1
|
Jiang H, Nace R, Ariail E, Ma Y, McGlinch E, Ferguson C, Fernandez Carrasco T, Packiriswamy N, Zhang L, Peng KW, Russell SJ. Oncolytic α-herpesvirus and myeloid-tropic cytomegalovirus cooperatively enhance systemic antitumor responses. Mol Ther 2024; 32:241-256. [PMID: 37927036 PMCID: PMC10787119 DOI: 10.1016/j.ymthe.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023] Open
Abstract
Oncolytic virotherapy aims to activate host antitumor immunity. In responsive tumors, intratumorally injected herpes simplex viruses (HSVs) have been shown to lyse tumor cells, resulting in local inflammation, enhanced tumor antigen presentation, and boosting of antitumor cytotoxic lymphocytes. In contrast to HSV, cytomegalovirus (CMV) is nonlytic and reprograms infected myeloid cells, limiting their antigen-presenting functions and protecting them from recognition by natural killer (NK) cells. Here, we show that when co-injected into mouse tumors with an oncolytic HSV, mouse CMV (mCMV) preferentially targeted tumor-associated myeloid cells, promoted the local release of proinflammatory cytokines, and enhanced systemic antitumor immune responses, leading to superior control of both injected and distant contralateral tumors. Deletion of mCMV genes m06, which degrades major histocompatibility complex class I (MHC class I), or m144, a viral MHC class I homolog that inhibits NK activation, was shown to diminish the antitumor activity of the HSV/mCMV combination. However, an mCMV recombinant lacking the m04 gene, which escorts MHC class I to the cell surface, showed superior HSV adjuvanticity. CMV is a potentially promising agent with which to reshape and enhance antitumor immune responses following oncolytic HSV therapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily Ariail
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yejun Ma
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Erin McGlinch
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Coryn Ferguson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
2
|
Liu W, Li H. COVID-19: Attacks Immune Cells and Interferences With Antigen Presentation Through MHC-Like Decoy System. J Immunother 2023; 46:75-88. [PMID: 36799912 PMCID: PMC9987643 DOI: 10.1097/cji.0000000000000455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
The high mortality of coronavirus disease 2019 is related to poor antigen presentation and lymphopenia. Cytomegalovirus and the herpes family encode a series of major histocompatibility complex (MHC)-like molecules required for targeted immune responses to achieve immune escape. In this present study, domain search results showed that many proteins of the severe acute respiratory syndrome coronavirus 2 virus had MHC-like domains, which were similar to decoys for the human immune system. MHC-like structures could bind to MHC receptors of immune cells (such as CD4 + T-cell, CD8 + T-cell, and natural killer-cell), interfering with antigen presentation. Then the oxygen free radicals generated by E protein destroyed immune cells after MHC-like of S protein could bind to them. Mutations in the MHC-like region of the viral proteins such as S promoted weaker immune resistance and more robust transmission. S 127-194 were the primary reason for the robust transmission of delta variants. The S 144-162 regulated the formation of S trimer. The mutations of RdRP: G671S and N: D63G of delta variant caused high viral load. S 62-80 of alpha, beta, lambda variants were the important factor for fast-spreading. S 616-676 and 1014-1114 were causes of high mortality for gamma variants infections. These sites were in the MHC-like structure regions.
