1
|
Cárdenas-Guerra RE, Montes-Flores O, Nava-Pintor EE, Reséndiz-Cardiel G, Flores-Pucheta CI, Rodríguez-Gavaldón YI, Arroyo R, Bottazzi ME, Hotez PJ, Ortega-López J. Chagasin from Trypanosoma cruzi as a molecular scaffold to express epitopes of TSA-1 as soluble recombinant chimeras. Protein Expr Purif 2024; 218:106458. [PMID: 38423156 DOI: 10.1016/j.pep.2024.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.
Collapse
Affiliation(s)
- Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Edgar Ezequiel Nava-Pintor
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Gerardo Reséndiz-Cardiel
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Yasmín Irene Rodríguez-Gavaldón
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
3
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
4
|
Toman NP, Kamenik AS, Santos LH, Hofer F, Liedl KR, Ferreira RS. Profiling selectivity of chagasin mutants towards cysteine proteases cruzain or cathepsin L through molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5940-5952. [PMID: 32715978 DOI: 10.1080/07391102.2020.1796797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chagasin, an endogenous cysteine protease inhibitor from Trypanosoma cruzi, can control the activity of the parasitic cruzain and its homologous human cathepsin L. While chagasin inhibits both enzymes with similar potency, mutations have different effects on binding to these enzymes. Mutants T31A and T31A/T32A bind well to cathepsin L, but their affinity for cruzain drops ∼40 to 140-fold. On the other hand, the mutant W93A binds well to cruzain, but it loses potency against cathepsin L. Here, we employed molecular dynamics simulations to understand the selectivity in inhibition of cruzain or cathepsin L by chagasin mutants W93A, T31A, and T31A/T32A. Our results allowed profiling the nonbonded interactions in the interfaces of each mutant with these cysteine proteases. Additionally, we observed differences in the binding conformation of the chagasin loops L2 and L6 of the W93A mutant, favoring interactions with cruzain and reducing interactions with cathepsin L. These differences are associated with a partial dissociation of the W93A-cathepsin L complex, providing a likely cause for the selectivity of the mutant W93A towards cruzain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Núbia Prates Toman
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Sophia Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lucianna Helene Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|
6
|
Lee GM, Balouch E, Goetz DH, Lazic A, McKerrow JH, Craik CS. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy. Biochemistry 2012. [PMID: 23181936 DOI: 10.1021/bi301305k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.
Collapse
Affiliation(s)
- Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA
| | | | | | | | | | | |
Collapse
|
7
|
Cryptostatin, a chagasin-family cysteine protease inhibitor of Cryptosporidium parvum. Parasitology 2012; 139:1029-37. [PMID: 22444160 DOI: 10.1017/s0031182012000297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cysteine proteases of pathogenic protozoan parasites play pivotal roles in the life cycle of parasites, but strict regulation of their activities is also essential for maintenance of parasite physiology and interaction with hosts. In this study, we identified and characterized cryptostatin, a novel inhibitor of cysteine protease (ICP) of Cryptosporidium parvum. Cryptostatin showed low sequence identity to other chagasin-family ICPs, but 3 motifs (NPTTG, GXGG, and RPW/F motifs), which are evolutionarily conserved in chagasin-family ICPs, were found in the sequence. The overall structure of cryptostatin consisted of 8 β-strands that progressed in parallel and closely resembled the immunoglobulin fold. Recombinant cryptostatin inhibited various cysteine proteases, including papain, human cathepsin B, human cathepsin L, and cryptopain-1, with K i's in the picomolar range. Cryptostatin was active over a wide pH range and was highly stable under physiological conditions. The protein was thermostable and retained its inhibitory activity even after incubation at 95°C. Cryptostatin formed tight complexes with cysteine proteases, so the complexes remained intact in the presence of sodium dodecyl sulfate and β-mercaptoethanol, but they were disassembled by boiling. An immunogold electron microscopy analysis demonstrated diffused localization of cryptostatin within oocystes and meronts, but not within trophozoites, which suggests a possible role for cryptostatin in host cell invasion by C. parvum.
