1
|
Masuda A, Okamoto T, Kawachi T, Takeda JI, Hamaguchi T, Ohno K. Blending and separating dynamics of RNA-binding proteins develop architectural splicing networks spreading throughout the nucleus. Mol Cell 2024; 84:2949-2965.e10. [PMID: 39053456 DOI: 10.1016/j.molcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Kawachi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
2
|
Hluchý M, Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Kluge M, Berger BT, Slabá Z, Potěšil D, Weiß E, Ule J, Zdráhal Z, Knapp S, Paruch K, Friedel CC, Blazek D. CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature 2022; 609:829-834. [PMID: 36104565 DOI: 10.1038/s41586-022-05204-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022]
Abstract
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
Collapse
Affiliation(s)
- Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Benedict-Tilman Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Zuzana Slabá
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Elena Weiß
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute, King's College London, London, UK
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital in Brno, Brno, Czech Republic
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Galardi JW, Bela VN, Jeffery N, He X, Glasser E, Loerch S, Jenkins JL, Pulvino MJ, Boutz PL, Kielkopf CL. A UHM - ULM interface with unusual structural features contributes to U2AF2 and SF3B1 association for pre-mRNA splicing. J Biol Chem 2022; 298:102224. [PMID: 35780835 PMCID: PMC9364107 DOI: 10.1016/j.jbc.2022.102224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
During spliceosome assembly, the 3′ splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2–SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2–SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2–SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM–SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2–SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2—SF1 and U2AF2—SF3B1 complexes during the pre-mRNA splicing process.
Collapse
Affiliation(s)
- Justin W Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Victoria N Bela
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nazish Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xueyang He
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sarah Loerch
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paul L Boutz
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Kobayashi A, Clément MJ, Craveur P, El Hage K, Salone JDM, Bollot G, Pastré D, Maucuer A. Identification of a small molecule splicing inhibitor targeting UHM domains. FEBS J 2021; 289:682-698. [PMID: 34520118 DOI: 10.1111/febs.16199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Splicing factor mutations are frequent in myeloid neoplasms, blood cancers, and solid tumors. Cancer cells harboring these mutations present a particular vulnerability to drugs that target splicing factors such as SF3b155 or CAPERα. Still, the arsenal of chemical probes that target the spliceosome is very limited. U2AF homology motifs (UHMs) are common protein interaction domains among splicing factors. They present a hydrophobic pocket ideally suited to anchor small molecules with the aim to inhibit protein-protein interaction. Here, we combined a virtual screening of a small molecules database and an in vitro competition assay and identified a small molecule, we named UHMCP1 that prevents the SF3b155/U2AF65 interaction. NMR analyses and molecular dynamics simulations confirmed the binding of this molecule in the hydrophobic pocket of the U2AF65 UHM domain. We further provide evidence that UHMCP1 impacts RNA splicing and cell viability and is therefore an interesting novel compound targeting an UHM domain with potential anticancer properties.
Collapse
Affiliation(s)
- Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France.,SYNSIGHT, Genopole Entreprises, Evry, France
| | | | | | - Krystel El Hage
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | | | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| |
Collapse
|
5
|
Butt H, Bazin J, Alshareef S, Eid A, Benhamed M, Reddy ASN, Crespi M, Mahfouz MM. Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation. Commun Biol 2021; 4:529. [PMID: 33953336 PMCID: PMC8100303 DOI: 10.1038/s42003-021-02051-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1GEX1ARESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants. Butt et al. used CRISPR-mediated directed evolution to generate rice mutants for the spliceosome components SF3B1 and PHF5A. They demonstrate that these mutants have different levels of sensitivity to salt treatments and suggest that the strategies they employed can be used in the future to study functions of redundant paralogs in plants.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Sahar Alshareef
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ayman Eid
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Moussa Benhamed
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Larsen NA. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Subcell Biochem 2021; 96:409-432. [PMID: 33252738 DOI: 10.1007/978-3-030-58971-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.
Collapse
|
7
|
U2AF65-Dependent SF3B1 Function in SMN Alternative Splicing. Cells 2020; 9:cells9122647. [PMID: 33317029 PMCID: PMC7762998 DOI: 10.3390/cells9122647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Splicing factor 3b subunit 1 (SF3B1) is an essential protein in spliceosomes and mutated frequently in many cancers. While roles of SF3B1 in single intron splicing and roles of its cancer-linked mutant in aberrant splicing have been identified to some extent, regulatory functions of wild-type SF3B1 in alternative splicing (AS) are not well-understood yet. Here, we applied RNA sequencing (RNA-seq) to analyze genome-wide AS in SF3B1 knockdown (KD) cells and to identify a large number of skipped exons (SEs), with a considerable number of alternative 5′ splice-site selection, alternative 3′ splice-site selection, mutually exclusive exons (MXE), and retention of introns (RI). Among altered SEs by SF3B1 KD, survival motor neuron 2 (SMN2) pre-mRNA exon 7 splicing was a regulatory target of SF3B1. RT-PCR analysis of SMN exon 7 splicing in SF3B1 KD or overexpressed HCT116, SH-SY5Y, HEK293T, and spinal muscular atrophy (SMA) patient cells validated the results. A deletion mutation demonstrated that the U2 snRNP auxiliary factor 65 kDa (U2AF65) interaction domain of SF3B1 was required for its function in SMN exon 7 splicing. In addition, mutations to lower the score of the polypyrimidine tract (PPT) of exon 7, resulting in lower affinity for U2AF65, were not able to support SF3B1 function, suggesting the importance of U2AF65 in SF3B1 function. Furthermore, the PPT of exon 7 with higher affinity to U2AF65 than exon 8 showed significantly stronger interactions with SF3B1. Collectively, our results revealed SF3B1 function in SMN alternative splicing.
Collapse
|
8
|
Yoshida H, Park SY, Sakashita G, Nariai Y, Kuwasako K, Muto Y, Urano T, Obayashi E. Elucidation of the aberrant 3' splice site selection by cancer-associated mutations on the U2AF1. Nat Commun 2020; 11:4744. [PMID: 32958768 PMCID: PMC7505975 DOI: 10.1038/s41467-020-18559-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
The accurate exclusion of introns by RNA splicing is critical for the production of mature mRNA. U2AF1 binds specifically to the 3´ splice site, which includes an essential AG dinucleotide. Even a single amino acid mutation of U2AF1 can cause serious disease such as certain cancers or myelodysplastic syndromes. Here, we describe the first crystal structures of wild-type and pathogenic mutant U2AF1 complexed with target RNA, revealing the mechanism of 3´ splice site selection, and how aberrant splicing results from clinically important mutations. Unexpected features of this mechanism may assist the future development of new treatments against diseases caused by splicing errors. U2AF1 binds to the 3’ splice site of introns and its mutation lead to abnormal splicing. Here the authors solve the crystal structures of wild type and pathogenic mutant U2AF1 bound to target RNA, showing that different target sequence is preferred by pathogenic mutant.