Collapse
Affiliation(s)
- Wenzhong Liu
- School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, China
- School of Life Science and Food Engineering, Yibin University, Yibin, China
| | - Hualan Li
- School of Life Science and Food Engineering, Yibin University, Yibin, China
| |
Collapse
|
3
|
Abstract
The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
4
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
5
|
Nishimura M, Mori Y. Structural Aspects of Betaherpesvirus-Encoded Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:227-249. [PMID: 29896670 DOI: 10.1007/978-981-10-7230-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Betaherpesvirus possesses a large genome DNA with a lot of open reading frames, indicating abundance in the variety of viral protein factors. Because the complicated pathogenicity of herpesvirus reflects the combined functions of these factors, analyses of individual proteins are the fundamental steps to comprehensively understand about the viral life cycle and the pathogenicity. In this chapter, structural aspects of the betaherpesvirus-encoded proteins are introduced. Betaherpesvirus-encoded proteins of which structural information is available were summarized and subcategorized into capsid proteins, tegument proteins, nuclear egress complex proteins, envelope glycoproteins, enzymes, and immune-modulating factors. Structure of capsid proteins are analyzed in capsid by electron cryomicroscopy at quasi-atomic resolution. Structural information of teguments is limited, but a recent crystallographic analysis of an essential tegument protein of human herpesvirus 6B is introduced. As for the envelope glycoproteins, crystallographic analysis of glycoprotein gB has been done, revealing the fine-tuned structure and the distribution of its antigenic domains. gH/gL structure of betaherpesvirus is not available yet, but the overall shape and the spatial arrangement of the accessory proteins are analyzed by electron microscopy. Nuclear egress complex was analyzed from the structural perspective in 2015, with the structural analysis of cytomegalovirus UL50/UL53. The category "enzymes" includes the viral protease, DNA polymerase and terminase for which crystallographic analyses have been done. The immune-modulating factors are viral ligands or receptors for immune regulating factors of host immune cells, and their communications with host immune molecules are demonstrated in the aspect of molecular structure.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
6
|
Abstract
Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications.
Collapse
|
7
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
9
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Berry R, Vivian JP, Deuss FA, Balaji GR, Saunders PM, Lin J, Littler DR, Brooks AG, Rossjohn J. The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J Biol Chem 2014; 289:23753-63. [PMID: 24982419 DOI: 10.1074/jbc.m114.584128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of CMVs to evade the immune system of the host is dependent on the expression of a wide array of glycoproteins, many of which interfere with natural killer cell function. In murine CMV, two large protein families mediate this immune-evasive function. Although it is established that the m145 family members mimic the structure of MHC-I molecules, the structure of the m02 family remains unknown. The most extensively studied m02 family member is m04, a glycoprotein that escorts newly assembled MHC-I molecules to the cell surface, presumably to avoid "missing self" recognition. Here we report the crystal structure of the m04 ectodomain, thereby providing insight into this large immunoevasin family. m04 adopted a β-sandwich immunoglobulin variable (Ig-V)-like fold, despite sharing very little sequence identity with the Ig-V superfamily. In addition to the Ig-V core, m04 possesses several unique structural features that included an unusual β-strand topology, a number of extended loops and a prominent α-helix. The m04 interior was packed by a myriad of hydrophobic residues that form distinct clusters around two conserved tryptophan residues. This hydrophobic core was well conserved throughout the m02 family, thereby indicating that murine CMV encodes a number of Ig-V-like molecules. We show that m04 binds a range of MHC-I molecules with low affinity in a peptide-independent manner. Accordingly, the structure of m04, which represents the first example of an murine CMV encoded Ig-V fold, provides a basis for understanding the structure and function of this enigmatic and large family of immunoevasins.
