1
|
Frumkin I, Laub MT. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. Nat Ecol Evol 2023; 7:2067-2079. [PMID: 37945946 PMCID: PMC10697842 DOI: 10.1038/s41559-023-02224-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
Cellular novelty can emerge when non-functional loci become functional genes in a process termed de novo gene birth. But how proteins with random amino acid sequences beneficially integrate into existing cellular pathways remains poorly understood. We screened ~108 genes, generated from random nucleotide sequences and devoid of homology to natural genes, for their ability to rescue growth arrest of Escherichia coli cells producing the ribonuclease toxin MazF. We identified ~2,000 genes that could promote growth, probably by reducing transcription from the promoter driving toxin expression. Additionally, one random protein, named Random antitoxin of MazF (RamF), modulated protein homeostasis by interacting with chaperones, leading to MazF proteolysis and a consequent loss of its toxicity. Finally, we demonstrate that random proteins can improve during evolution by identifying beneficial mutations that turned RamF into a more efficient inhibitor. Our work provides a mechanistic basis for how de novo gene birth can produce functional proteins that effectively benefit cells evolving under stress.
Collapse
Affiliation(s)
- Idan Frumkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Vandierendonck J, Girardin Y, De Bruyn P, De Greve H, Loris R. A Multi-Layer-Controlled Strategy for Cloning and Expression of Toxin Genes in Escherichia coli. Toxins (Basel) 2023; 15:508. [PMID: 37624265 PMCID: PMC10467106 DOI: 10.3390/toxins15080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Molecular cloning and controlled expression remain challenging when the target gene encodes a protein that is toxic to the host. We developed a set of multi-layer control systems to enable cloning of genes encoding proteins known to be highly toxic in Escherichia coli and other bacteria. The different multi-layer control systems combine a promoter-operator system on a transcriptional level with a riboswitch for translational control. Additionally, replicational control is ensured by using a strain that reduces the plasmid copy number. The use of weaker promoters (such as PBAD or PfdeA) in combination with the effective theophylline riboswitch is essential for cloning genes that encode notoriously toxic proteins that directly target translation and transcription. Controlled overexpression is possible, allowing the system to be used for evaluating in vivo effects of the toxin. Systems with a stronger promoter can be used for successful overexpression and purification of the desired protein but are limited to toxins that are more moderate and do not interfere with their own production.
Collapse
Affiliation(s)
| | | | | | - Henri De Greve
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie and Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium; (J.V.); (Y.G.)
| | - Remy Loris
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie and Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium; (J.V.); (Y.G.)
| |
Collapse
|
4
|
Fan Q, Wang H, Mao C, Li J, Zhang X, Grenier D, Yi L, Wang Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:429-445. [PMID: 34989570 DOI: 10.1021/acs.jafc.1c04751] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quorum sensing (QS) is a signaling mechanism for cell-to-cell communication between bacteria, fungi, and even eukaryotic hosts such as plant and animal cells. Bacteria in real life do not exist as isolated organisms but are found in complex, dynamic, and microecological environments. The study of interspecies QS and interkingdom QS is a valuable approach for exploring bacteria-bacteria interactions and bacteria-host interaction mechanisms and has received considerable attention from researchers. The correct combination of QS signals and receptors is key to initiating the QS process. Compared with intraspecies QS, the signal regulation mechanism of interspecies QS and interkingdom QS is often more complicated, and the distribution of receptors is relatively wide. The present review focuses on the latest progress with respect to the distribution, structure, and signal transduction of interspecies and interkingdom QS receptors and provides a guide for the investigation of new QS receptors in the future.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec G1 V 0A6, Canada
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang 471023, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
5
|
Tamiya-Ishitsuka H, Tsuruga M, Noda N, Yokota A. Conserved Amino Acid Moieties of Candidatus Desulforudis audaxviator MazF Determine Ribonuclease Activity and Specificity. Front Microbiol 2021; 12:748619. [PMID: 34867867 PMCID: PMC8634880 DOI: 10.3389/fmicb.2021.748619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The toxin-antitoxin (TA) system, inherent to various prokaryotes, plays a critical role in survival and adaptation to diverse environmental stresses. The toxin MazF, belonging to the type II TA system, functions as a sequence-specific ribonuclease that recognizes 3 to 7 bases. In recent studies, crystallographic analysis of MazFs from several species have suggested the presence of amino acid sites important for MazF substrate RNA binding and for its catalytic activity. Herein, we characterized MazF obtained from Candidatus Desulforudis audaxviator (MazF-Da) and identified the amino acid residues necessary for its catalytic function. MazF-Da, expressed using a cell-free protein synthesis system, is a six-base-recognition-specific ribonuclease that preferentially cleaves UACAAA sequences and weakly cleaves UACGAA and UACUAA sequences. We found that MazF-Da exhibited the highest activity at around 60°C. Analysis using mutants with a single mutation at an amino acid residue site that is well conserved across various MazF toxins showed that G18, E20, R25, and P26 were important for the ribonuclease activity of MazF-Da. The recognition sequence of the N36A mutant differed from that of the wild type. This mutant cleaved UACAAG sequences in addition to UACAAA sequences, but did not cleave UACGAA or UACUAA sequences, suggesting that Asn36 affects the loosening and narrowing of MazF-Da cleavage sequence recognition. Our study posits UACAAA as the recognition sequence of MazF-Da and provides insight into the amino acid sites that are key to its unique enzymatic properties.