Collapse
Affiliation(s)
- Hisashi Yoshida
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Kanako Kuwasako
- Faculty of Pharmacy and Research institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yutaka Muto
- Faculty of Pharmacy and Research institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo, 202-8585, Japan.
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Eiji Obayashi
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, 693-8501, Japan.
| |
Collapse
|
9
|
The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res 2020; 8:38. [PMID: 32905346 PMCID: PMC7469106 DOI: 10.1186/s40364-020-00220-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Spliceosome mutations have become the most interesting mutations detected in human cancer in recent years. The spliceosome, a large, dynamic multimegadalton small nuclear ribonucleoprotein composed of small nuclear RNAs associated with proteins, is responsible for removing introns from precursor mRNA (premRNA) and generating mature, spliced mRNAs. SF3B1 is the largest subunit of the spliceosome factor 3b (SF3B) complex, which is a core component of spliceosomes. Recurrent somatic mutations in SF3B1 have been detected in human cancers, including hematological malignancies and solid tumors, and indicated to be related to patient prognosis. This review summarizes the research progress of SF3B1 mutations in cancer, including SF3B1 mutations in the HEAT domain, the multiple roles and aberrant splicing events of SF3B1 mutations in the pathogenesis of tumors, and changes in mutated cancer cells regarding sensitivity to SF3B small-molecule inhibitors. In addition, the potential of SF3B1 or its mutations to serve as biomarkers or therapeutic targets in cancer is discussed. The accumulated knowledge about SF3B1 mutations in cancer provides critical insight into the integral role the SF3B1 protein plays in mRNA splicing and suggests new targets for anticancer therapy.
Collapse
|
10
|
Warnasooriya C, Feeney CF, Laird KM, Ermolenko DN, Kielkopf CL. A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation. Nucleic Acids Res 2020; 48:5695-5709. [PMID: 32343311 PMCID: PMC7261175 DOI: 10.1093/nar/gkaa293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
An essential heterodimer of the U2AF1 and U2AF2 pre-mRNA splicing factors nucleates spliceosome assembly at polypyrimidine (Py) signals preceding the major class of 3′ splice sites. U2AF1 frequently acquires an S34F-encoding mutation among patients with myelodysplastic syndromes (MDS). The influence of the U2AF1 subunit and its S34F mutation on the U2AF2 conformations remains unknown. Here, we employ single molecule Förster resonance energy transfer (FRET) to determine the influence of wild-type or S34F-substituted U2AF1 on the conformational dynamics of U2AF2 and its splice site RNA complexes. In the absence of RNA, the U2AF1 subunit stabilizes a high FRET value, which by structure-guided mutagenesis corresponds to a closed conformation of the tandem U2AF2 RNA recognition motifs (RRMs). When the U2AF heterodimer is bound to a strong, uridine-rich splice site, U2AF2 switches to a lower FRET value characteristic of an open, side-by-side arrangement of the RRMs. Remarkably, the U2AF heterodimer binds weak, uridine-poor Py tracts as a mixture of closed and open U2AF2 conformations, which are modulated by the S34F mutation. Shifts between open and closed U2AF2 may underlie U2AF1-dependent splicing of degenerate Py tracts and contribute to a subset of S34F-dysregulated splicing events in MDS patients.
Collapse
Affiliation(s)
- Chandani Warnasooriya
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Callen F Feeney
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kholiswa M Laird
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Sun D, Wang G, Xiao C, Xin Y. Hsa_circ_001988 attenuates GC progression in vitro and in vivo via sponging miR-197-3p. J Cell Physiol 2020; 236:612-624. [PMID: 32592202 DOI: 10.1002/jcp.29888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Hsa_circ_001988 has been identified as a tumor suppressor gene in several carcinomas. However, its expression pattern and role in gastric cancer (GC) have still remained elusive. This study aimed to explore the functions of hsa_circ_001988 in GC. Quantitative reverse transcription polymerase chain reaction assay was performed to assess the expressions of hsa_circ_001988, miR-197-3p, FBXW7, CCDC6, and U2AF65 in GC tissues. The correlation analysis was undertaken to find out the relationship between hsa_circ_001988 expression and clinicopathological factors. A series of cellular experiments were carried out to describe the effects of hsa_circ_001988 on GC in vivo and in vitro. Besides, RNA immunoprecipitation (RIP) assay was performed to verify the relationship among EIF4A3, U2AF65, and hsa_circ_001988. We first found that the expression of hsa_circ_001988 was decreased in 341 GC patients that was related to World Health Organization histological types, Lauren types, and tumor invasion depth (p < .05). Silencing of hsa_circ_001988 facilitated proliferation, colony formation, migration, and invasion of GC cells, while overexpression of hsa_circ_001988 reversed the effect on GC progression in vitro. Additionally, the results of subcutaneous xenotransplanted tumor model demonstrated that overexpressing hsa_circ_001988 significantly suppressed the subcutaneous tumor growth in vivo. Mechanistically, hsa_circ_001988 attenuated the miR-197-3p expression possibly due to its molecular sponge effect, and then, positively promoted FBXW7 expression. Afterwards, FBXW7 regulated the expressions of yes-associated protein 1, cyclinD1, CCDC6, and EMT-related proteins. Notably, RIP assay showed the enrichment relationship among EIF4A3, U2AF65, and hsa_circ_001988. Additionally, EIF4A3 or U2AF65 promoted cyclization of hsa_circ_001988 in GC. Hsa_circ_001988 inhibits the proliferation and metastasis of GC via modulating EIF4A3/U2AF65-mediated hsa_circ_001988/miR-197-3p/FBXW7 axis.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Chang Xiao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Tavanez JP, Caetano R, Branco C, Brito IM, Miragaia-Pereira A, Vassilevskaia T, Quina AS, Cunha C. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes. FEBS J 2020; 287:3719-3732. [PMID: 32352217 DOI: 10.1111/febs.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis delta virus (HDV) is the agent responsible for the most severe form of human viral hepatitis. The HDV genome consists of a single-stranded circular RNA molecule that encodes for one single protein, the delta antigen. Given its simplicity, HDV must make use of several host cellular proteins to accomplish its life cycle processes, including transcription, replication, post-transcriptional, and post-translational modifications. Consequently, identification of the interactions established between HDV components and host proteins assumes a pivotal interest in the search of novel therapeutic targets. Here, we used the yeast three-hybrid system to screen a human liver cDNA library to identify host proteins that interact with the HDV genomic RNA. One of the identified proteins corresponded to the splicing factor SF3B155, a component of the U2snRNP complex that is essential for the early recognition of 3' splice sites in the pre-mRNAs of human genes. We show that the interaction between the HDV genomic RNA and SF3B155 occurs in vivo and that the expression of HDV promotes changes in splicing of human genes whose alternative splicing is SF3B155-dependent. We further show that expression of HDV triggers alterations in several constitutive and alternative splicing events in the tumor suppressor RBM5 transcript, with consequent reduction of its protein levels. This is the first description that HDV expression promotes changes in the splicing of human genes, and we suggest that the HDV-induced alternative splicing changes, through SF3B155 sequester, may contribute for the early progression to hepatocellular carcinoma characteristic of HDV-infected patients.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Rafael Caetano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Cristina Branco