Collapse
Affiliation(s)
- Richard Berry
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Julian P Vivian
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Felix A Deuss
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Gautham R Balaji
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Philippa M Saunders
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jie Lin
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Dene R Littler
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Andrew G Brooks
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jamie Rossjohn
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
11
|
Nash WT, Teoh J, Wei H, Gamache A, Brown MG. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front Immunol 2014; 5:175. [PMID: 24795719 PMCID: PMC3997006 DOI: 10.3389/fimmu.2014.00175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells provide essential protection against viral infections. One of the defining features of this lymphocyte population is the expression of a wide array of variable cell surface stimulatory and inhibitory NK receptors (sNKR and iNKR, respectively). The iNKR are particularly important in terms of NK-cell education. As receptors specific for MHC class I (MHC I) molecules, they are responsible for self-tolerance and adjusting NK-cell reactivity based on the expression level of self-MHC I. The end result of this education is twofold: (1) inhibitory signaling tunes the functional capacity of the NK cell, endowing greater potency with greater education, and (2) education on self allows the NK cell to detect aberrations in MHC I expression, a common occurrence during many viral infections. Many studies have indicated an important role for iNKR and MHC I in disease, making these receptors attractive targets for manipulating NK-cell reactivity in the clinic. A greater understanding of iNKR and their ability to regulate NK cells will provide a basis for future attempts at translating their potential utility into benefits for human health.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Jeffrey Teoh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Hairong Wei
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Awndre Gamache
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
12
|
Berry R, Rossjohn J, Brooks AG. The Ly49 natural killer cell receptors: a versatile tool for viral self‐discrimination. Immunol Cell Biol 2014; 92:214-20. [DOI: 10.1038/icb.2013.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/10/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Richard Berry
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonVictoriaAustralia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonVictoriaAustralia
- Institute of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
13
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
14
|
Wang R, Natarajan K, Revilleza MJR, Boyd LF, Zhi L, Zhao H, Robinson H, Margulies DH. Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1γ reveals a paradigm for MHC/MHC interaction in immune evasion. Proc Natl Acad Sci U S A 2012; 109:E3578-87. [PMID: 23169621 PMCID: PMC3529088 DOI: 10.1073/pnas.1214088109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are activated by engagement of the NKG2D receptor with ligands on target cells stressed by infection or tumorigenesis. Several human and rodent cytomegalovirus (CMV) immunoevasins down-regulate surface expression of NKG2D ligands. The mouse CMV MHC class I (MHC-I)-like m152/gp40 glycoprotein down-regulates retinoic acid early inducible-1 (RAE1) NKG2D ligands as well as host MHC-I. Here we describe the crystal structure of an m152/RAE1γ complex and confirm the intermolecular contacts by mutagenesis. m152 interacts in a pincer-like manner with two sites on the α1 and α2 helices of RAE1 reminiscent of the NKG2D interaction with RAE1. This structure of an MHC-I-like immunoevasin/MHC-I-like ligand complex explains the binding specificity of m152 for RAE1 and allows modeling of the interaction of m152 with classical MHC-I and of related viral immunoevasins.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Maria Jamela R. Revilleza
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Li Zhi
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomolecular Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; and
| | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, NY 11973
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Abstract
The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket.
Collapse
|
16
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011; 2011:724607. [PMID: 21765638 PMCID: PMC3134397 DOI: 10.1155/2011/724607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells provide an initial host immune response to infection by many viral pathogens. Consequently, the viruses have evolved mechanisms to attenuate the host response, leading to improved viral fitness. One mechanism employed by members of the β-herpesvirus family, which includes the cytomegaloviruses, is to modulate the expression of cell surface ligands recognized by NK cell activation molecules. A novel set of cytomegalovirus (CMV) genes, exemplified by the mouse m145 family, encode molecules that have structural and functional features similar to those of host major histocompatibility-encoded (MHC) class I molecules, some of which are known to contribute to immune evasion. In this review, we explore the function, structure, and evolution of MHC-I-like molecules of the CMVs and speculate on the dynamic development of novel immunoevasive functions based on the MHC-I protein fold.
Collapse
|
18
|
Pyzik M, Gendron-Pontbriand EM, Fodil-Cornu N, Vidal SM. Self or nonself? That is the question: sensing of cytomegalovirus infection by innate immune receptors. Mamm Genome 2010; 22:6-18. [PMID: 20882286 DOI: 10.1007/s00335-010-9286-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 12/18/2022]
Abstract
Cytomegaloviruses (CMV) are ubiquitous, opportunistic DNA viruses that have mastered the art of immune evasion through their ability to mimic host proteins or to inhibit antiviral responses. The study of the host response against CMV infection has illuminated many facets of the complex interaction between host and pathogen. Here, we review evidence derived from the animal models and human studies that supports the central role played by innate immune receptors in the recognition of virus infection and their participation in the many layers of defense.
