1
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
2
|
Yavuz B, Kondolot Solak E, Oktar C. Preparation of biocompatible microsphere-cryogel composite system and controlled release of mupirocin. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Yavuz
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Processing Technologies, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| | - Ceren Oktar
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Bianco PR. Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays. Methods 2021; 204:348-360. [PMID: 34896247 PMCID: PMC9534331 DOI: 10.1016/j.ymeth.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
4
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
5
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
6
|
Ha KP, Clarke RS, Kim GL, Brittan JL, Rowley JE, Mavridou DAI, Parker D, Clarke TB, Nobbs AH, Edwards AM. Staphylococcal DNA Repair Is Required for Infection. mBio 2020; 11:e02288-20. [PMID: 33203752 PMCID: PMC7683395 DOI: 10.1128/mbio.02288-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.
Collapse
Affiliation(s)
- Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jane L Brittan
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jessica E Rowley
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Lim CSQ, Ha KP, Clarke RS, Gavin LA, Cook DT, Hutton JA, Sutherell CL, Edwards AM, Evans LE, Tate EW, Lanyon-Hogg T. Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2019; 27:114962. [PMID: 31307763 PMCID: PMC6892255 DOI: 10.1016/j.bmc.2019.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/03/2022]
Abstract
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Carine S Q Lim
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Leigh-Anne Gavin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Declan T Cook
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Jennie A Hutton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Charlotte L Sutherell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Lindsay E Evans
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
8
|
Tan HY, Wilczek LA, Pottinger S, Manosas M, Yu C, Nguyenduc T, Bianco PR. The intrinsically disordered linker of E. coli SSB is critical for the release from single-stranded DNA. Protein Sci 2017; 26:700-717. [PMID: 28078720 DOI: 10.1002/pro.3115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022]
Abstract
The Escherichia coli single stranded DNA binding protein (SSB) is crucial for DNA replication, recombination and repair. Within each process, it has two seemingly disparate roles: it stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing and, forms complexes with a group of proteins known as the SSB-interactome. Key to both roles is the C-terminal, one-third of the protein, in particular the intrinsically disordered linker (IDL). Previously, they have shown using a series of linker deletion mutants that the IDL links both ssDNA and target protein binding by mediating interactions with the oligosaccharide/oligonucleotide binding fold in the target. In this study, they examine the role of the linker region in SSB function in a variety of DNA metabolic processes in vitro. Using the same linker mutants, the results show that in addition to association reactions (either DNA or protein), the IDL is critical for the release of SSB from DNA. This release can be under conditions of ssDNA competition or active displacement by a DNA helicase or recombinase. Consistent with their previous work these results indicate that SSB linker mutants are defective for SSB-SSB interactions, and when the IDL is removed a terminal SSB-DNA complex results. Formation of this complex inhibits downstream processing of DNA by helicases such as RecG or PriA as well as recombination, mediated by RecA. A model, based on the evidence herein, is presented to explain how the IDL acts in SSB function.
Collapse
Affiliation(s)
- Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Luke A Wilczek
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Maria Manosas
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Cong Yu
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Rocca CJ, Soares DG, Bouzid H, Henriques JAP, Larsen AK, Escargueil AE. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder. Cell Cycle 2016; 14:2080-90. [PMID: 25945522 DOI: 10.1080/15384101.2015.1042632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.
Collapse
Key Words
- ATR, Ataxia telangiectasia- and RAD3-related
- DNA alkylators
- DNA double strand breaks
- DNA replication
- DSBs, Double Strand Breaks
- FA, Fanconi Anemia
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- HR, Homologous Recombination
- HU, Hydroxyurea
- Homologous recombination
- ICLs, Inter-strand Crosslinks
- NER, Nucleotide Excision Repair
- NHEJ, Non-Homologous End-Joining
- TCR, Transcription-Coupled Repair
- UCN-01, 7-hydroxystaurosporine.
- checkpoint control
Collapse
Affiliation(s)
- Céline J Rocca
- a Laboratory of Cancer Biology and Therapeutics ; Centre de Recherche Saint-Antoine ; Paris , France
| | | | | | | | | | | |
Collapse
|
10
|
Amundsen SK, Spicer T, Karabulut AC, Londoño LM, Eberhardt C, Vega VF, Bannister TD, Hodder P, Smith GR. Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem Biol 2012; 7:879-891. [PMID: 22443934 PMCID: PMC3356449 DOI: 10.1021/cb300018x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.