Collapse
Affiliation(s)
- Hiroko Tamiya-Ishitsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
6
|
Functional Characterization of the mazEF Toxin-Antitoxin System in the Pathogenic Bacterium Agrobacterium tumefaciens. Microorganisms 2021; 9:microorganisms9051107. [PMID: 34065548 PMCID: PMC8160871 DOI: 10.3390/microorganisms9051107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.
Collapse
|
7
|
Janczak M, Hyz K, Bukowski M, Lyzen R, Hydzik M, Wegrzyn G, Szalewska-Palasz A, Grudnik P, Dubin G, Wladyka B. Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity - Characterization of pemIK Sa1-Sp from Staphylococcus pseudintermedius. Microbiol Res 2020; 240:126529. [PMID: 32622987 DOI: 10.1016/j.micres.2020.126529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
Collapse
Affiliation(s)
- Monika Janczak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hyz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Lyzen
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Przemyslaw Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Venturelli OS, Tei M, Bauer S, Chan LJG, Petzold CJ, Arkin AP. Programming mRNA decay to modulate synthetic circuit resource allocation. Nat Commun 2017; 8:15128. [PMID: 28443619 PMCID: PMC5414051 DOI: 10.1038/ncomms15128] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstrates that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design. Synthetic circuits in host cells compete with endogenous processes for limited resources. Here the authors use MazF to funnel cellular resources to a synthetic circuit to increase product production and demonstrate how resource allocation can be manipulated.
Collapse
Affiliation(s)
- Ophelia S Venturelli
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Mika Tei
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94704, USA
| | - Leanne Jade G Chan
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adam P Arkin
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA.,Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94704, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
10
|
Ishida Y, Inouye K, Inouye M. The role of the loop 1 region in MazFbs mRNA interferase from Bacillus subtilis in recognition of the 3' end of the RNA substrate. Biochem Biophys Res Commun 2017; 483:403-408. [PMID: 28017721 DOI: 10.1016/j.bbrc.2016.12.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023]
Abstract
MazFbs is an mRNA interferase from Bacillus subtilis specifically recognizing UACAU. The X-ray structure of its complex with an RNA substrate has been also solved. When its amino acid sequence is compared with that of MazFhw, an mRNA interferase from a highly halophilic archaeon, recognizing UUACUCA, the 9-residue loop-1 region is highly homologous except that the V16V17 sequence in MazFbs is replaced with TK in MazFhw. Thus, we examined the role of the VV sequence in RNA substrate recognition by replacing it with TK, GG, AA or LL. The substitution mutants thus constructed showed significant differences in cleavage specificity using MS2 phage RNA. The primer extension analysis of the cleavage sites revealed that the VV sequence plays an important role in the recognition of the 3'-end base of the RNA substrate.
Collapse
Affiliation(s)
- Yojiro Ishida
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Keiko Inouye
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Masayori Inouye
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Kim Y, Choi E, Hwang J. Functional Studies of Five Toxin-Antitoxin Modules in Mycobacterium tuberculosis H37Rv. Front Microbiol 2016; 7:2071. [PMID: 28066388 PMCID: PMC5175181 DOI: 10.3389/fmicb.2016.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022] Open
Abstract
Toxin–antitoxin (TA) systems, which consist of an intracellular toxin and its antidote (antitoxin), are encoded by ubiquitous genetic modules in prokaryotes. Commonly, the activity of a toxin is inhibited by its antitoxin under normal growth conditions. However, antitoxins are degraded in response to environmental stress, and toxins liberated from antitoxins consequently induce cell death or growth arrest. In free-living prokaryotes, TA systems are often present in large numbers and are considered to be associated with the adaptation of pathogenic bacteria or extremophiles to various unfavorable environments by shifting cells to a slow growth rate. Genomic analysis of the human pathogen Mycobacterium tuberculosis H37Rv (Mtb) revealed the presence of a large number of TA systems. Accordingly, we investigated five uncharacterized TA systems (Rv2019-Rv2018, Rv3697c-Rv3697A, Rv3180c-Rv3181c, Rv0299-Rv0298, and Rv3749c-Rv3750c) of Mtb. Among these, the expression of the Rv2019 toxin inhibited the growth of Escherichia coli, and M. smegmatis and this growth defect was recovered by the expression of the Rv2018 antitoxin. Interestingly, Rv3180c was toxic only in M. smegmatis, whose toxicity was neutralized by Rv3181c antitoxin. In vivo and in vitro assays revealed the ribosomal RNA (rRNA) cleavage activity of the Rv2019 toxin. Moreover, mRNAs appeared to be substrates of Rv2019. Therefore, we concluded that the ribonuclease activity of the Rv2019 toxin triggers the growth defect in E. coli and that the Rv2018 antitoxin inhibits the ribonuclease activity of the Rv2019 toxin.
Collapse
Affiliation(s)
- Yoonji Kim
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| |
Collapse
|
12
|
Wan H, Otsuka Y, Gao ZQ, Wei Y, Chen Z, Masuda M, Yonesaki T, Zhang H, Dong YH. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd. Mol Microbiol 2016; 101:757-69. [PMID: 27169810 DOI: 10.1111/mmi.13420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 01/18/2023]
Abstract
Bacteria have obtained a variety of resistance mechanisms including toxin-antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti-phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA-Dmd complex showed Dmd is inserted into the deep groove between the N-terminal repeated domain (NRD) and the Dmd-binding domain (DBD) of LsoA. The NRD shifts significantly from a 'closed' to an 'open' conformation upon Dmd binding. Site-directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull-down and cell toxicity assays. Further mutagenesis identified the conserved Dmd-binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure-function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter-defense mechanisms between bacteria and phages in their co-evolution.