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Inês Margarida Brito
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Miragaia-Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Tatiana Vassilevskaia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Sofia Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| |
Collapse
|
13
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
14
|
Pabis M, Corsini L, Vincendeau M, Tripsianes K, Gibson TJ, Brack-Werner R, Sattler M. Modulation of HIV-1 gene expression by binding of a ULM motif in the Rev protein to UHM-containing splicing factors. Nucleic Acids Res 2019; 47:4859-4871. [PMID: 30892606 PMCID: PMC6511859 DOI: 10.1093/nar/gkz185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/01/2022] Open
Abstract
The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Lorenzo Corsini
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, 85 764, Germany
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Brno 62 500, Czech Republic
| | | | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| |
Collapse
|
15
|
Zhang J, Ali AM, Lieu YK, Liu Z, Gao J, Rabadan R, Raza A, Mukherjee S, Manley JL. Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Mol Cell 2019; 76:82-95.e7. [PMID: 31474574 PMCID: PMC7065273 DOI: 10.1016/j.molcel.2019.07.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Abdullah M Ali
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Yen K Lieu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Jianchao Gao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Azra Raza
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Siddhartha Mukherjee
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Tari M, Manceau V, de Matha Salone J, Kobayashi A, Pastré D, Maucuer A. U2AF 65 assemblies drive sequence-specific splice site recognition. EMBO Rep 2019; 20:e47604. [PMID: 31271494 PMCID: PMC6681011 DOI: 10.15252/embr.201847604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
The essential splicing factor U2AF65 is known to help anchoring U2 snRNP at the branch site. Its C-terminal UHM domain interacts with ULM motifs of SF3b155, an U2 snRNP protein. Here, we report a cooperative binding of U2AF65 and the related protein CAPERα to the multi-ULM domain of SF3b155. In addition, we show that the RS domain of U2AF65 drives a liquid-liquid phase separation that is amplified by intronic RNA with repeated pyrimidine tracts. In cells, knockdown of either U2AF65 or CAPERα improves the inclusion of cassette exons that are preceded by such repeated pyrimidine-rich motifs. These results support a model in which liquid-like assemblies of U2AF65 and CAPERα on repetitive pyrimidine-rich RNA sequences are driven by their RS domains, and facilitate the recruitment of the multi-ULM domain of SF3b155. We anticipate that posttranslational modifications and proteins recruited in dynamical U2AF65 and CAPERα condensates may further contribute to the complex mechanisms leading to specific splice site choice that occurs in cells.
Collapse
Affiliation(s)
- Manel Tari
- SABNPUniv EvryINSERM U1204Université Paris‐SaclayEvryFrance
| | - Valérie Manceau
- Institut Necker Enfants Malades (INEM)Inserm U1151 – CNRS UMR 8253Université Paris DescartesParisFrance
- Present address:
Faculty of MedicineInstitut Necker Enfants Malades (INEM)Inserm U1151–CNRS UMR 8253University Paris DescartesSorbonne Paris CitéParisFrance
| | | | | | - David Pastré
- SABNPUniv EvryINSERM U1204Université Paris‐SaclayEvryFrance
| | | |
Collapse
|
17
|
Talkish J, Igel H, Hunter O, Horner SW, Jeffery NN, Leach JR, Jenkins JL, Kielkopf CL, Ares M. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. RNA (NEW YORK, N.Y.) 2019; 25:1020-1037. [PMID: 31110137 PMCID: PMC6633205 DOI: 10.1261/rna.070649.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 05/16/2023]
Abstract
Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Steven W Horner
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Nazish N Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Justin R Leach
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
18
|
Park HY, Lee HT, Lee JH, Kim JK. Arabidopsis U2AF65 Regulates Flowering Time and the Growth of Pollen Tubes. FRONTIERS IN PLANT SCIENCE 2019; 10:569. [PMID: 31130976 PMCID: PMC6510283 DOI: 10.3389/fpls.2019.00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/15/2019] [Indexed: 05/19/2023]
Abstract
During pre-mRNA splicing, U2 small nuclear ribonucleoprotein auxiliary factor 65 (U2AF65) interacts with U2AF35 and splicing factor 1 (SF1), allowing for the recognition of the 3'-splice site by the ternary complex. The functional characterization of U2AF65 homologs has not been performed in Arabidopsis thaliana yet. Here, we show that normal plant development, including floral transition, and male gametophyte development, requires two Arabidopsis U2AF65 isoforms (AtU2AF65a and AtU2AF65b). Loss-of-function mutants of these two isoforms displayed opposite flowering phenotypes: atu2af65a mutants showed late flowering, whereas atu2af65b mutants were characterized by slightly early flowering, as compared to that in the wild-type (Col-0) plants. These abnormal flowering phenotypes were well-correlated with the expression patterns of the flowering time genes such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). However, the two atu2af65 mutants did not display any morphological abnormalities or alterations in abiotic stress tests. Double mutation of the AtU2AF65a and AtU2AF65b genes resulted in non-viable seeds due to defective male gametophyte. In vitro pollen germination test revealed that mutations in both AtU2AF65a and AtU2AF65b genes significantly impaired pollen tube growth. Collectively, our findings suggest that two protein isoforms of AtU2AF65 are differentially involved in regulating flowering time and display a redundant role in pollen tube growth.
Collapse
Affiliation(s)
- Hyo-Young Park
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hee Tae Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jeong Hwan Lee
- Division of Life Science, Chonbuk National University, Jeonju, South Korea
- *Correspondence: Jeong Hwan Lee, Jeong-Kook Kim,
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
- *Correspondence: Jeong Hwan Lee, Jeong-Kook Kim,
| |
Collapse
|
19
|
Loerch S, Leach JR, Horner SW, Maji D, Jenkins JL, Pulvino MJ, Kielkopf CL. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J Biol Chem 2018; 294:2892-2902. [PMID: 30567737 DOI: 10.1074/jbc.ra118.006764] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
The transcription elongation and pre-mRNA splicing factor Tat-SF1 associates with the U2 small nuclear ribonucleoprotein (snRNP) of the spliceosome. However, the direct binding partner and underlying interactions mediating the Tat-SF1-U2 snRNP association remain unknown. Here, we identified SF3b1 as a Tat-SF1-interacting subunit of the U2 snRNP. Our 1.1 Å resolution crystal structure revealed that Tat-SF1 contains a U2AF homology motif (UHM) protein-protein interaction module. We demonstrated that Tat-SF1 preferentially and directly binds the SF3b1 subunit compared with other U2AF ligand motif (ULM)-containing splicing factors, and further established that SF3b1 association depends on the integrity of the Tat-SF1 UHM. We next compared the Tat-SF1-binding affinities for each of the five known SF3b1 ULMs and then determined the structures of representative high- and low-affinity SF3b1 ULM complexes with the Tat-SF1 UHM at 1.9 Å and 2.1 Å resolutions, respectively. These structures revealed a canonical UHM-ULM interface, comprising a Tat-SF1 binding pocket for a ULM tryptophan (SF3b1 Trp338) and electrostatic interactions with a basic ULM tail. Importantly, we found that SF3b1 regulates Tat-SF1 levels and that these two factors influence expression of overlapping representative transcripts, consistent with a functional partnership of Tat-SF1 and SF3b1. Altogether, these results define a new molecular interface of the Tat-SF1-U2 snRNP complex for gene regulation.