Collapse
Affiliation(s)
- Susan K. Amundsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Timothy Spicer
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458
| | - Ahmet C. Karabulut
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Luz Marina Londoño
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Christina Eberhardt
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458
| | - Virneliz Fernandez Vega
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458
| | - Thomas D. Bannister
- Scripps Research Institute Department of Chemistry, Translational Research Institute, Jupiter, Florida 33458
| | - Peter Hodder
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, Florida 33458
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
11
|
Liu J, Choi M, Stanenas AG, Byrd AK, Raney KD, Cohan C, Bianco PR. Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 2011; 20:1005-20. [PMID: 21462278 DOI: 10.1002/pro.633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 11/09/2022]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) is a central player in DNA metabolism where it organizes genome maintenance complexes and stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing. Due to the importance of SSB and to facilitate real-time studies, we developed a dual plasmid expression system to produce novel, chimeric SSB proteins. These chimeras, which contain mixtures of histidine-tagged and fluorescent protein(FP)-fusion subunits, are easily purified in milligram quantities and used without further modification, a significant enhancement over previous methods to produce fluorescent SSB. Chimeras retain the functionality of wild type in all assays, demonstrating that SSB function is unaffected by the FPs. We demonstrate the power and utility of these chimeras in single molecule studies providing a great level of insight into the biochemical mechanism of RecBCD. We also utilized the chimeras to show for the first time that RecG and SSB interact in vivo. Consequently, we anticipate that the chimeras described herein will facilitate in vivo, in vitro and single DNA molecule studies using proteins that do not require further modification prior to use.
Collapse
Affiliation(s)
- Juan Liu
- Center for Single Molecule Biophysics, Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
13
|
Mayer AMS, Gustafson KR. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds. Eur J Cancer 2008; 44:2357-87. [PMID: 18701274 PMCID: PMC2629923 DOI: 10.1016/j.ejca.2008.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
14
|
Satapathy AK, Pavankumar TL, Bhattacharjya S, Sankaranarayanan R, Ray MK. ATPase activity of RecD is essential for growth of the Antarctic Pseudomonas syringae Lz4W at low temperature. FEBS J 2008; 275:1835-51. [PMID: 18336576 DOI: 10.1111/j.1742-4658.2008.06342.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RecD is essential for growth at low temperature in the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W. To examine the essential nature of its activity, we analyzed wild-type and mutant RecD proteins with substitutions of important residues in each of the seven conserved helicase motifs. The wild-type RecD displayed DNA-dependent ATPase and helicase activity in vitro, with the ability to unwind short DNA duplexes containing only 5' overhangs or forked ends. Five of the mutant proteins, K229Q (in motif I), D323N and E324Q (in motif II), Q354E (in motif III) and R660A (in motif VI) completely lost both ATPase and helicase activities. Three other mutants, T259A in motif Ia, R419A in motif IV and E633Q in motif V exhibited various degrees of reduction in ATPase activity, but had no helicase activity. While all RecD proteins had DNA-binding activity, the mutants of motifs IV and V displayed reduced binding, and the motif II mutant showed a higher degree of binding to ssDNA. Significantly, only RecD variants with in vitro ATPase activity could complement the cold-sensitive growth of a recD-inactivated strain of P. syringae at 4 degrees C. These results suggest that the requirement for RecD at lower temperatures lies in its ATP-hydrolyzing activity.
Collapse
Affiliation(s)
- Ajit K Satapathy
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | |
Collapse
|
15
|
Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JAP, Larsen AK. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci U S A 2007; 104:13062-7. [PMID: 17656556 PMCID: PMC1941813 DOI: 10.1073/pnas.0609877104] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adducts induced by the antitumor alkylator ecteinascidin 743 (ET-743, Yondelis, trabectedin) represent a unique challenge to the DNA repair machinery because no pathway examined to date is able to remove the ET adducts, whereas cells deficient in nucleotide excision repair show increased resistance. We here describe the processing of the initial ET adducts into cytotoxic lesions and characterize the influence of cellular repair pathways on this process. Our findings show that exposure of proliferating mammalian cells to pharmacologically relevant concentrations of ET-743 is accompanied by rapid formation of DNA double-strand breaks (DSBs), as shown by the neutral comet assay and induction of focalized phosphorylated H2AX. The ET adducts are stable and can be converted into DSBs hours after the drug has been removed. Loss of homologous recombination repair has no influence on the initial levels of DSBs but is associated with the persistence of unrepaired DSBs after ET-743 is removed, resulting in extensive chromosomal abnormalities and pronounced sensitivity to the drug. In comparison, loss of nonhomologous end-joining had only modest effect on the sensitivity. The identification of DSB formation as a key step in the processing of ET-743 lesions represents a novel mechanism of action for the drug that is in agreement with its unusual potency. Because loss of repair proteins is common in human tumors, expression levels of selected repair factors may be useful in identifying patients particularly likely to benefit, or not, from treatment with ET-743.
Collapse
Affiliation(s)
- Daniele Grazziotin Soares
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Alexandre E. Escargueil
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Virginie Poindessous
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
| | - Aimery de Gramont
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Diego Bonatto
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - João Antonio Pêgas Henriques
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Annette K. Larsen
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|