Collapse
Affiliation(s)
- Hua Wan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuichi Otsuka
- Department of Microbiology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Zeng-Qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Michiaki Masuda
- Department of Microbiology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Tetsuro Yonesaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka, 560-0043, Japan
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Zorzini V, Mernik A, Lah J, Sterckx YGJ, De Jonge N, Garcia-Pino A, De Greve H, Versées W, Loris R. Substrate Recognition and Activity Regulation of the Escherichia coli mRNA Endonuclease MazF. J Biol Chem 2016; 291:10950-60. [PMID: 27026704 DOI: 10.1074/jbc.m116.715912] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli MazF (EcMazF) is the archetype of a large family of ribonucleases involved in bacterial stress response. The crystal structure of EcMazF in complex with a 7-nucleotide substrate mimic explains the relaxed substrate specificity of the E. coli enzyme relative to its Bacillus subtilis counterpart and provides a framework for rationalizing specificity in this enzyme family. In contrast to a conserved mode of substrate recognition and a conserved active site, regulation of enzymatic activity by the antitoxin EcMazE diverges from its B. subtilis homolog. Central in this regulation is an EcMazE-induced double conformational change as follows: a rearrangement of a crucial active site loop and a relative rotation of the two monomers in the EcMazF dimer. Both are induced by the C-terminal residues Asp-78-Trp-82 of EcMazE, which are also responsible for strong negative cooperativity in EcMazE-EcMazF binding. This situation shows unexpected parallels to the regulation of the F-plasmid CcdB activity by CcdA and further supports a common ancestor despite the different activities of the MazF and CcdB toxins. In addition, we pinpoint the origin of the lack of activity of the E24A point mutant of EcMazF in its inability to support the substrate binding-competent conformation of EcMazF.
Collapse
Affiliation(s)
- Valentina Zorzini
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Andrej Mernik
- the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia, and
| | - Jurij Lah
- the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia, and
| | - Yann G J Sterckx
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Natalie De Jonge
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Biologie Structurale et Biophysique, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 B-Gosselies, Belgium
| | - Henri De Greve
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim Versées
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Remy Loris
- From the Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, the Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium,
| |
Collapse
|
14
|
Abstract
Persisters are drug-tolerant bacteria that account for the majority of bacterial infections. They are not mutants, rather, they are slow-growing cells in an otherwise normally growing population. It is known that the frequency of persisters in a population is correlated with the number of toxin–antitoxin systems in the organism. Our previous work provided a mechanistic link between the two by showing how multiple toxin–antitoxin systems, which are present in nearly all bacteria, can cooperate to induce bistable toxin concentrations that result in a heterogeneous population of slow- and fast-growing cells. As such, the slow-growing persisters are a bet-hedging subpopulation maintained under normal conditions. For technical reasons, the model assumed that the kinetic parameters of the various toxin–antitoxin systems in the cell are identical, but experimental data indicate that they differ, sometimes dramatically. Thus, a critical question remains: whether toxin–antitoxin systems from the diverse families, often found together in a cell, with significantly different kinetics, can cooperate in a similar manner. Here, we characterize the interaction of toxin–antitoxin systems from many families that are unrelated and kinetically diverse, and identify the essential determinant for their cooperation. The generic architecture of toxin–antitoxin systems provides the potential for bistability, and our results show that even when they do not exhibit bistability alone, unrelated systems can be coupled by the growth rate to create a strongly bistable, hysteretic switch between normal (fast-growing) and persistent (slow-growing) states. Different combinations of kinetic parameters can produce similar toxic switching thresholds, and the proximity of the thresholds is the primary determinant of bistability. Stochastic fluctuations can spontaneously switch all of the toxin–antitoxin systems in a cell at once. The spontaneous switch creates a heterogeneous population of growing and non-growing cells, typical of persisters, that exist under normal conditions, rather than only as an induced response. The frequency of persisters in the population can be tuned for a particular environmental niche by mixing and matching unrelated systems via mutation, horizontal gene transfer and selection.
Collapse
Affiliation(s)
- Rick A Fasani
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael A Savageau
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
15
|
Abstract
Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin-antitoxin modules play a significant role in the generation of such persister cells. Toxin-antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin-antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin-antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin-antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin-antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin-antitoxin module expression to the generation of persister cells.
Collapse
|
16
|
Sterckx YGJ, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. An efficient method for the purification of proteins from four distinct toxin–antitoxin modules. Protein Expr Purif 2015; 108:30-40. [DOI: 10.1016/j.pep.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/27/2014] [Accepted: 01/04/2015] [Indexed: 11/24/2022]
|
17
|
Wieteska Ł, Skulimowski A, Cybula M, Szemraj J. Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells. Toxins (Basel) 2014; 6:2948-61. [PMID: 25271785 PMCID: PMC4210878 DOI: 10.3390/toxins6102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022] Open
Abstract
Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.