Collapse
Affiliation(s)
- Sarah Loerch
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Justin R Leach
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Steven W Horner
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Debanjana Maji
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jermaine L Jenkins
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Mary J Pulvino
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Clara L Kielkopf
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
20
|
Zhuo L, Zhang Z, Pan Z, Sheng DH, Hu W, Li YZ. CIRCE element evolved for the coordinated transcriptional regulation of bacterial duplicate groELs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:928-937. [PMID: 30496038 DOI: 10.1016/j.bbagrm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023]
Abstract
Chaperonin groEL genes are duplicated in approximately 20% of bacteria, and the duplicates are differentially transcribed due to their divergent functions. The coordinated regulation of this differential transcription is as yet undetermined. In this study, we reported that the controlling inverted repeat of chaperone expression (CIRCE) element (the HrcA-binding site located upstream of the promoter) evolved for the transcriptional regulation of duplicate groELs. CIRCE composition and locations were found to be phylogenetically conserved in bacterial taxa. Myxococcus xanthus DK1622 has two CIRCE elements (CIRCE1groESL1 and CIRCE2groESL1) in the promoter region of groESL1 and one CIRCE element (CIRCEgroEL2) before groEL2. We also found that negative HrcA and positive ?32 regulators coordinated the transcription of duplicate groELs, and that the double deletion in DK1622 eliminated transcriptional differences and reduced the heat-shock responses of groELs. In vitro binding assays showed that HrcA protein binding was biased towards CIRCE1groESL1, followed by CIRCEgroEL2, but that HrcA proteins failed to bind with CIRCE2groESL1. Mutation experiments revealed that single-nucleotide mutations in the inverted repeat regions changed the HrcA-binding abilities of CIRCEs. We constructed an in vivo transcription-regulation system in Escherichia coli to pair each of the regulators with a groEL promoter. The results indicated that the transcriptional regulation performed by HrcA and ?32 was biased towards the groEL2 and groEL1 promoters, respectively. Based on promoter-sequence characteristics, we proposed a model of the coordinated regulation of the transcription of duplicate groELs in M. xanthus DK1622.
Collapse
Affiliation(s)
- Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
21
|
Carrocci TJ, Paulson JC, Hoskins AA. Functional analysis of Hsh155/SF3b1 interactions with the U2 snRNA/branch site duplex. RNA (NEW YORK, N.Y.) 2018; 24:1028-1040. [PMID: 29752352 PMCID: PMC6049509 DOI: 10.1261/rna.065664.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/10/2018] [Indexed: 05/25/2023]
Abstract
SF3b1 is an essential component of the U2 snRNP implicated in branch site (BS) recognition and found to be frequently mutated in several human cancers. While recent structures of yeast and human SF3b1 have revealed its molecular architecture, the importance of specific RNA:protein contacts and conformational changes remains largely uncharacterized. Here, we performed mutational analysis of yeast SF3b1, guided by recent structures of the spliceosome. We find that conserved amino acids contacting the U2 snRNA backbone of the U2/BS duplex are nonessential, and that yeast can tolerate truncation of the HEAT repeats containing these amino acids. The pocket housing the branchpoint adenosine (BP-A) is also amenable to mutation despite strong conservation. However, mutations that support viability can still lead to defects in splicing pre-mRNAs with nonconsensus BS substitutions found at -3, -2, -1, and +1 positions relative to the BP-A or at the branchpoint position. Through the generation of yeast and human chimeric proteins, we further defined the functionally conserved regions of Hsh155 as well as identify changes in BS usage resulting from inclusion of human SF3b1 HEAT repeats. Moreover, these chimeric proteins confer a sensitivity to small molecule inhibition by pladienolide B to yeast splicing. Together, these data reveal the importance of individual contacts of Hsh155/SF3b1 to the U2/BS duplex and define their contribution to BS usage by the spliceosome.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
22
|
Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res 2017; 45:4837-4852. [PMID: 28062854 PMCID: PMC5416834 DOI: 10.1093/nar/gkw1349] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
RNA and protein components of the spliceosome work together to identify the 5΄ splice site, the 3΄ splice site, and the branchsite (BS) of nascent pre-mRNA. SF3b1 plays a key role in recruiting the U2 snRNP to the BS. Mutations in human SF3b1 have been linked to many diseases such as myelodysplasia (MDS) and cancer. We have used SF3b1 mutations associated with MDS to interrogate the role of the yeast ortholog, Hsh155, in BS selection and splicing. These alleles change how the spliceosome recognizes the BS and alter splicing when nonconsensus nucleotides are present at the −2, −1 and +1 positions relative to the branchpoint adenosine. This indicates that changes in BS usage observed in humans with SF3b1 mutations may result from perturbation of a conserved mechanism of BS recognition. Notably, different HSH155 alleles elicit disparate effects on splicing: some increase the fidelity of BS selection while others decrease fidelity. Our data support a model wherein conformational changes in SF3b1 promote U2 association with the BS independently of the action of the DEAD-box ATPase Prp5. We propose that SF3b1 functions to stabilize weak U2/BS duplexes to drive spliceosome assembly and splicing.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas M Zoerner
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. PLANT CELL REPORTS 2017; 36:1083-1095. [PMID: 28401337 DOI: 10.1007/s00299-017-2140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 05/20/2023]
Abstract
The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Hee Jang
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - May Phyo Thu
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Hwan Lee
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Chatrikhi R, Wang W, Gupta A, Loerch S, Maucuer A, Kielkopf CL. SF1 Phosphorylation Enhances Specific Binding to U2AF 65 and Reduces Binding to 3'-Splice-Site RNA. Biophys J 2017; 111:2570-2586. [PMID: 28002734 DOI: 10.1016/j.bpj.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Splicing factor 1 (SF1) recognizes 3' splice sites of the major class of introns as a ternary complex with U2AF65 and U2AF35 splicing factors. A conserved SPSP motif in a coiled-coil domain of SF1 is highly phosphorylated in proliferating human cells and is required for cell proliferation. The UHM kinase 1 (UHMK1), also called KIS, double-phosphorylates both serines of this SF1 motif. Here, we use isothermal titration calorimetry to demonstrate that UHMK1 phosphorylation of the SF1 SPSP motif slightly enhances specific binding of phospho-SF1 to its cognate U2AF65 protein partner. Conversely, quantitative fluorescence anisotropy RNA binding assays and isothermal titration calorimetry experiments establish that double-SPSP phosphorylation reduces phospho-SF1 and phospho-SF1-U2AF65 binding affinities for either optimal or suboptimal splice-site RNAs. Domain-substitution and mutagenesis experiments further demonstrate that arginines surrounding the phosphorylated SF1 loop are required for cooperative 3' splice site recognition by the SF1-U2AF65 complex (where cooperativity is defined as a nonadditive increase in RNA binding by the protein complex relative to the individual proteins). In the context of local, intracellular concentrations, the subtle effects of SF1 phosphorylation on its associations with U2AF65 and splice-site RNAs are likely to influence pre-mRNA splicing. However, considering roles for SF1 in pre-mRNA retention and transcriptional repression, as well as in splicing, future comprehensive investigations are needed to fully explain the requirement for SF1 SPSP phosphorylation in proliferating human cells.