Collapse
|
8
|
Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, Heussler VT, Rennenberg A, Hilgenfeld R. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Structure 2011; 19:919-29. [PMID: 21742259 DOI: 10.1016/j.str.2011.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Plasmodium cysteine proteases are essential for host-cell invasion and egress, hemoglobin degradation, and intracellular development of the parasite. The temporal, site-specific regulation of cysteine-protease activity is a prerequisite for survival and propagation of Plasmodium. Recently, a new family of inhibitors of cysteine proteases (ICPs) with homologs in at least eight Plasmodium species has been identified. Here, we report the 2.6 Å X-ray crystal structure of the C-terminal, inhibitory domain of ICP from P. berghei (PbICP-C) in a 1:1 complex with falcipain-2, an important hemoglobinase of Plasmodium. The structure establishes Plasmodium ICP as a member of the I42 class of chagasin-like protease inhibitors but with large insertions and differences in the binding mode relative to other family members. Furthermore, the PbICP-C structure explains why host-cell cathepsin B-like proteases and, most likely, also the protease-like domain of Plasmodium SERA5 (serine-repeat antigen 5) are no targets for ICP.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jaskolski M. A new piece in the 3D Jigsaw of malaria parasite. Structure 2011; 19:901-2. [PMID: 21742255 DOI: 10.1016/j.str.2011.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The structural insights presented by Hansen et al. in this issue of Structure on how a key malaria parasite protease is blocked by its inhibitor may provide a flicker of hope in the desperate struggle to develop drugs against one of the most severe health problems.
Collapse
Affiliation(s)
- Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University and Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
10
|
Hansen G, Schwarzloh B, Rennenberg A, Heussler VT, Hilgenfeld R. The macromolecular complex of ICP and falcipain-2 from Plasmodium: preparation, crystallization and preliminary X-ray diffraction analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1406-10. [PMID: 22102243 DOI: 10.1107/s1744309111034592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/22/2011] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4(3), with unit-cell parameters a = b = 71.15, c = 120.09 Å. A complete diffraction data set was collected to a resolution of 2.6 Å.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
11
|
Alvarez VE, Niemirowicz GT, Cazzulo JJ. The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:195-206. [PMID: 21621652 DOI: 10.1016/j.bbapap.2011.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca(2+)-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vanina E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH, Universidad Nacional de San Martín-CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
12
|
Šarić M, Irmer H, Eckert D, Bär AK, Bruchhaus I, Scholze H. The cysteine protease inhibitors EhICP1 and EhICP2 perform different tasks in the regulation of endogenous protease activity in trophozoites of Entamoeba histolytica. Protist 2011; 163:116-28. [PMID: 21440496 DOI: 10.1016/j.protis.2011.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Trophozoites of E. histolytica are equipped with two chagasin-like cysteine protease inhibitors, EhICP1 and EhICP2, also known as amoebiasin 1 and 2. Expression studies using E. invadens as model organism showed that corresponding mRNAs were detectable in both life stages of the parasite, cyst and trophozoite state. Unlike EhICP1 known to act in the cytosol, EhICP2 co-localized with cysteine protease EhCP-A1 in lysosome-like vesicles, as demonstrated by immunofluorescence microscopy. Silencing or overexpressing of the two inhibitors did not show any effect on morphology and viability of the trophozoites. Overexpression of the EhICPs, however, although dramatically dampening the proteolytic activity of cell extracts from the corresponding cell lines, did not influence expression rate or localization of the major amoebic cysteine proteases as well as phagocytosis and digestion of erythrocytes. Activity gels of cell extracts from strains overexpressing ehicp1 showed a drastically reduced activity of EhCP-A1 suggesting a high affinity of EhICP1 towards this protease. From these data, we propose that EhCP-A1 accidentally released into the cytosol is the main target of EhICP1, whereas EhICP2, beside its role in house-keeping processes, may control the proteolytic processing of other hydrolases or fulfils other tasks different from protease inhibition.