Collapse
Affiliation(s)
- Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Aleksander Skulimowski
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Magdalena Cybula
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
18
|
Kumar S, Engelberg-Kulka H. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. Curr Opin Microbiol 2014; 21:22-7. [PMID: 25244032 DOI: 10.1016/j.mib.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/27/2023]
Abstract
mazEF is a toxin-antitoxin stress-induced module which is abundant on the chromosome of most bacteria including pathogens and most extensively studied in Escherichia coli. E. coli mazEF mediated cell death is a population phenomenon requiring the quorum-sensing (QS) 'Extracellular Death Factor' (EDF), the E. coli peptide NNWNN. E. coli mazEF-mediated cell death can also be triggered by different QS peptides secreted by the Gram positive bacterium Bacillus subtilis and the Gram negative bacterium Pseudomonas aeruginosa. Thus, the different EDFs belong to a family of QS peptides that mediates interspecies cell death. We suggest that members of the EDF family may become the basis for a novel class of antimicrobial agents to trigger death from outside the bacterial cells.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
19
|
Shimazu T, Mirochnitchenko O, Phadtare S, Inouye M. Regression of solid tumors by induction of MazF, a bacterial mRNA endoribonuclease. J Mol Microbiol Biotechnol 2014; 24:228-33. [PMID: 25196606 DOI: 10.1159/000365509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
MazF from Escherichia coli is an endoribonuclease that specifically cleaves mRNAs at ACA sequences. Its induction in mammalian cells has been shown to cause programmed cell death. Here we explored if a bacterial MazF-MazE toxin-antitoxin system can be used for gene therapy. For this, we first constructed a tetracycline-inducible MazF expression system in human embryonic kidney cells (T-Rex 293-mazF). Solid tumors were formed by injecting T-Rex 293-mazF cells into nude mice. All 8 mice injected with the cells developed solid tumors, which regressed upon induction of MazF. In 4 mice, tumors completely regressed, while in the remaining 4 mice, tumors reappeared after apparent significant regression, which was found to be due to the lack of presence of functional MazF. Notably, the MazF-mediated regression of the tumors was counteracted by the expression of its cognate antitoxin MazE. These results indicate that a bacterial MazF-MazE toxin-antitoxin system may have potential to be used as a therapeutic tool.
Collapse
Affiliation(s)
- Tsutomu Shimazu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, N.J., USA
| | | | | | | |
Collapse
|
20
|
Chopra N, Saumitra, Pathak A, Bhatnagar R, Bhatnagar S. Linkage, mobility, and selfishness in the MazF family of bacterial toxins: a snapshot of bacterial evolution. Genome Biol Evol 2014; 5:2268-84. [PMID: 24265503 PMCID: PMC3879964 DOI: 10.1093/gbe/evt175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prokaryotic MazF family toxins cooccur with cognate antitoxins having divergent
DNA-binding folds and can be of chromosomal or plasmid origin. Sequence similarity search
was carried out to identify the Toxin–Antitoxin (TA) operons of MazF family followed
by sequence analysis and phylogenetic studies. The genomic DNA upstream of the TA operons
was searched for the presence of regulatory motifs. The MazF family toxins showed a
conserved hydrophobic pocket in a multibinding site and are present in pathogenic
bacteria. The toxins of the MazF family are associated with four main types of cognate
antitoxin partners and cluster as a subfamily on the branches of the phylogenetic tree.
This indicates that transmission of the entire operon is the dominant mode of inheritance.
The plasmid borne TA modules were interspersed between the chromosomal TA modules of the
same subfamily, compatible with a frequent interchange of TA genes between the chromosome
and the plasmid akin to that observed for antibiotic resistance gens. The split network of
the MazF family toxins showed the AbrB-linked toxins as a hub of horizontal gene transfer.
Distinct motifs are present in the upstream region of each subfamily. The presence of MazF
family TA modules in pathogenic bacteria and identification of a conserved binding pocket
are significant for the development of novel antibacterials to disrupt the TA interaction.
However, the role of TAs in stress resistance needs to be established. Phylogenetic
studies provide insight into the evolution of MazF family TAs and effect on the bacterial
genome.
Collapse
Affiliation(s)
- Nikita Chopra
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | | | | | | |
Collapse
|
21
|
Zorzini V, Buts L, Sleutel M, Garcia-Pino A, Talavera A, Haesaerts S, De Greve H, Cheung A, van Nuland NAJ, Loris R. Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics. Nucleic Acids Res 2014; 42:6709-25. [PMID: 24748664 PMCID: PMC4041440 DOI: 10.1093/nar/gku266] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/19/2023] Open
Abstract
The Staphylococcus aureus genome contains three toxin-antitoxin modules, including one mazEF module, SamazEF. Using an on-column separation protocol we are able to obtain large amounts of wild-type SaMazF toxin. The protein is well-folded and highly resistant against thermal unfolding but aggregates at elevated temperatures. Crystallographic and nuclear magnetic resonance (NMR) solution studies show a well-defined dimer. Differences in structure and dynamics between the X-ray and NMR structural ensembles are found in three loop regions, two of which undergo motions that are of functional relevance. The same segments also show functionally relevant dynamics in the distantly related CcdB family despite divergence of function. NMR chemical shift mapping and analysis of residue conservation in the MazF family suggests a conserved mode for the inhibition of MazF by MazE.
Collapse
Affiliation(s)
- Valentina Zorzini
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ariel Talavera
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ambrose Cheung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Nico A J van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Tripathi A, Dewan PC, Siddique SA, Varadarajan R. MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 2014; 289:4191-205. [PMID: 24375411 PMCID: PMC3924284 DOI: 10.1074/jbc.m113.510511] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/24/2013] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.