Collapse
Affiliation(s)
- Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Wenhua Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Sarah Loerch
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | | | - Clara L Kielkopf
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York.
| |
Collapse
|
25
|
Kim Guisbert KS, Guisbert E. SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS One 2017; 12:e0176382. [PMID: 28445500 PMCID: PMC5406028 DOI: 10.1371/journal.pone.0176382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The heat shock response (HSR) is a well-conserved, cytoprotective stress response that activates the HSF1 transcription factor. During severe stress, cells inhibit mRNA splicing which also serves a cytoprotective function via inhibition of gene expression. Despite their functional interconnectedness, there have not been any previous reports of crosstalk between these two pathways. In a genetic screen, we identified SF3B1, a core component of the U2 snRNP subunit of the spliceosome, as a regulator of the heat shock response in Caenorhabditis elegans. Here, we show that this regulatory connection is conserved in cultured human cells and that there are at least two distinct pathways by which SF3B1 can regulate the HSR. First, inhibition of SF3B1 with moderate levels of Pladienolide B, a previously established small molecule inhibitor of SF3B1, affects the transcriptional activation of HSF1, the transcription factor that mediates the HSR. However, both higher levels of Pladienolide B and SF3B1 siRNA knockdown also change the concentration of HSF1, a form of HSR regulation that has not been previously documented during normal physiology but is observed in some forms of cancer. Intriguingly, mutations in SF3B1 have also been associated with several distinct types of cancer. Finally, we show that regulation of alternative splicing by SF3B1 is sensitive to temperature, providing a new mechanism by which temperature stress can remodel the transcriptome.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Eric Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Loerch S, Kielkopf CL. Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise. RNA (NEW YORK, N.Y.) 2016; 22:1795-1807. [PMID: 27852923 PMCID: PMC5113200 DOI: 10.1261/rna.057950.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
U2AF homology motifs (UHM) that recognize U2AF ligand motifs (ULM) are an emerging family of protein-protein interaction modules. UHM-ULM interactions recur in pre-mRNA splicing factors including U2AF1 and SF3b1, which are frequently mutated in myelodysplastic syndromes. The core topology of the UHM resembles an RNA recognition motif and is often mistakenly classified within this large family. Here, we unmask the charade and review recent discoveries of UHM-ULM modules for protein-protein interactions. Diverse polypeptide extensions and selective phosphorylation of UHM and ULM family members offer new molecular mechanisms for the assembly of specific partners in the early-stage spliceosome.
Collapse
Affiliation(s)
- Sarah Loerch
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
27
|
Jagtap PKA, Garg D, Kapp TG, Will CL, Demmer O, Lührmann R, Kessler H, Sattler M. Rational Design of Cyclic Peptide Inhibitors of U2AF Homology Motif (UHM) Domains To Modulate Pre-mRNA Splicing. J Med Chem 2016; 59:10190-10197. [PMID: 27753493 DOI: 10.1021/acs.jmedchem.6b01118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U2AF homology motifs (UHMs) are atypical RNA recognition motif domains that mediate critical protein-protein interactions during the regulation of alternative pre-mRNA splicing and other processes. The recognition of UHM domains by UHM ligand motif (ULM) peptide sequences plays important roles during early steps of spliceosome assembly. Splicing factor 45 kDa (SPF45) is an alternative splicing factor implicated in breast and lung cancers, and splicing regulation of apoptosis-linked pre-mRNAs by SPF45 was shown to depend on interactions between its UHM domain and ULM motifs in constitutive splicing factors. We have developed cyclic peptide inhibitors that target UHM domains. By screening a focused library of linear and cyclic peptides and performing structure-activity relationship analysis, we designed cyclic peptides with 4-fold improved binding affinity for the SPF45 UHM domain compared to native ULM ligands and 270-fold selectivity to discriminate UHM domains from alternative and constitutive splicing factors. These inhibitors are useful tools to modulate and dissect mechanisms of alternative splicing regulation.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Divita Garg
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Tobias G Kapp
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry , Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Oliver Demmer
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry , Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Horst Kessler
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany.,Institute for Advanced Study (IAS), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
28
|
Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Lührmann R, Pena V. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell 2016; 64:307-319. [PMID: 27720643 DOI: 10.1016/j.molcel.2016.08.036] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.
Collapse
Affiliation(s)
- Constantin Cretu
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzová
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Almudena Ponce-Salvatierra
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Evelina I De Laurentiis
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
29
|
Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3681094. [PMID: 27610372 PMCID: PMC5004037 DOI: 10.1155/2016/3681094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.