Collapse
Affiliation(s)
- Mirela Šarić
- Faculty of Biology, Department of Biochemistry, University of Osnabrueck, Barbarastr. 13, D-49069 Osnabrueck, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Gene 2010; 471:45-52. [PMID: 20951777 DOI: 10.1016/j.gene.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight β-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.
Collapse
|
14
|
Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, Deschermeier C, Turk V, Hilgenfeld R, Heussler VT. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog 2010; 6:e1000825. [PMID: 20361051 PMCID: PMC2845656 DOI: 10.1371/journal.ppat.1000825] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.
Collapse
Affiliation(s)
- Annika Rennenberg
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Christine Lehmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Tina Witt
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Krishna Nagarajan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Christina Deschermeier
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Vito Turk
- Josef Stefan Institute, Department of Biochemistry, Molecular and Structural Biology, Ljubljana, Slovenia
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Volker T. Heussler
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Redzynia I, Ljunggren A, Bujacz A, Abrahamson M, Jaskolski M, Bujacz G. Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases. FEBS J 2009; 276:793-806. [PMID: 19143838 DOI: 10.1111/j.1742-4658.2008.06824.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complex of chagasin, a protein inhibitor from Trypanosoma cruzi, and papain, a classic family C1 cysteine protease, has been crystallized. Kinetic studies revealed that inactivation of papain by chagasin is very fast (k(on) = 1.5 x 10(6) M(-1) x s(-1)), and results in the formation of a very tight, reversible complex (K(i) = 36 pM), with similar or better rate and equilibrium constants than those for cathepsins L and B. The high-resolution crystal structure shows an inhibitory wedge comprising three loops, which forms a number of contacts responsible for the high-affinity binding. Comparison with the structure of papain in complex with human cystatin B reveals that, despite entirely different folding, the two inhibitors utilize very similar atomic interactions, leading to essentially identical affinities for the enzyme. Comparisons of the chagasin-papain complex with high-resolution structures of chagasin in complexes with cathepsin L, cathepsin B and falcipain allowed the creation of a consensus map of the structural features that are important for efficient inhibition of papain-like enzymes. The comparisons also revealed a number of unique interactions that can be used to design enzyme-specific inhibitors. As papain exhibits high structural similarity to the catalytic domain of the T. cruzi enzyme cruzipain, the present chagasin-papain complex provides a reliable model of chagasin-cruzipain interactions. Such information, coupled with our identification of specificity-conferring interactions, should be important for the development of drugs for treatment of the devastating Chagas disease caused by this parasite.
Collapse
Affiliation(s)
- Izabela Redzynia
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Eschenlauer SCP, Faria MS, Morrison LS, Bland N, Ribeiro-Gomes FL, DosReis GA, Coombs GH, Lima APCA, Mottram JC. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major. Cell Microbiol 2009; 11:106-20. [PMID: 19016791 PMCID: PMC2659362 DOI: 10.1111/j.1462-5822.2008.01243.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K(i)s between 7.7 and 83 nM. L. major ISP2-ISP3 double null mutants (Deltaisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Deltaisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Deltaisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Deltaisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.