Collapse
Affiliation(s)
- Arti Tripathi
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Pooja C. Dewan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Shahbaz A. Siddique
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P. O., Bangalore 560 004, India
| |
Collapse
|
23
|
Larson AS, Hergenrother PJ. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Biochemistry 2013; 53:188-201. [PMID: 24279911 DOI: 10.1021/bi4008098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Staphylococcus aureus chromosome harbors two homologues of the YefM-YoeB toxin-antitoxin (TA) system. The toxins YoeBSa1 and YoeBSa2 possess ribosome-dependent ribonuclease (RNase) activity in Escherichia coli. This activity is similar to that of the E. coli toxin YoeBEc, an enzyme that, in addition to ribosome-dependent RNase activity, possesses ribosome-independent RNase activity in vitro. To investigate whether YoeBSa1 is also a ribosome-independent RNase, we expressed YoeBSa1 using a novel strategy and characterized its in vitro RNase activity, sequence specificity, and kinetics. Y88 of YoeBSa1 was critical for in vitro activity and cell culture toxicity. This residue was mutated to o-nitrobenzyl tyrosine (ONBY) via unnatural amino acid mutagenesis. YoeBSa1-Y88ONBY could be expressed in the absence of the antitoxin YefMSa1 in E. coli. Photocaged YoeBSa1-Y88ONBY displayed UV light-dependent RNase activity toward free mRNA in vitro. The in vitro ribosome-independent RNase activity of YoeBSa1-Y88ONBY, YoeBSa1-Y88F, and YoeBSa1-Y88TAG was significantly reduced or abolished. In contrast to YoeBEc, which cleaves RNA at both adenosine and guanosine with a preference for adenosine, YoeBSa1 cleaved mRNA specifically at guanosine. Using this information, a fluorometric assay was developed and used to determine the kinetic parameters for ribosome-independent RNA cleavage by YoeBSa1.
Collapse
Affiliation(s)
- Amy S Larson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
24
|
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 2013; 52:447-58. [PMID: 24120662 DOI: 10.1016/j.molcel.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.
Collapse
|
25
|
Abstract
Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.
Collapse
|
26
|
Park JH, Yoshizumi S, Yamaguchi Y, Wu KP, Inouye M. ACA-specific RNA sequence recognition is acquired via the loop 2 region of MazF mRNA interferase. Proteins 2013; 81:874-83. [PMID: 23280569 DOI: 10.1002/prot.24246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/25/2012] [Accepted: 12/11/2012] [Indexed: 11/09/2022]
Abstract
MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF-ec) cleaves RNA at A^CA. To date, a large number of MazF homologs that cleave RNA at specific three- to seven-base sequences have been identified from bacteria to archaea. MazF-ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate-binding site. Here, we investigated the role of the two loops in MazF-ec, which are closely associated with the interface of the MazF-ec dimer. We examined whether exchanging the loop regions of MazF-ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF-mx) and MazF from Mycobacterium tuberculosis (MazF-mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF-ec with loop 2 regions from either MazF-mx or MazF-mt3 created a new cleavage sequence at (A/U)(A/U)AA^C in addition to the original cleavage site, A^CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA^C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications.
Collapse
Affiliation(s)
- Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon-gun, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Ribonucleases in bacterial toxin-antitoxin systems. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:523-31. [PMID: 23454553 DOI: 10.1016/j.bbagrm.2013.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea and play important roles in a diverse range of cellular activities. TA systems have been broadly classified into 5 types and the targets of the toxins are diverse, but the most frequently used cellular target is mRNA. Toxins that target mRNA to inhibit translation can be classified as ribosome-dependent or ribosome-independent RNA interferases. These RNA interferases are sequence-specific endoribonucleases that cleave RNA at specific sequences. Despite limited sequence similarity, ribosome-independent RNA interferases belong to a limited number of structural classes. The MazF structural family includes MazF, Kid, ParE and CcdB toxins. MazF members cleave mRNA at 3-, 5- or 7-base recognition sequences in different bacteria and have been implicated in controlling cell death (programmed) and cell growth, and cellular responses to nutrient starvation, antibiotics, heat and oxidative stress. VapC endoribonucleases belong to the PIN-domain family and inhibit translation by either cleaving tRNA(fMet) in the anticodon stem loop, cleaving mRNA at -AUA(U/A)-hairpin-G- sequences or by sequence-specific RNA binding. VapC has been implicated in controlling bacterial growth in the intracellular environment and in microbial adaptation to nutrient limitation (nitrogen, carbon) and heat shock. ToxN shows structural homology to MazF and is also a sequence-specific endoribonuclease. ToxN confers phage resistance by causing cell death upon phage infection by cleaving cellular and phage RNAs, thereby interfering with bacterial and phage growth. Notwithstanding our recent progress in understanding ribonuclease action and function in TA systems, the environmental triggers that cause release of the toxin from its cognate antitoxin and the precise cellular function of these systems in many bacteria remain to be discovered. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
28
|
Qin S, Zhou HX. Structural models of protein-DNA complexes based on interface prediction and docking. Curr Protein Pept Sci 2012; 12:531-9. [PMID: 21787304 DOI: 10.2174/138920311796957694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/01/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022]
Abstract