Collapse
|
30
|
Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27440103 DOI: 10.1002/wrna.1381] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/23/2022]
Abstract
Small molecule inhibitors that target components of the spliceosome have great potential as tools to probe splicing mechanism and dissect splicing regulatory networks in cells. These compounds also hold promise as drug leads for diseases in which splicing regulation plays a critical role, including many cancers. Because the spliceosome is a complicated and dynamic macromolecular machine comprised of many RNA and protein components, a variety of compounds that interfere with different aspects of spliceosome assembly is needed to probe its function. By screening chemical libraries with high-throughput splicing assays, several labs have added to the collection of splicing inhibitors, although the mechanistic insight into splicing yielded from the initial compound hits is somewhat limited so far. In contrast, SF3B1 inhibitors stand out as a great example of what can be accomplished with small molecule tools. This group of compounds were first discovered as natural products that are cytotoxic to cancer cells, and then later shown to target the core spliceosome protein SF3B1. The inhibitors have since been used to uncover details of SF3B1 mechanism in the spliceosome and its impact on gene expression in cells. Continuing structure activity relationship analysis of the compounds is also making progress in identifying chemical features key to their function, which is critical in understanding the mechanism of SF3B1 inhibition. The knowledge is also important for the design of analogs with new and useful features for both splicing researchers and clinicians hoping to exploit splicing as pressure point to target in cancer therapy. WIREs RNA 2017, 8:e1381. doi: 10.1002/wrna.1381 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kerstin A Effenberger
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Veronica K Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
31
|
Abstract
One of the great challenges to structural biologists lies in explaining the complexities of the spliceosome – a ribosome-sized molecular machine that is assembled in a step-wise manner and is responsible for pre-mRNA splicing. The spliceosome is both fascinating and difficult to work with, because of its dynamic nature. At each discrete step of splicing tens of proteins come and go orchestrating the functional transition through massive structural rearrangements. The retention and splicing complex (RES) is an important splicing factor interacting with pre-mRNA at the onset of the first transesterification reaction. RES is a specific splicing factor for a number of genes and is important for controlling pre-mRNA retention in the nucleus. RES is a 71 kDa heterotrimer composed of the 3 proteins Pml1p, Bud13p and Snu17p. We solved the 3-dimensional structure of the core of the RES complex as well as the 2 dimers, Snu17p-Bud13p and Snu17p-Pml1p. Further biophysical analysis revealed an astounding cooperativity that governs the assembly of this trimeric complex as well as its interaction with pre-mRNA. The more than 100-fold cooperativity originates from the progressive rigidification of Snu17p upon coupled binding-and-folding of protein regions, which are disordered in the unbound state. Our work highlights the role of cooperativity in the spliceosome and poses new questions about the structure and assembly of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczanski
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany
| | - Markus Zweckstetter
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) ; Göttingen , Germany.,c Center for Nanoscale Microscopy and Molecular Physiology of the Brain; University Medical Center ; Göttingen , Germany
| |
Collapse
|
32
|
Crisci A, Raleff F, Bagdiul I, Raabe M, Urlaub H, Rain JC, Krämer A. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res 2015; 43:10456-73. [PMID: 26420826 PMCID: PMC4666396 DOI: 10.1093/nar/gkv952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023] Open
Abstract
Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.
Collapse
Affiliation(s)
- Angela Crisci
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Flore Raleff
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Monika Raabe
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | - Angela Krämer
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
33
|
Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8. [PMID: 25218446 DOI: 10.1038/nsmb.2889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczański
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelius Schneider
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - ShengQi Xiang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Trowitzsch
- 1] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany
| |
Collapse
|
34
|
Loerch S, Maucuer A, Manceau V, Green MR, Kielkopf CL. Cancer-relevant splicing factor CAPERα engages the essential splicing factor SF3b155 in a specific ternary complex. J Biol Chem 2014; 289:17325-37. [PMID: 24795046 DOI: 10.1074/jbc.m114.558825] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
U2AF homology motifs (UHMs) mediate protein-protein interactions with U2AF ligand motifs (ULMs) of pre-mRNA splicing factors. The UHM-containing alternative splicing factor CAPERα regulates splicing of tumor-promoting VEGF isoforms, yet the molecular target of the CAPERα UHM is unknown. Here we present structures of the CAPERα UHM bound to a representative SF3b155 ULM at 1.7 Å resolution and, for comparison, in the absence of ligand at 2.2 Å resolution. The prototypical UHM/ULM interactions authenticate CAPERα as a bona fide member of the UHM family of proteins. We identify SF3b155 as the relevant ULM-containing partner of full-length CAPERα in human cell extracts. Isothermal titration calorimetry comparisons of the purified CAPERα UHM binding known ULM-containing proteins demonstrate that high affinity interactions depend on the presence of an intact, intrinsically unstructured SF3b155 domain containing seven ULM-like motifs. The interplay among bound CAPERα molecules gives rise to the appearance of two high affinity sites in the SF3b155 ULM-containing domain. In conjunction with the previously identified, UHM/ULM-mediated complexes of U2AF(65) and SPF45 with SF3b155, this work demonstrates the capacity of SF3b155 to offer a platform for coordinated recruitment of UHM-containing splicing factors.
Collapse
Affiliation(s)
- Sarah Loerch
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 and
| | - Alexandre Maucuer
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Valérie Manceau
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael R Green
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Clara L Kielkopf
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 and
| |
Collapse
|
35
|
Jang YH, Park HY, Lee KC, Thu MP, Kim SK, Suh MC, Kang H, Kim JK. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:591-603. [PMID: 24580679 DOI: 10.1111/tpj.12491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 05/20/2023]
Abstract
During initial spliceosome assembly, SF1 binds to intron branch points and interacts with U2 snRNP auxiliary factor 65 (U2AF65). Here, we present evidence indicating that AtSF1, the Arabidopsis SF1 homolog, interacts with AtU2AF65a and AtU2AF65b, the Arabidopsis U2AF65 homologs. A mutant allele of AtSF1 (At5g51300) that contains a T-DNA insertion conferred pleiotropic developmental defects, including early flowering and abnormal sensitivity to abscisic acid. An AtSF1 promoter-driven GUS reporter assay showed that AtSF1 promoter activity was temporally and spatially altered, and that full AtSF1 promoter activity required a significant proportion of the coding region. DNA chip analyses showed that only a small proportion of the transcriptome was altered by more than twofold in either direction in the AtSF1 mutant. Expression of the mRNAs of many heat shock proteins was more than fourfold higher in the mutant strain; these mRNAs were among those whose expression was increased most in the mutant strain. An RT-PCR assay revealed an altered alternative splicing pattern for heat shock transcription factor HsfA2 (At2g26150) in the mutant; this altered splicing is probably responsible for the increased expression of the target genes induced by HsfA2. Altered alternative splicing patterns were also detected for the transcripts of other genes in the mutant strain. These results suggest that AtSF1 has functional similarities to its yeast and metazoan counterparts.