Collapse
Affiliation(s)
- Michal Pyzik
- Department of Human Genetics and Centre for the Study of Host Resistance, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Zhi L, Mans J, Paskow MJ, Brown PH, Schuck P, Jonjić S, Natarajan K, Margulies DH. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms. Biochemistry 2010; 49:2443-53. [PMID: 20166740 DOI: 10.1021/bi902130j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytomegaloviruses (CMVs) are ubiquitous species-specific viruses that establish acute, persistent, and latent infections. Both human and mouse CMVs encode proteins that inhibit the activation of natural killer (NK) cells by downregulating cellular ligands for the NK cell activating receptor, NKG2D. The MCMV glycoprotein m152/gp40 downregulates the surface expression of RAE-1 to prevent NK cell control in vivo. So far, it is unclear if there is a direct interaction between m152 and RAE-1 and, if so, if m152 interacts differentially with the five identified RAE-1 isoforms, which are expressed as two groups in MCMV-susceptible or -resistant mouse strains. To address these questions, we expressed and purified the extracellular domains of RAE-1 and m152 and performed size exclusion chromatography binding assays as well as analytical ultracentrifugation and isothermal titration calorimetry to characterize these interactions quantitatively. We further evaluated the role of full-length and naturally glycosylated m152 and RAE-1 in cotransfected HEK293T cells. Our results confirmed that m152 binds RAE-1 directly, relatively tightly (K(d) < 5 microM), and with 1:1 stoichiometry. The binding is quantitatively different depending on particular RAE-1 isoforms, corresponding to the susceptibility to downregulation by m152. A PLWY motif found in RAE-1beta, although contributing to its affinity for m152, does not influence the affinity of RAE-1gamma or RAE-1delta, suggesting that other differences contribute to the RAE-1-m152 interaction. Molecular modeling of the different RAE-1 isoforms suggests a potential site for the m152 interaction.
Collapse
Affiliation(s)
- Li Zhi
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wrabl JO, Hilser VJ. Investigating homology between proteins using energetic profiles. PLoS Comput Biol 2010; 6:e1000722. [PMID: 20361049 PMCID: PMC2845653 DOI: 10.1371/journal.pcbi.1000722] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future thermodynamically informed classification of protein homology. Protein structure and function are fundamentally determined by thermodynamics. However, for technical as well as historical reasons, current evolutionary classification schemes and bioinformatics tools do not fully utilize thermodynamic information to describe or analyze proteins. In this work, we address this deficiency by computationally estimating the position-specific thermodynamic quantities of stability (ΔG), enthalpy (ΔH), and entropy (TΔS) for a large and diverse representative sample of protein structures. The sample was drawn from an expertly curated database, such that accepted evolutionary relationships existed for all protein pairs. Importantly, trivial relationships between pairs highly similar in amino acid sequence were explicitly excluded. We found that all position-specific thermodynamic quantities ΔG, ΔH, and TΔS were more similar between proteins that were evolutionarily related (i.e., homologous), and were less similar between proteins that were not evolutionarily related (i.e., non-homologous), with stability being particularly similar between homologous proteins. However, interesting statistically significant exceptions to these trends were observed, exceptions that could indicate novel processes of functional adaptation or evolutionary fold change, mediated by thermodynamics, for the proteins involved. Taken together, these results expand our understanding of the role of thermodynamics in protein evolution and suggest an organizational framework for a future thermodynamically-informed classification of protein homology.