Protein-DNA interactions are the physical basis of gene expression and DNA modification. Structural models that reveal these interactions are essential for their understanding. As only a limited number of structures for protein-DNA complexes have been determined by experimental methods, computation methods provide a potential way to fill the need. We have developed the DISPLAR method to predict DNA binding sites on proteins. Predicted binding sites have been used to assist the building of structural models by docking, either by guiding the docking or by selecting near-native candidates from the docked poses. Here we applied the DISPLAR method to predict the DNA binding sites for 20 DNA-binding proteins, which have had their DNA binding sites characterized by NMR chemical shift perturbation. For two of these proteins, the structures of their complexes with DNA have also been determined. With the help of the DISPLAR predictions, we built structural models for these two complexes. Evaluations of both the DNA binding sites for 20 proteins and the structural models of the two protein-DNA complexes against experimental results demonstrate the significant promise of our model-building approach.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
29
|
Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J Bacteriol 2012; 194:3464-74. [PMID: 22544268 DOI: 10.1128/jb.00217-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an important, emerging nosocomial pathogen. The transition from harmless colonization to disease is typically preceded by antimicrobial therapy, which alters the balance of the intestinal flora, enabling C. difficile to proliferate in the colon. One of the most perplexing aspects of the C. difficile infectious cycle is its ability to survive antimicrobial therapy and transition from inert colonization to active infection. Toxin-antitoxin (TA) systems have been implicated in facilitating persistence after antibiotic treatment. We identified only one TA system in C. difficile strain 630 (epidemic type X), designated MazE-cd and MazF-cd, a counterpart of the well-characterized Escherichia coli MazEF TA system. This E. coli MazF toxin cleaves mRNA at ACA sequences, leading to global mRNA degradation, growth arrest, and death. Likewise, MazF-cd expression in E. coli or Clostridium perfringens resulted in growth arrest. Primer extension analysis revealed that MazF-cd cleaved RNA at the five-base consensus sequence UACAU, suggesting that the mRNAs susceptible to cleavage comprise a subset of total mRNAs. In agreement, we observed differential cleavage of several mRNAs by MazF-cd in vivo, revealing a direct correlation between the number of cleavage recognition sites within a given transcript and its susceptibility to degradation by MazF-cd. Interestingly, upon detailed statistical analyses of the C. difficile transcriptome, the major C. difficile virulence factor toxin B (TcdB) and CwpV, a cell wall protein involved in aggregation, were predicted to be significantly resistant to MazF-cd cleavage.
Collapse
|
30
|
Williams JJ, Hergenrother PJ. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 2012; 20:291-8. [PMID: 22445361 DOI: 10.1016/j.tim.2012.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
Abstract
Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation.
Collapse
Affiliation(s)
- Julia J Williams
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
32
|
Shapira A, Shapira S, Gal-Tanamy M, Zemel R, Tur-Kaspa R, Benhar I. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS One 2012; 7:e32320. [PMID: 22359682 PMCID: PMC3281143 DOI: 10.1371/journal.pone.0032320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases.
Collapse
Affiliation(s)
- Assaf Shapira
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Shiran Shapira
- The Integrated Cancer Prevention Center, Tel Aviv Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Meital Gal-Tanamy
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Romy Zemel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Ran Tur-Kaspa
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
- Department of Medicine D and Liver Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
33
|
Zorzini V, Haesaerts S, Cheung A, Loris R, van Nuland NAJ. 1H, 13C, and 15N backbone and side-chain chemical shift assignment of the staphylococcal MazF mRNA interferase. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:157-160. [PMID: 21213075 DOI: 10.1007/s12104-010-9290-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
MazF proteins are ribonucleases that cleave mRNA with high sequence-specificity as part of bacterial stress response and that are neutralized by the action of the corresponding antitoxin MazE. Prolonged activation of the toxin MazF leads to cell death. Several mazEF modules from gram-negative bacteria have been characterized in terms of catalytic activity, auto-regulation mechanism and structure, but less is known about their distant relatives found in gram-positive organisms. Currently, no solution NMR structure is available for any wild-type MazF toxin. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of this toxin from the pathogen bacterium Staphylococcus aureus. The BMRB accession number is 17288.
Collapse
Affiliation(s)
- Valentina Zorzini
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | |
Collapse
|
34
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
36
|
Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. RNA toxins: mediators of stress adaptation and pathogen defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:890-903. [PMID: 21809449 DOI: 10.1002/wrna.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA toxins are a group of enzymes primarily synthesized by bacteria, fungi, and plants that either cleave or depurinate RNA molecules. These proteins may be divided according to their RNA substrates: ribotoxins are nucleases that cleave ribosomal RNA (rRNA), ribosome inactivating proteins are glycosidases that remove a base from rRNA, messenger RNA (mRNA) interferases are nucleases that cleave mRNAs, and anticodon nucleases cleave transfer RNAs (tRNAs). These modifications to the RNAs may substantially alter gene expression and translation rates. Given that some of these enzymes cause cell death, it has been suggested that they function mainly in defense, either to kill competing cells or to elicit suicide and thereby limit pathogen spread from infected cells. Although good correlations have been drawn between their enzymatic functions and toxicity, recent work has shown that some RNA toxins cause apoptosis in the absence of damage to RNA and that defense against pathogens can be achieved without host cell death. Moreover, a decrease in cellular translation rate, insufficient to cause cell death, allows some organisms to adapt to stress and environmental change. Although ascribing effects observed in vitro to the roles of these toxins in nature has been challenging, recent results have expanded our understanding of their modes of action, and emphasized the importance of these toxins in development, adaptation to stress and defense against pathogens.
