/23/2023]
Abstract
The keystone of the adaptive immune response is T cell receptor (TCR) recognition of peptide presented by major histocompatibility complex (pMHC) molecules. The crystal structure of AHIII TCR bound to MHC, HLA-A2, showed a large interface with an atypical binding orientation. MHC mutations in the interface of the proteins were tested for changes in TCR recognition. From the range of responses observed, three representative HLA-A2 mutants, T163A, W167A, and K66A, were selected for further study. Binding constants and co-crystal structures of the AHIII TCR and the three mutants were determined. K66 in HLA-A2 makes contacts with both peptide and TCR, and has been identified as a critical residue for recognition by numerous TCR. The K66A mutation resulted in the lowest AHIII T cell response and the lowest binding affinity, which suggests that the T cell response may correlate with affinity. Importantly, the K66A mutation does not affect the conformation of the peptide. The change in affinity appears to be due to a loss in hydrogen bonds in the interface as a result of a conformational change in the TCR complementarity-determining region 3 (CDR3) loop. Isothermal titration calorimetry confirmed the loss of hydrogen bonding by a large loss in enthalpy. Our findings are inconsistent with the notion that the CDR1 and CDR2 loops of the TCR are responsible for MHC restriction, while the CDR3 loops interact solely with the peptide. Instead, we present here an MHC mutation that does not change the conformation of the peptide, yet results in an altered conformation of a CDR3.
Collapse
Affiliation(s)
- Peter J Miller
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abdeen H, McErlean C, Moraes ME, Romero M, Marques SB, Goncales AC, Guariento EG, Middleton D. Identification of two novel alleles HLA-B*3569 and -B*4450 and confirmation of HLA-A*2631 in the Brazilian population. ACTA ACUST UNITED AC 2007; 69:273-6. [PMID: 17493154 DOI: 10.1111/j.1399-0039.2006.00788.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two novel alleles, human leukocyte antigen (HLA)-B*3569, -B*4450 and a confirmatory sequence of HLA-A*2631 were identified during a routine typing for the Brazilian Bone Marrow Donor Registry. Sequence analysis of coding exons 2 and 3 revealed a single nucleotide substitution in HLA-B*3569 and two single nucleotide substitutions in HLA-B*4450, compared with closely related alleles. At the protein level, these substitutions result in a change of a single amino acid residue in each of HLA-B*3569 and -B*4450 at positions 74 (Arg > Pro) and 80 (Thr > Ile), respectively. These variations are located in the highly polymorphic region at the end of the alpha(1) domain of the HLA molecule. It appears that HLA-B*3569 arose from the analogous HLA-B*3510 through a point mutation. However, HLA-B*4450 may have arisen from HLA-B*440301 and -B*4425 by gene conversion.
Collapse
Affiliation(s)
- H Abdeen
- Northern Ireland Histocompatibility and Immunogenetics Laboratory, Belfast City Hospital, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
MHC-encoded molecules govern adaptive immune responses by presenting peptides to T cell receptors (TCRs). Based on TCR-MHC crystal structures, we revisit the extent of TCR binding degeneracy, a property with important biological consequences because the diversity of TCR ligands that can be encountered exceeds the number of T cell clones present in a person at any one time. We also discuss whether the approximate diagonal binding of TCR on MHC molecules is due to an intrinsic property of the TCR variable regions, or results from the action of the CD4 and CD8 coreceptors during intrathymic T cell selection. Finally, we discuss how MHC restriction of antigen recognition might have emerged during evolution.