Collapse
Affiliation(s)
- Sylvain C P Eschenlauer
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Marilia S Faria
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Lesley S Morrison
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Nicolas Bland
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Flavia L Ribeiro-Gomes
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - George A DosReis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of StrathclydeGlasgow G4 0NR, UK
| | - Ana Paula C A Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, RJ 21949-900, Brazil
| | - Jeremy C Mottram
- Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| |
Collapse
|
17
|
Scharfstein J, Monteiro AC, Schmitz V, Svensjö E. Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway. Biol Chem 2008; 389:1015-24. [PMID: 18979626 DOI: 10.1515/bc.2008.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tissue injury by pathogens induces a stereotyped inflammatory response that alerts the innate immune system of the potential threat to host integrity. Here, we review knowledge emerging from investigations of the role of the kinin system in the mechanisms that link innate to the adaptive phase of immunity. Progress in this field started with results demonstrating that bradykinin is an endogenous danger signal that induces dendritic cell (DC) maturation via G protein-coupled bradykinin B2 receptors (B2R). The immunostimulatory role of kinins was recently confirmed in two different mouse models of Trypanosoma cruzi infection, a parasitic protozoan equipped with kinin-releasing cysteine proteases (cruzipain). Infection by the intraperitoneal route showed that DCs from B2R-/- mice (susceptible phenotype) failed to sense kinin 'danger' signals proteolytically released by parasites, explaining why these mutant mice display lower frequencies of interferon-gamma-producing effector T-cells. Studies of the dynamics of inflammation in the subcutaneous model of infection revealed that the balance between cruzipain and angiotensin-converting enzyme, respectively acting as kinin-generating and degrading enzymes, governs extent of DC maturation and TH1 development via the B2R-dependent innate pathway. Studies of the kinin role in immunity may shed light on the relationship between proteolytic networks and the cytokine circuits that guide T-cell development.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21949-900 Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
18
|
Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzicysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway. Biol Chem 2008. [DOI: 10.1515/bc.2008.126_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Cordle J, Johnson S, Tay JZY, Roversi P, Wilkin M, Hernandez-Diaz B, Shimizu H, Jensen S, Whiteman P, Jin B, Redfield C, Baron M, Lea SM, Handford PA. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol 2008; 15:849-57. [PMID: 18660822 PMCID: PMC2669539 DOI: 10.1038/nsmb.1457] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 06/05/2008] [Indexed: 12/28/2022]
Abstract
The Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding region of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1(DSL-EGF3)). The structure reveals a highly conserved face of the DSL domain, and we show, by functional analysis of Drosophila melanogster ligand mutants, that this surface is required for both cis- and trans-regulatory interactions with Notch. We also identify, using NMR, a surface of Notch-1 involved in J-1(DSL-EGF3) binding. Our data imply that cis- and trans-regulation may occur through the formation of structurally distinct complexes that, unexpectedly, involve the same surfaces on both ligand and receptor.
Collapse
Affiliation(s)
- Jemima Cordle
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Joyce Zi Yan Tay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Pietro Roversi
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marian Wilkin
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Stopford Road, Manchester M13 9PT, UK
| | - Beatriz Hernandez-Diaz
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Stopford Road, Manchester M13 9PT, UK
| | - Hideyuki Shimizu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Stopford Road, Manchester M13 9PT, UK
| | - Sacha Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Pat Whiteman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, 17 West Changle Road, Xi’an, Shaanxi 710032, PR China
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Baron
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Stopford Road, Manchester M13 9PT, UK
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Penny A. Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
20
|
Redzynia I, Ljunggren A, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G. Displacement of the occluding loop by the parasite protein, chagasin, results in efficient inhibition of human cathepsin B. J Biol Chem 2008; 283:22815-25. [PMID: 18515357 DOI: 10.1074/jbc.m802064200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin B is a papain-like cysteine protease showing both endo- and exopeptidase activity, the latter due to a unique occluding loop that restricts access to the active site cleft. To clarify the mode by which natural protein inhibitors manage to overcome this obstacle, we have analyzed the structure and function of cathepsin B in complexes with the Trypanosoma cruzi inhibitor, chagasin. Kinetic analysis revealed that substitution of His-110e, which anchors the loop in occluding position, results in 3-fold increased chagasin affinity (Ki for H110A cathepsin B, 0.35 nm) due to an improved association rate (kon, 5 x 10(5) m(-1)s(-1)). The structure of chagasin in complex with cathepsin B was solved in two crystal forms (1.8 and 2.67 angstroms resolution), demonstrating that the occluding loop is displaced to allow chagasin binding with its three loops, L4, L2, and L6, spanning the entire active site cleft. The occluding loop is differently displaced in the two structures, indicating a large range of movement and adoption of conformations forced by the inhibitor. The area of contact is slightly larger than in chagasin complexes with the endopeptidase, cathepsin L. However, residues important for high affinity to both enzymes are mainly found in the outer loops L4 and L6 of chagasin. The chagasin-cathepsin B complex provides a structural framework for modeling and design of inhibitors for cruzipain, the parasite cysteine protease and a virulence factor in Chagas disease.