Collapse
|
37
|
Hayes F. Moving in for the kill: activation of an endoribonuclease toxin by a quorum-sensing peptide. Mol Cell 2011; 41:617-8. [PMID: 21419335 DOI: 10.1016/j.molcel.2011.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular death factor is a quorum-sensing pentapeptide that relays cell density information to an intracellular toxin-antitoxin complex. In this issue of Molecular Cell, Belitsky et al. (2011) demonstrate that the peptide competes with the antitoxin for toxin binding and directly activates the latter's endoribonuclease activity.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M17DN, UK.
| |
Collapse
|
38
|
Zorzini V, Haesaerts S, Donegan NP, Fu Z, Cheung AL, van Nuland NAJ, Loris R. Crystallization of the Staphylococcus aureus MazF mRNA interferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:386-9. [PMID: 21393849 PMCID: PMC3053169 DOI: 10.1107/s1744309111000571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/05/2011] [Indexed: 11/11/2022]
Abstract
mazEF modules encode toxin-antitoxin pairs that are involved in the bacterial stress response through controlled and specific degradation of mRNA. Staphylococcus aureus MazF and MazE constitute a unique toxin-antitoxin module under regulation of the sigB operon. A MazF-type mRNA interferase is combined with an antitoxin of unknown fold. Crystals of S. aureus MazF (SaMazF) were grown in space group P2(1)2(1)2(1). The crystals diffracted to 2.1 Å resolution and are likely to contain two SaMazF dimers in the asymmetric unit.
Collapse
Affiliation(s)
- Valentina Zorzini
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Niles P. Donegan
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Zhibiao Fu
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Nico A. J. van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
39
|
Blower TR, Salmond GPC, Luisi BF. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin–antitoxin partners. Curr Opin Struct Biol 2011; 21:109-18. [DOI: 10.1016/j.sbi.2010.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 01/21/2023]
|
40
|
Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates. PLoS One 2010; 5:e11289. [PMID: 20585658 PMCID: PMC2890582 DOI: 10.1371/journal.pone.0011289] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/21/2010] [Indexed: 01/24/2023] Open
Abstract
Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, Delta relB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | - Adela G. de la Campa
- Centro Nacional de Microbiología and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
41
|
Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure, and function. J Biol Chem 2009; 285:7254-70. [PMID: 20022964 DOI: 10.1074/jbc.m109.073387] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus anthracis genome harbors a toxin-antitoxin (TA) module encoding pemI (antitoxin) and pemK (toxin). This study describes the rPemK as a potent ribonuclease with a preference for pyrimidines (C/U), which is consistent with our previous study that demonstrated it as a translational attenuator. The in silico structural modeling of the PemK in conjunction with the site-directed mutagenesis confirmed the role of His-59 and Glu-78 as an acid-base couple in mediating the ribonuclease activity. The rPemK is shown to form a complex with the rPemI, which is in line with its function as a TA module. This rPemI-rPemK complex becomes catalytically inactive when both the proteins interact in a molar stoichiometry of 1. The rPemI displays vulnerability to proteolysis but attains conformational stability only upon rPemK interaction. The pemI-pemK transcript is shown to be up-regulated upon stress induction with a concomitant increase in the amount of PemK and a decline in the PemI levels, establishing the role of these modules in stress. The artificial perturbation of TA interaction could unleash the toxin, executing bacterial cell death. Toward this end, synthetic peptides are designed to disrupt the TA interaction. The peptides are shown to be effective in abrogating TA interaction in micromolar range in vitro. This approach can be harnessed as a potential antibacterial strategy against anthrax in the future.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Laboratory of Molecular Biology and Genetic Engineering, , School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
42
|
Yamaguchi Y, Inouye M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:467-500. [PMID: 19215780 DOI: 10.1016/s0079-6603(08)00812-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. One such toxin, MazF, is an ACA-specific endoribonuclease, termed "mRNA interferase."E. coli contains other mRNA interferases with different sequence specificities, which are considered to play important roles in growth regulation under stress conditions, and also in eliminating stress-damaged cells from a population. Recently, MazF homologues with 5-base recognition sequences have been identified, for example, those from Mycobacterium tuberculosis. These sequences are significantly underrepresented in the genes for protein families playing a role in the immunity and pathogenesis of M. tuberculosis. An mRNA interferase in Myxococcus xanthus is essential for programmed cell death during fruiting body formation. We propose that mRNA interferases play roles not only in cell growth regulation and programmed cell death, but also in regulation of specific gene expression (either positively or negatively) in bacteria.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Oberer M, Zangger K, Gruber K, Keller W. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci 2007; 16:1676-88. [PMID: 17656583 PMCID: PMC2203376 DOI: 10.1110/ps.062680707] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ParD is the antidote of the plasmid-encoded toxin-antitoxin (TA) system ParD-ParE. These modules rely on differential stabilities of a highly expressed but labile antidote and a stable toxin expressed from one operon. Consequently, loss of the coding plasmid results in loss of the protective antidote and poisoning of the cell. The antidote protein usually also exhibits an autoregulatory function of the operon. In this paper, we present the solution structure of ParD. The repressor activity of ParD is mediated by the N-terminal half of the protein, which adopts a ribbon-helix-helix (RHH) fold. The C-terminal half of the protein is unstructured in the absence of its cognate binding partner ParE. Based on homology with other RHH proteins, we present a model of the ParD-DNA interaction, with the antiparallel beta-strand being inserted into the major groove of DNA. The fusion of the N-terminal DNA-binding RHH motif to the toxin-binding unstructured C-terminal domain is discussed in its evolutionary context.