Collapse
Affiliation(s)
- Yun Hee Jang
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang W, Maucuer A, Gupta A, Manceau V, Thickman KR, Bauer WJ, Kennedy SD, Wedekind JE, Green MR, Kielkopf CL. Structure of phosphorylated SF1 bound to U2AF⁶⁵ in an essential splicing factor complex. Structure 2012; 21:197-208. [PMID: 23273425 DOI: 10.1016/j.str.2012.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/15/2022]
Abstract
The essential splicing factors U2AF⁶⁵ and SF1 cooperatively bind consensus sequences at the 3' end of introns. Phosphorylation of SF1 on a highly conserved "SPSP" motif enhances its interaction with U2AF⁶⁵ and the pre-mRNA. Here, we reveal that phosphorylation induces essential conformational changes in SF1 and in the SF1/U2AF⁶⁵/3' splice site complex. Crystal structures of the phosphorylated (P)SF1 domain bound to the C-terminal domain of U2AF⁶⁵ at 2.29 Å resolution and of the unphosphorylated SF1 domain at 2.48 Å resolution demonstrate that phosphorylation induces a disorder-to-order transition within a previously unknown SF1/U2AF⁶⁵ interface. We find by small-angle X-ray scattering that the local folding of the SPSP motif transduces into global conformational changes in the nearly full-length (P)SF1/U2AF⁶⁵/3' splice site assembly. We further determine that SPSP phosphorylation and the SF1/U2AF⁶⁵ interface are essential in vivo. These results offer a structural prototype for phosphorylation-dependent control of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Wenhua Wang
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Korneta I, Bujnicki JM. Intrinsic disorder in the human spliceosomal proteome. PLoS Comput Biol 2012; 8:e1002641. [PMID: 22912569 PMCID: PMC3415423 DOI: 10.1371/journal.pcbi.1002641] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/16/2012] [Indexed: 12/11/2022] Open
Abstract
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Collapse
Affiliation(s)
- Iga Korneta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
38
|
The MUC1 extracellular domain subunit is found in nuclear speckles and associates with spliceosomes. PLoS One 2012; 7:e42712. [PMID: 22905162 PMCID: PMC3414450 DOI: 10.1371/journal.pone.0042712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/11/2012] [Indexed: 02/04/2023] Open
Abstract
MUC1 is a large transmembrane glycoprotein and oncogene expressed by epithelial cells and overexpressed and underglycosylated in cancer cells. The MUC1 cytoplasmic subunit (MUC1-C) can translocate to the nucleus and regulate gene expression. It is frequently assumed that the MUC1 extracellular subunit (MUC1-N) does not enter the nucleus. Based on an unexpected observation that MUC1 extracellular domain antibody produced an apparently nucleus-associated staining pattern in trophoblasts, we have tested the hypothesis that MUC1-N is expressed inside the nucleus. Three different antibodies were used to identify MUC1-N in normal epithelial cells and tissues as well as in several cancer cell lines. The results of immunofluorescence and confocal microscopy analyses as well as subcellular fractionation, Western blotting, and siRNA/shRNA studies, confirm that MUC1-N is found within nuclei of all cell types examined. More detailed examination of its intranuclear distribution using a proximity ligation assay, subcellular fractionation, and immunoprecipitation suggests that MUC1-N is located in nuclear speckles (interchromatin granule clusters) and closely associates with the spliceosome protein U2AF65. Nuclear localization of MUC1-N was abolished when cells were treated with RNase A and nuclear localization was altered when cells were incubated with the transcription inhibitor 5,6-dichloro-1-b-d-ribofuranosylbenzimidazole (DRB). While MUC1-N predominantly associated with speckles, MUC1-C was present in the nuclear matrix, nucleoli, and the nuclear periphery. In some nuclei, confocal microscopic analysis suggest that MUC1-C staining is located close to, but only partially overlaps, MUC1-N in speckles. However, only MUC1-N was found in isolated speckles by Western blotting. Also, MUC1-C and MUC1-N distributed differently during mitosis. These results suggest that MUC1-N translocates to the nucleus where it is expressed in nuclear speckles and that MUC1-N and MUC1-C have dissimilar intranuclear distribution patterns.
Collapse
|
39
|
Boehr DD. Promiscuity in protein-RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome: conformational diversity in U2AF⁶⁵ facilitates binding to diverse RNA sequences. Bioessays 2011; 34:174-80. [PMID: 22144099 DOI: 10.1002/bies.201100152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre-exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF⁶⁵ fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA binding to U2AF⁶⁵ may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF⁶⁵ might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3' splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, 240 Chemistry Building, University Park, PA, USA.
| |
Collapse
|
40
|
Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 2011; 18:1218-26. [PMID: 21984184 PMCID: PMC3885283 DOI: 10.1038/nsmb.2166] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/29/2011] [Indexed: 01/05/2023]
Abstract
miRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR4-NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR4-NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR4-NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNAs, including inhibiting translation independently of deadenylation.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:1422-8. [PMID: 21926333 DOI: 10.1128/ec.05193-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.
Collapse
|
42
|
Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 2011; 25:445-59. [PMID: 21363963 DOI: 10.1101/gad.2014311] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spliceostatin A (SSA) is a stabilized derivative of a Pseudomonas bacterial fermentation product that displays potent anti-proliferative and anti-tumor activities in cancer cells and animal models. The drug inhibits pre-mRNA splicing in vitro and in vivo and binds SF3b, a protein subcomplex of U2 small nuclear ribonucleoprotein (snRNP), which is essential for recognition of the pre-mRNA branch point. We report that SSA prevents interaction of an SF3b 155-kDa subunit with the pre-mRNA, concomitant with nonproductive recruitment of U2 snRNP to sequences 5' of the branch point. Differences in base-pairing potential with U2 snRNA in this region lead to different sensitivity of 3' splice sites to SSA, and to SSA-induced changes in alternative splicing. Indeed, rather than general splicing inhibition, splicing-sensitive microarray analyses reveal specific alternative splicing changes induced by the drug that significantly overlap with those induced by knockdown of SF3b 155. These changes lead to down-regulation of genes important for cell division, including cyclin A2 and Aurora A kinase, thus providing an explanation for the anti-proliferative effects of SSA. Our results reveal a mechanism that prevents nonproductive base-pairing interactions in the spliceosome, and highlight the regulatory and cancer therapeutic potential of perturbing the fidelity of splice site recognition.
Collapse
|
43
|
Gupta A, Kielkopf CL. Purification, crystallization and preliminary X-ray crystallographic analysis of a central domain of human splicing factor 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:486-90. [PMID: 21505248 PMCID: PMC3080157 DOI: 10.1107/s1744309111004623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/07/2011] [Indexed: 11/11/2022]
Abstract
Pre-mRNA splicing is an essential source of genetic diversity in eukaryotic organisms. In the early stages of splicing, splicing factor 1 (SF1) recognizes the pre-mRNA splice site as a complex with its partner, U2 auxiliary factor 65 kDa subunit (U2AF(65)). A central `mystery' domain of SF1 (SF1md) lacks detectable homology with known structures, yet is the region of highest phylogenetic sequence conservation among SF1 homologues. Here, steps towards determining the SF1md structure are described. Firstly, SF1md was expressed and purified. The presence of regular secondary structure was verified using circular dichroism spectroscopy and the SF1md protein was then crystallized. A native data set was collected and processed to 2.5 Å resolution. The SF1md crystals belonged to space group C2 and have most probable solvent contents of 64, 52 or 39% with three, four or five molecules per asymmetric unit, respectively. Mutually perpendicular peaks on the κ = 180° section of the self-rotation function support the presence of four molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
44
|
Gupta A, Jenkins JL, Kielkopf CL. RNA induces conformational changes in the SF1/U2AF65 splicing factor complex. J Mol Biol 2011; 405:1128-38. [PMID: 21146534 PMCID: PMC3037027 DOI: 10.1016/j.jmb.2010.11.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/02/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF(65)) cooperatively recognize the 3' splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF(65) splicing factors, as well as the SF1/U2AF(65) complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF(65)/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF(65) complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF(65) splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF(65)/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
45
|
Corioni M, Antih N, Tanackovic G, Zavolan M, Krämer A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res 2010; 39:1868-79. [PMID: 21062807 PMCID: PMC3061054 DOI: 10.1093/nar/gkq1042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The conserved pre-mRNA splicing factor SF1 is implicated in 3' splice site recognition by binding directly to the intron branch site. However, because SF1 is not essential for constitutive splicing, its role in pre-mRNA processing has remained mysterious. Here, we used crosslinking and immunoprecipitation (CLIP) to analyze short RNAs directly bound by human SF1 in vivo. SF1 bound mainly pre-mRNAs, with 77% of target sites in introns. Binding to target RNAs in vitro was dependent on the newly defined SF1 binding motif ACUNAC, strongly resembling human branch sites. Surprisingly, the majority of SF1 binding sites did not map to the expected position near 3' splice sites. Instead, target sites were distributed throughout introns, and a smaller but significant fraction occurred in exons within coding and untranslated regions. These data suggest a more complex role for SF1 in splicing regulation. Indeed, SF1 silencing affected alternative splicing of endogenous transcripts, establishing a previously unexpected role for SF1 and branch site-like sequences in splice site selection.