Collapse
Affiliation(s)
- Izabela Redzynia
- Faculty of Biotechnology and Food Sciences, Technical University of Lodz, 90-924 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
21
|
dos Reis FC, Smith BO, Santos CC, Costa TF, Scharfstein J, Coombs GH, Mottram JC, Lima APC. The role of conserved residues of chagasin in the inhibition of cysteine peptidases. FEBS Lett 2008; 582:485-90. [PMID: 18201565 PMCID: PMC2607524 DOI: 10.1016/j.febslet.2008.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 11/24/2022]
Abstract
We have evaluated the roles of key amino acids to the action of the natural inhibitor chagasin of papain-family cysteine peptidases. A W93A substitution decreased inhibitor affinity for human cathepsin L 100-fold, while substitutions of T31 resulted in 10-100-fold increases in the K(i) for cruzipain of Trypanosoma cruzi. A T31A/T32A double mutant had increased affinity for cathepsin L but not for cruzipain, while the T31-T32 deletion drastically affected inhibition of both human and parasite peptidases. These differential effects reflect the occurrence of direct interactions between chagasin and helix 8 of cathepsin L, interactions that do not occur with cruzipain.
Collapse
Affiliation(s)
- Flavia C.G. dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
| | - Brian O. Smith
- Divisions of Biochemistry and Molecular Biology, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Camila C. Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
- Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tatiana, F.R. Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
| | - Graham H. Coombs
- Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jeremy C. Mottram
- Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ana Paula C.A. Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
| |
Collapse
|
22
|
Scharfstein J, Lima APCA. Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi. Subcell Biochem 2008; 47:140-154. [PMID: 18512348 DOI: 10.1007/978-0-387-78267-6_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trypanosoma cruzi trypomastigotes rely on the structural diversity of the cruzipain family of cysteine proteases to infect and multiply in nonprofessional phagocytic cells. Herein, we will review studies demonstrating that the interplay of cruzipain with peptidase inhibitors modulate infection outcome in a variety of experimental settings. Studies with a panel of T. cruzi strains showed that parasite ability to invade human smooth muscle cells is influenced by the balance between cruzipain and chagasin, a tight binding endogenous inhibitor of papain-like cysteine proteases. Analysis of T. cruzi interaction with endothelial cells and cardiomyocytes indicated that parasite-induced activation of bradykinin receptors drive host cell invasion by [Ca2+]I-dependent pathways. Clues about the mechanisms underlying kinin generation in vivo by trypomastigotes came from analysis of the dynamics of edematogenic inflammation. Owing to plasma extravasation, the blood-borne kininogens accumulate in peripheral sites of infection. Upon diffusion in peripheral tissues, kininogens (i.e., type III cystatins) bind to heparan sulphate chains, thus constraining interactions of the cystatin-like inhibitory domains with cruzipain. The cell bound kininogens are then turned into facile substrates for cruzipain, which liberates kinins in peripheral tissues. Subjected to tight-regulation by kinin-degrading metallopeptidases, such as angiotensin converting enzyme, the short-lived kinin peptides play a dual role in the host-parasite balance. Rather than unilaterally stimulating pathogen infectivity via bradykinin receptors, the released kinins potently induce dendritic cell maturation, thus stimulating type 1 immune responses. In conclusion, the studies reviewed herein illustrate how regulation of parasite proteases may affect host-parasite equilibrium in the course of IT cruzi infection.