Collapse
Affiliation(s)
- Catherine Mazza
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
32
|
Davis-Harrison RL, Insaidoo FK, Baker BM. T Cell Receptor Binding Transition States and Recognition of Peptide/MHC. Biochemistry 2007; 46:1840-50. [PMID: 17249694 DOI: 10.1021/bi061702p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T cell receptor recognition of peptide/MHC has been described as proceeding through a "two-step" process in which the TCR first contacts the MHC molecule prior to formation of the binding transition state using the germline-encoded CDR1 and CDR2 loops. The receptor then contacts the peptide using the hypervariable CDR3 loops as the transition state decays to the bound state. The model subdivides TCR binding into peptide-independent and peptide-dependent steps, demarcated at the binding transition state. Investigating the two-step model, here we show that two TCRs that recognize the same peptide/MHC bury very similar amounts of solvent-accessible surface area in their transition states. However, 1300-1500 A2 of surface area is buried in each, a significant amount suggestive of participation of peptide and associated CDR3 surface. Consistent with this interpretation, analysis of peptide and TCR variants indicates that stabilizing contacts to the peptide are formed within both transition states. These data are incompatible with the original two-step model, as are transition state models built using the principle of minimal frustration commonly employed in the investigation of protein folding and binding transition states. These findings will be useful in further explorations of the nature of TCR binding transition states, as well as ongoing efforts to understand the mechanisms by which T cell receptors recognize the composite peptide/MHC surface.
Collapse
Affiliation(s)
- Rebecca L Davis-Harrison
- Department of Chemistry and Biochemistry and Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
33
|
Huseby ES, Crawford F, White J, Marrack P, Kappler JW. Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat Immunol 2006; 7:1191-9. [PMID: 17041605 DOI: 10.1038/ni1401] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/20/2006] [Indexed: 12/21/2022]
Abstract
T cell receptors (TCRs) bind complexes of cognate major histocompatibility complex (MHC) and peptide at relatively low affinities (1-200 microM). Nevertheless, TCR-MHC-peptide interactions are usually specific for the peptide and the allele encoding the MHC. Here we show that to escape thymocyte negative selection, TCRs must interact with many of the side chains of MHC-peptide complexes as 'hot spots' for TCR binding. Moreover, even when the 'parental' side chain did not contribute binding affinity, some MHC-peptide residues contributed to TCR specificity, as amino acid substitutions substantially reduced binding affinity. The presence of such 'interface-disruptive' side chains helps to explain how TCRs generate specificity at low-affinity interfaces and why TCRs often 'accommodate' a subset of amino acids at a given MHC-peptide position.
Collapse
Affiliation(s)
- Eric S Huseby
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
34
|
Gagnon SJ, Borbulevych OY, Davis-Harrison RL, Turner RV, Damirjian M, Wojnarowicz A, Biddison WE, Baker BM. T cell receptor recognition via cooperative conformational plasticity. J Mol Biol 2006; 363:228-43. [PMID: 16962135 DOI: 10.1016/j.jmb.2006.08.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/25/2022]
Abstract
Although T cell receptor cross-reactivity is a fundamental property of the immune system and is implicated in numerous autoimmune pathologies, the molecular mechanisms by which T cell receptors can recognize and respond to diverse ligands are incompletely understood. In the current study we examined the response of the human T cell lymphotropic virus-1 (HTLV-1) Tax-specific T cell receptor (TCR) A6 to a panel of structurally distinct haptens coupled to the Tax 11-19 peptide with a lysine substitution at position 5 (Tax5K, LLFG[K-hapten]PVYV). The A6 TCR could cross-reactively recognize one of these haptenated peptides, Tax-5K-4-(3-Indolyl)-butyric acid (IBA), presented by HLA-A*0201. The crystal structures of Tax5K-IBA/HLA-A2 free and in complex with A6 reveal that binding is mediated by a mechanism of cooperative conformational plasticity involving conformational changes on both sides of the protein-protein interface, including the TCR complementarity determining region (CDR) loops, Valpha/Vbeta domain orientation, and the hapten-modified peptide. Our findings illustrate the complex role that protein dynamics can play in TCR cross-reactivity and highlight that T cell receptor recognition of ligand can be achieved through diverse and complex molecular mechanisms that can occur simultaneously in the interface, not limited to molecular mimicry and CDR loop shifts.
Collapse
Affiliation(s)
- Susan J Gagnon
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|