Collapse
Affiliation(s)
- James O. Wrabl
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Vincent J. Hilser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Human herpesvirus 7 u21 downregulates classical and nonclassical class I major histocompatibility complex molecules from the cell surface. J Virol 2010; 84:3738-51. [PMID: 20106916 DOI: 10.1128/jvi.01782-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses have evolved numerous strategies to evade detection by the immune system. Notably, most of the herpesviruses interfere with viral antigen presentation to cytotoxic T lymphocytes (CTLs) by removing class I major histocompatibility complex (MHC) molecules from the infected cell surface. Clearly, since the herpesviruses have evolved an extensive array of mechanisms to remove class I MHC molecules from the cell surface, this strategy serves them well. However, class I MHC molecules often serve as inhibitory ligands for NK cells, so viral downregulation of all class I MHC molecules should leave the infected cell open to NK cell attack. Some viruses solve this problem by selectively downregulating certain class I MHC products, leaving other class I products at the cell surface to serve as inhibitory NK cell ligands. Here, we show that human herpesvirus 7 (HHV-7) U21 binds to and downregulates all of the human class I MHC gene products, as well as the murine class I molecule H-2K(b). HHV-7-infected cells must therefore possess other means of escaping NK cell detection.
Collapse
|
22
|
Mans J, Zhi L, Revilleza MJR, Smith L, Redwood A, Natarajan K, Margulies DH. Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 2009; 43:264-79. [PMID: 19011767 DOI: 10.1007/s12026-008-8081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mouse cytomegalovirus (CMV), a beta-herpesvirus, exploits its large (~230 kb) double-stranded DNA genome for both essential and non-essential functions. Among the non-essential functions are those that offer the virus a selective advantage in eluding both the innate and adaptive immune responses of the host. Several non-essential genes of MCMV are thought to encode MHC-I-like genes and to function as immunoevasins. To understand further the evolution and function of these viral MHC-I (MHC-Iv) molecules, X-ray structures of several of them have been determined, not only confirming the overall MHC-I-like structure, but also elucidating features unique to this family. Future efforts promise to clarify the nature of the molecular ligands of these molecules, their evolution in the context of the adapting immune response of the murine host, and by analogy the evolution of the host response to human CMV as well.
Collapse
Affiliation(s)
- Janet Mans
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10; Room 11N311, 10 Center Drive, Bethesda, MD 20892-1892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
24
|
Pyzik M, Kielczewska A, Vidal SM. NK cell receptors and their MHC class I ligands in host response to cytomegalovirus: insights from the mouse genome. Semin Immunol 2008; 20:331-42. [PMID: 18948016 DOI: 10.1016/j.smim.2008.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/04/2008] [Indexed: 02/06/2023]
Abstract
The complex interaction between natural killer (NK) cells and cytomegalovirus is a paradigm of the co-evolution between genomes of large DNA viruses and their host immune systems. Both human and mouse cytomegalovirus posses numerous mechanisms to avoid NK cell detection. Linkage studies, positional cloning and functional studies in mice and cells, have led to the identification of key genes governing resistance to cytomegalovirus, including various NK cell activating receptors of major histocompatibility complex (MHC) class I. These receptors, however, seem to require either viral or host MHC class I molecules to operate recognition and elimination of the cytomegalovirus-infected cell leading to host resistance. Here we will review the genes and molecules involved in these mechanisms while contrasting their function with that of other NK cell receptors. Activating receptors of MHC class I may represent a window of therapeutic intervention during human infection with viruses, of which cytomegalovirus remains an important health threat.
Collapse
Affiliation(s)
- Michal Pyzik
- McGill Centre for the Study of Host Resistance, Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
25
|
Wagner CS, Ljunggren HG, Achour A. Immune modulation by the human cytomegalovirus-encoded molecule UL18, a mystery yet to be solved. THE JOURNAL OF IMMUNOLOGY 2008; 180:19-24. [PMID: 18096997 DOI: 10.4049/jimmunol.180.1.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human cytomegalovirus infects human populations at a high frequency worldwide. During the long coevolution of virus and host, a fine balance has developed between viral immune evasion strategies and defense mechanisms of the immune system. Human cytomegalovirus encodes multiple proteins involved in the evasion of immune recognition, among them UL18, a MHC class I homologue. Despite almost 20 years of research and the discovery of a broadly expressed inhibitory receptor for this protein, its function in immune modulation is not clear yet. Recent data suggest that besides inhibitory effects on various immune cells, UL18 may also act as an activating component during CMV infection. In this review, we provide an overview of the biology of UL18 and discuss several attempts to shed light on its function.