Collapse
Affiliation(s)
- Margherita Corioni
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva
| | | | | | | | | |
Collapse
|
46
|
Ritchie DB, Schellenberg MJ, MacMillan AM. Spliceosome structure: piece by piece. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:624-33. [PMID: 19733268 DOI: 10.1016/j.bbagrm.2009.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/22/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein.RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
47
|
Prigge JR, Iverson SV, Siders AM, Schmidt EE. Interactome for auxiliary splicing factor U2AF(65) suggests diverse roles. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:487-92. [PMID: 19540372 DOI: 10.1016/j.bbagrm.2009.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 12/17/2022]
Abstract
U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is an essential component of the splicing machinery that is composed of two protein subunits, the 35 kDa U2AF(35) (U2AF1) and the 65 kDa U2AF(65) (U2AF2). U2AF interacts with various splicing factors within this machinery. Here we expand the list of mammalian splicing factors that are known to interact with U2AF(65) as well as the list of nuclear proteins not known to participate in splicing that interact with U2AF(65). Using a yeast two-hybrid system, we found fourteen U2AF(65)-interacting proteins. The validity of the screen was confirmed by identification of five known U2AF(65)-interacting proteins, including its heterodimeric partner, U2AF(35). In addition to binding these known partners, we found previously unrecognized U2AF(65) interactions with four splicing-related proteins (DDX39, SFRS3, SFRS18, SNRPA), two zinc finger proteins (ZFP809 and ZC3H11A), a U2AF(65) homolog (RBM39), and two other regulatory proteins (DAXX and SERBP1). We report which regions of U2AF(65) each of these proteins interacts with and we discuss their potential roles in regulation of pre-mRNA splicing, 3'-end mRNA processing, and U2AF(65) sub-nuclear localization. These findings suggest expanded roles for U2AF(65) in both splicing and non-splicing functions.
Collapse
Affiliation(s)
- Justin R Prigge
- Department of Veterinary Molecular Biology, Montana State University, Molecular Biosciences, 960 Technology Blvd., Bozeman, MT 59718, USA
| | | | | | | |
Collapse
|
48
|
Corsini L, Hothorn M, Stier G, Rybin V, Scheffzek K, Gibson TJ, Sattler M. Dimerization and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. J Biol Chem 2008; 284:630-639. [PMID: 18974054 DOI: 10.1074/jbc.m805395200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PUF60 is an essential splicing factor functionally related and homologous to U2AF(65). Its C-terminal domain belongs to the family of U2AF (U2 auxiliary factor) homology motifs (UHM), a subgroup of RNA recognition motifs that bind to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Here, we show that the Puf60 UHM is mainly monomeric in physiological buffer, whereas its dimerization is induced upon the addition of SDS. The crystal structure of PUF60-UHM at 2.2 angstroms resolution, NMR data, and mutational analysis reveal that the dimer interface is mediated by electrostatic interactions involving a flexible loop. Using glutathione S-transferase pulldown experiments, isothermal titration calorimetry, and NMR titrations, we find that Puf60-UHM binds to ULM sequences in the splicing factors SF1, U2AF65, and SF3b155. Compared with U2AF65-UHM, Puf60-UHM has distinct binding preferences to ULMs in the N terminus of SF3b155. Our data suggest that the functional cooperativity between U2AF65 and Puf60 may involve simultaneous interactions of the two proteins with SF3b155.
Collapse
Affiliation(s)
- Lorenzo Corsini
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Hothorn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Gunter Stier
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Vladimir Rybin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Klaus Scheffzek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, the Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstrasse 1, 85764 Neuherberg, Germany, and the Munich Center for Integrated Protein Science and Chair Biomolecular NMR, Department Chemie, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
49
|
Jenkins JL, Shen H, Green MR, Kielkopf CL. Solution conformation and thermodynamic characteristics of RNA binding by the splicing factor U2AF65. J Biol Chem 2008; 283:33641-9. [PMID: 18842594 DOI: 10.1074/jbc.m806297200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
50
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J Biol Chem 2008; 283:32317-27. [PMID: 18809678 DOI: 10.1074/jbc.m804977200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The yeast pre-mRNA retention and splicing complex counteracts the escape of unspliced pre-mRNAs from the nucleus and activates splicing of a subset of Mer1p-dependent genes. A homologous complex is present in activated human spliceosomes. In many components of the spliceosome, RNA recognition motifs (RRMs) serve as versatile protein-RNA or protein-protein interaction platforms. Here, we show that in the retention and splicing complex, an atypical RRM of the Snu17p (small nuclear ribonucleoprotein-associated protein 17) subunit acts as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). GST pull-down experiments and size exclusion chromatography revealed that Snu17p constitutes the central platform of the complex, whereas Bud13p and Pml1p do not interact with each other. Fluorimetric structure probing showed the entire Bud13p and the N-terminal third of Pml1p to be natively disordered in isolation. Mutational analysis and tryptophan fluorescence confirmed that a conserved tryptophan-containing motif in the C terminus of Bud13p binds to the core RRM of Snu17p, whereas a different interaction surface encompassing a C-terminal extension of the Snu17p RRM is required to bind an N-terminal peptide of Pml1p. Isothermal titration calorimetry revealed 1:1 interaction stoichiometries, large negative binding entropies, and dissociation constants in the low nanomolar and micromolar ranges for the Snu17p-Bud13p and the Snu17p-Pml1p interactions, respectively. Our results demonstrate that the noncanonical Snu17p RRM concomitantly binds multiple ligand proteins via short, intrinsically unstructured peptide epitopes and thereby acts as a platform that displays functional modules of the ligands, such as a forkhead-associated domain of Pml1p and a conserved polylysine motif of Bud13p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|