Collapse
Affiliation(s)
- Julio Scharfstein
- Lnstituto de Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.
| | | |
Collapse
|
23
|
Santos CC, Coombs GH, Lima APCA, Mottram JC. Role of the Trypanosoma brucei natural cysteine peptidase inhibitor ICP in differentiation and virulence. Mol Microbiol 2007; 66:991-1002. [PMID: 17944830 PMCID: PMC2680270 DOI: 10.1111/j.1365-2958.2007.05970.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2007] [Indexed: 11/29/2022]
Abstract
ICP is a chagasin-family natural tight binding inhibitor of Clan CA, family C1 cysteine peptidases (CPs). We investigated the role of ICP in Trypanosoma brucei by generating bloodstream form ICP-deficient mutants (Deltaicp). A threefold increase in CP activity was detected in lysates of Deltaicp, which was restored to the levels in wild type parasites by re-expression of the gene in the null mutant. Deltaicp displayed slower growth in culture and increased resistance to a trypanocidal synthetic CP inhibitor. More efficient exchange of the variant surface glycoprotein (VSG) to procyclin during differentiation from bloodstream to procyclic form was observed in Deltaicp, a phenotype that was reversed in the presence of synthetic CP inhibitors. Furthermore, we showed that degradation of anti-VSG IgG is abolished when parasites are pretreated with synthetic CP inhibitors, and that parasites lacking ICP degrade IgG more efficiently than wild type. In addition, Deltaicp reached higher parasitemia than wild type parasites in infected mice, suggesting that ICP modulates parasite infectivity. Taken together, these data suggest that CPs of T. brucei bloodstream form play a role in surface coat exchange during differentiation, in the degradation of internalized IgG and in parasite infectivity, and that their function is regulated by ICP.
Collapse
Affiliation(s)
- Camila C Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade UniversitariaRio de Janeiro, RJ, 21949-900, Brazil
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow120 University Place, Glasgow G12 8TA, UK.
| | - Graham H Coombs
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow120 University Place, Glasgow G12 8TA, UK.
| | - Ana Paula C A Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade UniversitariaRio de Janeiro, RJ, 21949-900, Brazil
| | - Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
24
|
Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, Fletterick RJ, Rosenthal PJ, Abrahamson M, Brinen LS, Rossi A, Sali A, McKerrow JH. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure 2007; 15:535-43. [PMID: 17502099 DOI: 10.1016/j.str.2007.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/01/2007] [Accepted: 03/20/2007] [Indexed: 11/19/2022]
Abstract
Protein inhibitors of proteolytic enzymes regulate proteolysis and prevent the pathological effects of excess endogenous or exogenous proteases. Cysteine proteases are a large family of enzymes found throughout the plant and animal kingdoms. Disturbance of the equilibrium between cysteine proteases and natural inhibitors is a key event in the pathogenesis of cancer, rheumatoid arthritis, osteoporosis, and emphysema. A family (I42) of cysteine protease inhibitors (http://merops.sanger.ac.uk) was discovered in protozoan parasites and recently found widely distributed in prokaryotes and eukaryotes. We report the 2.2 A crystal structure of the signature member of the I42 family, chagasin, in complex with a cysteine protease. Chagasin has a unique variant of the immunoglobulin fold with homology to human CD8alpha. Interactions of chagasin with a target protease are reminiscent of the cystatin family inhibitors. Protein inhibitors of cysteine proteases may have evolved more than once on nonhomologous scaffolds.