Collapse
Affiliation(s)
- Claudia S Wagner
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Abstract
Human cytomegalovirus (HCMV) has become a paradigm for viral immune evasion due to its unique multitude of immune-modulatory strategies. HCMV modulates the innate as well as adaptive immune response at every step of its life cycle. It dampens the induction of antiviral interferon-induced genes by several mechanisms. Further striking is the multitude of genes and strategies devoted to modulating and escaping the cellular immune response. Several genes are independently capable of inhibiting antigen presentation to cytolytic T cells by downregulating MHC class I. Recent data revealed an astounding variety of methods in triggering or inhibiting activatory and inhibitory receptors found on NK cells, NKT cells, T cells as well as auxiliary cells of the immune system. The multitude and complexity of these mechanisms is fascinating and continues to reveal novel insights into the host-pathogen interaction and novel cell biological and immunological concepts.
Collapse
Affiliation(s)
- C Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
27
|
Mans J, Natarajan K, Balbo A, Schuck P, Eikel D, Hess S, Robinson H, Šimić H, Jonjić S, Tiemessen CT, Margulies DH. Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153. J Biol Chem 2007; 282:35247-58. [PMID: 17897947 PMCID: PMC2424207 DOI: 10.1074/jbc.m706782200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse cytomegalovirus (MCMV), a beta-herpesvirus that establishes latent and persistent infections in mice, is a valuable model for studying complex virus-host interactions. MCMV encodes the m145 family of putative immunoevasins with predicted major histocompatibility complex, class I (MHC-I) structure. Functions attributed to some family members include down-regulation of host MHC-I (m152) and NKG2D ligands (m145, m152, and m155) and interaction with inhibitory or activating NK receptors (m157). We present the cellular, biochemical, and structural characterization of m153, which is a heavily glycosylated homodimer, that does not require beta2m or peptide and is expressed at the surface of MCMV-infected cells. Its 2.4-A crystal structure confirms that this compact molecule preserves an MHC-I-like fold and reveals a novel mode of dimerization, confirmed by site-directed mutagenesis, and a distinctive disulfide-stabilized extended N terminus. The structure provides a useful framework for comparative analysis of the divergent members of the m145 family.
Collapse
Affiliation(s)
- Janet Mans
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
- Department of Virology, University of the Witwatersrand, Johannesburg, 2050 and National Institute for Communicable Diseases, Sandringham, 2131, South Africa
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Andrea Balbo
- Office of the Director, National Institutes of Health, Bethesda, MD, 20892
| | - Peter Schuck
- Office of the Director, National Institutes of Health, Bethesda, MD, 20892
| | - Daniel Eikel
- Product Application Laboratory, Advion BioSystems, Ithaca, NY, 14850
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125
| | | | - Hrvoje Šimić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Caroline T. Tiemessen
- Department of Virology, University of the Witwatersrand, Johannesburg, 2050 and National Institute for Communicable Diseases, Sandringham, 2131, South Africa
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
28
|
Lengyel CSE, Willis LJ, Mann P, Baker D, Kortemme T, Strong RK, McFarland BJ. Mutations designed to destabilize the receptor-bound conformation increase MICA-NKG2D association rate and affinity. J Biol Chem 2007; 282:30658-66. [PMID: 17690100 DOI: 10.1074/jbc.m704513200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MICA is a major histocompatibility complex-like protein that undergoes a structural transition from disorder to order upon binding its immunoreceptor, NKG2D. We redesigned the disordered region of MICA with RosettaDesign to increase NKG2D binding. Mutations that stabilize this region were expected to increase association kinetics without changing dissociation kinetics, increase affinity of interaction, and reduce entropy loss upon binding. MICA mutants were stable in solution, and they were amenable to surface plasmon resonance evaluation of NKG2D binding kinetics and thermodynamics. Several MICA mutants bound NKG2D with enhanced affinity, kinetic changes were primarily observed during association, and thermodynamic changes in entropy were as expected. However, none of the 15 combinations of mutations predicted to stabilize the receptor-bound MICA conformation enhanced NKG2D affinity, whereas all 10 mutants predicted to be destabilized bound NKG2D with increased on-rates. Five of these had affinities enhanced by 0.9-1.8 kcal/mol over wild type by one to three non-contacting substitutions. Therefore, in this case, mutations designed to mildly destabilize a protein enhanced association and affinity.