Collapse
Affiliation(s)
- Monika Oberer
- Institut für Chemie, Arbeitsgruppe Strukturbiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
44
|
Abstract
The mazEF homologs of Staphylococcus aureus, designated mazEF(sa), have been shown to cotranscribe with the sigB operon under stress conditions. In this study, we showed that MazEF(Sa), as with their Escherichia coli counterparts, compose a toxin-antitoxin module wherein MazF(Sa) leads to rapid cell growth arrest and loss in viable CFU upon overexpression. MazF(Sa) is a novel sequence-specific endoribonuclease which cleaves mRNA to inhibit protein synthesis. Using ctpA mRNA as the model substrate both in vitro and in vivo, we demonstrated that MazF(Sa) cleaves single-strand RNA preferentially at the 5' side of the first U or 3' side of the second U residue within the consensus sequences VUUV' (where V and V' are A, C, or G and may or may not be identical). Binding studies confirmed that the antitoxin MazE(Sa) binds MazF(Sa) to form a complex to inhibit the endoribonuclease activity of MazF(Sa). Contrary to the system in E. coli, exposure to selected antibiotics augmented mazEF(sa) transcription, akin to what one would anticipate from the environmental stress response of the sigB system. These data indicate that the mazEF system of S. aureus differs from the gram-negative counterparts with respect to mRNA cleavage specificity and antibiotic stresses.
Collapse
|
45
|
Abstract
Although plasmid-borne and chromosomal toxin-antitoxin (TA) operons have been known for some time, the recent identification of mRNA as the target of at least two different classes of toxins has led to a dramatic renewal of interest in these systems as mediators of stress responses. Members of the MazF/PemK family, the so-called mRNA interferases, are ribonucleases that inhibit translation by destroying cellular mRNAs under stress conditions, while the founder member of the RelE family promotes cleavage of mRNAs through the ribosome. Detailed structures of these enzymes, often in complex with their inhibitors, have provided vital clues to their mechanisms of action. The primary role and regulation of these systems has been the subject of some controversy. One model suggests they play a beneficial role by wiping the slate clean and preventing wasteful energy consumption by the translational apparatus during adaptation to stress conditions, while another favours the idea that their main function is programmed cell death. The two models might not be mutually exclusive if a side-effect of prolonged exposure to toxic RNase activity without de novo synthesis of the inhibitor were a state of dormancy for which we do not yet understand the key to recovery. In this review, I discuss the recent developments in the rapidly expanding field of what I refer to as bacterial shutdown decay.
Collapse
Affiliation(s)
- Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
46
|
Zhu L, Zhang Y, Teh JS, Zhang J, Connell N, Rubin H, Inouye M. Characterization of mRNA interferases from Mycobacterium tuberculosis. J Biol Chem 2006; 281:18638-43. [PMID: 16611633 DOI: 10.1074/jbc.m512693200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA interferases are sequence-specific endoribonucleases encoded by the toxin-antitoxin systems in the bacterial genomes. MazF from Escherichia coli has been shown to be an mRNA interferase that specifically cleaves at ACA sequences in single-stranded RNAs. It has been shown that MazF induction in E. coli effectively inhibits protein synthesis leading to cell growth arrest in the quasidormant state. Here we have demonstrated that Mycobacterium tuberculosis contains at least seven genes encoding MazF homologues (MazF-mt1 to -mt7), four of which (MazF-mt1, -mt3, -mt4, and -mt6) caused cell growth arrest when induced in E. coli. MazF-mt1 and MazF-mt6 were purified and characterized for their mRNA interferase specificities. We showed that MazF-mt1 preferentially cleaves the era mRNA between U and A in UAC triplet sequences, whereas MazF-mt6 preferentially cleaves U-rich regions in the era mRNA both in vivo and in vitro. These results indicate that M. tuberculosis contains sequence-specific mRNA interferases, which may play a role in the persistent dormancy of this devastating pathogen in human tissues.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Inouye M. The discovery of mRNA interferases: Implication in bacterial physiology and application to biotechnology. J Cell Physiol 2006; 209:670-6. [PMID: 17001682 DOI: 10.1002/jcp.20801] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. This raises intriguing questions as to why E. coli contains so many toxin genes and what are their roles in bacterial physiology. Among these, MazF has been shown to be a sequence-specific endoribonuclease, which cleaves mRNAs at ACA sequences to completely inhibit protein synthesis. MazF is therefore called mRNA interferase. A number of other mRNA interferases with different cleavage specificities have been discovered not only in E. coli, but also in other bacteria including Mycobacterium tuberculosis. Induction of MazF in the cell leads to cellular dormancy termed quasi-dormancy. In spite of complete cell growth inhibition, cells in the quasi-dormant state are fully capable of energy metabolism, amino acids and nucleic acids biosynthesis and RNA and protein synthesis. The quasi-dormancy may be implicated in cell survival under stress conditions and may play a major role in pathogenicity of M. tuberculosis. The quasi-dormant cells provide an intriguing novel biotechnological system producing only a protein of interest in a high yield. MazF causing Bak-dependent programmed cell death in mammalian cells may be used as a tool for gene therapy against cancer and AIDS. The discovery of a novel way to interfere with mRNA function by mRNA interferases opens a wide variety of avenues in basic as well as applied and clinical sciences.
Collapse
Affiliation(s)
- Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|