Collapse
Affiliation(s)
- Stephanie X Wang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ljunggren A, Redzynia I, Alvarez-Fernandez M, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G. Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. J Mol Biol 2007; 371:137-53. [PMID: 17561110 DOI: 10.1016/j.jmb.2007.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Anna Ljunggren
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sato D, Nakada-Tsukui K, Okada M, Nozaki T. Two cysteine protease inhibitors, EhICP1 and 2, localized in distinct compartments, negatively regulate secretion inEntamoeba histolytica. FEBS Lett 2006; 580:5306-12. [PMID: 16979632 DOI: 10.1016/j.febslet.2006.08.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 08/27/2006] [Accepted: 08/28/2006] [Indexed: 11/19/2022]
Abstract
The enteric protozoan parasite Entamoeba histolytica uniquely possesses two isotypes of ICPs, a novel class of inhibitors for cysteine proteases. These two EhICPs showed a remarkable difference in the ability to inhibit cysteine protease (CP) 5, a well-established virulence determinant, whereas they equally inhibited CP1 and CP2. Immunofluorescence imaging and cellular fractionation showed that EhICP1 and EhICP2 are localized to distinct compartments. While EhICP1 is localized to the soluble cytosolic fraction, EhICP2 is targeted from lysosomes to phagosomes upon erythrocyte engulfment. Overexpression of either EhICP1 or EhICP2 caused reduction of intracellular CP activity, but not the amount of CP, and decrease in the secretion of all major CPs, suggesting that both EhICPs are involved in the trafficking and/or interference with the major CP activity. These data indicate that the two EhICPs, present in distinct subcellular compartments, negatively regulate CP secretion, and, thus, the virulence of this parasite.
Collapse
Affiliation(s)
- Dan Sato
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
27
|
Figueiredo da Silva AA, de Carvalho Vieira L, Krieger MA, Goldenberg S, Zanchin NIT, Guimarães BG. Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi. J Struct Biol 2006; 157:416-23. [PMID: 17011790 DOI: 10.1016/j.jsb.2006.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 11/26/2022]
Abstract
Trypanosoma cruzi chagasin belongs to a recently discovered family of cysteine protease inhibitors found in lower eukaryotes and prokaryotes but not in mammals. Chagasin binds tightly to cruzain, the major lysosomal T. cruzi cysteine protease, involved with infectivity and survival of the parasite in mammalian host cells. In the scope of a project to characterize proteins diferentially expressed during T. cruzi metacyclogenesis, we have determined the crystal structure of chagasin, which is now the first X-ray structure of a chagasin-like cysteine protease inhibitor to be reported. The structure was solved by the SIRAS method and refined at 1.7A resolution and a comparison with the two NMR structures available revealed some differences in the loops involved in binding to cysteine proteases. The highly flexible loop 4 could be entirely modeled and residues 29-33 from loop 2 form a 3(10)-helix structure that may be important to stabilize the loop conformation. Chagasin crystal structure was docked to the highest resolution structure available of cruzain and a model of chagasin-cruzain interaction was analyzed. The knowledge of the chagasin crystal structure may contribute to the elucidation of the molecular mechanism involved in the inhibition of cruzain and other T. cruzi cysteine proteases.
Collapse
Affiliation(s)
- Aline Almeida Figueiredo da Silva
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, LNLS, P.O. Box 6192, CEP 13084-971, Campinas SP, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Santos CC, Scharfstein J, Lima APCDA. Role of chagasin-like inhibitors as endogenous regulators of cysteine proteases in parasitic protozoa. Parasitol Res 2006; 99:323-4. [PMID: 16636845 DOI: 10.1007/s00436-006-0195-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Camila C Santos
- Instituto de Biofisica Carlos Chagas Filho, Bloco D, sala 10-A, Universidade Federal do Rio de Janeiro, C.C.S., Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, RJ, CEP 21949-900, Brazil
| | | | | |
Collapse
|
29
|
Aido-Machado RD, Salmon D, Diehl A, Leidert M, Schmetzer O, de Lima APCA, Scharfstein J, Oschkinat H, Pires JR. 1H, 15N and 13C assignments of the cysteine protease inhibitor chagasin from Trypanosoma cruzi. JOURNAL OF BIOMOLECULAR NMR 2006; 36 Suppl 1:30. [PMID: 16680406 DOI: 10.1007/s10858-006-0014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Rodolpho do Aido-Machado
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowiski s/n, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|