Collapse
Affiliation(s)
- Candice S E Lengyel
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, Washington 98119, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Adams EJ, Juo ZS, Venook RT, Boulanger MJ, Arase H, Lanier LL, Garcia KC. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci U S A 2007; 104:10128-33. [PMID: 17537914 PMCID: PMC1891256 DOI: 10.1073/pnas.0703735104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells express activating and inhibitory receptors that, in concert, survey cells for proper expression of cell surface major histocompatibility complex (MHC) class I molecules. The mouse cytomegalovirus encodes an MHC-like protein, m157, which is the only known viral antigen to date capable of engaging both activating (Ly49H) and inhibitory (Ly49I) NK cell receptors. We have determined the 3D structure of m157 and studied its biochemical and cellular interactions with the Ly49H and Ly49I receptors. m157 has a characteristic MHC-fold, yet possesses several unique structural features not found in other MHC class I-like molecules. m157 does not bind peptides or other small ligands, nor does it associate with beta(2)-microglobulin. Instead, m157 engages in extensive intra- and intermolecular interactions within and between its domains to generate a compact minimal MHC-like molecule. m157's binding affinity for Ly49I (K(d) approximately 0.2 microM) is significantly higher than that of classical inhibitory Ly49-MHC interactions. Analysis of viral escape mutations on m157 that render it resistant to NK killing reveals that it is likely to be recognized by Ly49H in a binding mode that differs from Ly49/MHC-I. In addition, Ly49H+ NK cells can efficiently lyse RMA cells expressing m157, despite the presence of native MHC class I. Collectively, our results show that m157 represents a structurally divergent form of MHC class I-like proteins that directly engage Ly49 receptors with appreciable affinity in a noncanonical fashion.
Collapse
MESH Headings
- Animals
- Antigens, Ly/chemistry
- Baculoviridae/genetics
- Binding Sites
- Cell Line, Tumor
- Crystallography, X-Ray
- Disulfides/chemistry
- Histocompatibility Antigens Class I/immunology
- Hydrogen Bonding
- Killer Cells, Natural/immunology
- Lectins, C-Type/chemistry
- Ligands
- Lymphoma, T-Cell/pathology
- Mice
- Models, Molecular
- Muromegalovirus/immunology
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, NK Cell Lectin-Like
Collapse
Affiliation(s)
- Erin J. Adams
- *Departments of Molecular and Cellular Physiology and Structural Biology
| | - Z. Sean Juo
- *Departments of Molecular and Cellular Physiology and Structural Biology
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Rayna Takaki Venook
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | | | - Hisashi Arase
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | - K. Christopher Garcia
- *Departments of Molecular and Cellular Physiology and Structural Biology
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
30
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Kielczewska A, Kim HS, Lanier LL, Dimasi N, Vidal SM. Critical Residues at the Ly49 Natural Killer Receptor’s Homodimer Interface Determine Functional Recognition of m157, a Mouse Cytomegalovirus MHC Class I-Like Protein. THE JOURNAL OF IMMUNOLOGY 2006; 178:369-77. [PMID: 17182575 DOI: 10.4049/jimmunol.178.1.369] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell function is regulated by Ly49 receptors in mice and killer cell Ig-like receptors in humans. Although inhibitory Ly49 and killer cell Ig-like receptors predominantly ligate classical MHC class I molecules, recent studies suggest that their activating counterparts recognize infection. The quintessential example is resistance to the mouse CMV in C57BL/6 mice, which depends on the functional recognition of m157, a mouse CMV-encoded MHC class I-like molecule, by Ly49H, an activating NK cell receptor. We have taken advantage of the natural variation in closely related members of the Ly49C-like receptors and the availability of Ly49 crystal structures to understand the molecular determinants of the Ly49H-m157 interaction and to identify amino acid residues discriminating between m157 binding and nonbinding receptors. Using a site-directed mutagenesis approach, we have targeted residues conserved in receptors binding to m157 (Ly49H and Ly49I(129)) but different from receptors lacking m157 recognition (Ly49C, Ly49I(B6), and Ly49U). Wild-type and mutant receptors were transfected into reporter cells, and physical binding as well as functional activation by m157 was studied. Our findings suggested that the Ly49 MHC class I contact "site 2," I226, may not be involved in m157 binding. In contrast, residue Y146 and G151, mapping at the receptor homodimer interface, are likely critical for functional recognition of the m157 glycoprotein. Our combined functional and three-dimensional modeling approach suggested that the architecture of the Ly49H dimer is crucial to accessing m157, but not MHC class I. These results link Ly49 homodimerization variability to the direct recognition of pathogen products.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Viral/immunology
- Dimerization
- Histocompatibility Antigens Class I/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Muromegalovirus/immunology
- Mutagenesis
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, NK Cell Lectin-Like
Collapse
|
32
|
Smith LM, Shellam GR, Redwood AJ. Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 2006; 352:450-65. [PMID: 16781754 DOI: 10.1016/j.virol.2006.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 04/18/2006] [Accepted: 04/26/2006] [Indexed: 11/21/2022]
Abstract
Murine cytomegaloviruses encode a number of genes which modulate polymorphic host immune responses. We suggest that these viral genes should themselves therefore exhibit sequence polymorphism. Additionally, clinical isolates of human cytomegalovirus (HCMV) have been shown to vary extensively from the common laboratory strains. Almost all research conducted on murine cytomegalovirus (MCMV) has used the laboratory strains Smith and K181, which have been extensively passaged in vitro and in vivo since isolation. Using the heteroduplex mobility assay (HMA) to determine levels of sequence variation 11 MCMV genes were examined from 26 isolates of MCMV from wild mice, as well as both laboratory strains. Both the HMA and sequencing of selected genes demonstrated that whilst certain genes (M33, mck-2, m147.5, m152) were highly conserved, others (m04, m06, M44, m138, m144, m145 and m155) contained significant sequence variation. Several of these genes (m06, m144 and m155) exist in wild MCMV strains as one of several distinct genotypes.
Collapse
Affiliation(s)
- Lee M Smith
- Discipline of Microbiology and Immunology, M502, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
33
|
Abstract
Natural killer (NK) cell function is regulated by NK cell receptors that bind classical MHC class I molecules or their structural relatives. The latter group includes self-ligands (MICA, RAE-I, H-60), as well as ligands encoded by viruses (UL18, m155, m157). Two distinct families of NK receptors have been identified: the immunoglobulin-like family (KIRs, LIRs) and the C-type lectin-like family (Ly49s, NKG2D, CD94/NKG2). Here we describe the crystal structures of NK receptors that have been determined to date, both in free form and bound to MHC class I or MHC class I-like molecules.
Collapse
Affiliation(s)
- Lu Deng
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.
| | | |
Collapse
|