1
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2025; 78:4-13. [PMID: 39420155 PMCID: PMC11700844 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Ero R, Leppik M, Reier K, Liiv A, Remme J. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res 2024; 52:6614-6628. [PMID: 38554109 PMCID: PMC11194073 DOI: 10.1093/nar/gkae222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Large/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Rya Ero
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Leppik
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kaspar Reier
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
3
|
Fleming AM, Bommisetti P, Xiao S, Bandarian V, Burrows CJ. Direct Nanopore Sequencing for the 17 RNA Modification Types in 36 Locations in the E. coli Ribosome Enables Monitoring of Stress-Dependent Changes. ACS Chem Biol 2023; 18:2211-2223. [PMID: 37345867 PMCID: PMC10594579 DOI: 10.1021/acschembio.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
The bacterium Escherichia coli possesses 16S and 23S rRNA strands that have 36 chemical modification sites with 17 different structures. Nanopore direct RNA sequencing using a protein nanopore sensor and helicase brake, which is also a sensor, was applied to the rRNAs. Nanopore current levels, base calling profile, and helicase dwell times for the modifications relative to unmodified synthetic rRNA controls found signatures for nearly all modifications. Signatures for clustered modifications were determined by selective sequencing of writer knockout E. coli and sequencing of synthetic RNAs utilizing some custom-synthesized nucleotide triphosphates for their preparation. The knowledge of each modification's signature, apart from 5-methylcytidine, was used to determine how metabolic and cold-shock stress impact rRNA modifications. Metabolic stress resulted in either no change or a decrease, and one site increased in modification occupancy, while cold-shock stress led to either no change or a decrease. The double modification m4Cm1402 resides in 16S rRNA, and it decreased with both stressors. Using the helicase dwell time, it was determined that the N4 methyl group is lost during both stressors, and the 2'-OMe group remained. In the ribosome, this modification stabilizes binding to the mRNA codon at the P-site resulting in increased translational fidelity that is lost during stress. The E. coli genome has seven rRNA operons (rrn), and the earlier studies aligned the nanopore reads to a single operon (rrnA). Here, the reads were aligned to all seven operons to identify operon-specific changes in the 11 pseudouridines. This study demonstrates that direct sequencing for >16 different RNA modifications in a strand is achievable.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Praneeth Bommisetti
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Songjun Xiao
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| |
Collapse
|
4
|
Mariasina SS, Chang CF, Navalayeu TL, Chugunova AA, Efimov SV, Zgoda VG, Ivlev VA, Dontsova OA, Sergiev PV, Polshakov VI. Williams-Beuren Syndrome Related Methyltransferase WBSCR27: From Structure to Possible Function. Front Mol Biosci 2022; 9:865743. [PMID: 35782865 PMCID: PMC9240639 DOI: 10.3389/fmolb.2022.865743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a genetic disorder associated with the hemizygous deletion of several genes in chromosome 7, encoding 26 proteins. Malfunction of these proteins induce multisystemic failure in an organism. While biological functions of most proteins are more or less established, the one of methyltransferase WBSCR27 remains elusive. To find the substrate of methylation catalyzed by WBSCR27 we constructed mouse cell lines with a Wbscr27 gene knockout and studied the obtained cells using several molecular biology and mass spectrometry techniques. We attempted to pinpoint the methylation target among the RNAs and proteins, but in all cases neither a direct substrate has been identified nor the protein partners have been detected. To reveal the nature of the putative methylation substrate we determined the solution structure and studied the conformational dynamic properties of WBSCR27 in apo state and in complex with S-adenosyl-L-homocysteine (SAH). The protein core was found to form a canonical Rossman fold common for Class I methyltransferases. N-terminus of the protein and the β6–β7 loop were disordered in apo-form, but binding of SAH induced the transition of these fragments to a well-formed substrate binding site. Analyzing the structure of this binding site allows us to suggest potential substrates of WBSCR27 methylation to be probed in further research.
Collapse
Affiliation(s)
- Sofia S. Mariasina
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute of Functional Genomics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Sergey V. Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Kazan, Russia
| | | | | | - Olga A. Dontsova
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Petr V. Sergiev
- Institute of Functional Genomics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Chemical Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Vladimir I. Polshakov,
| |
Collapse
|
5
|
Liljeruhm J, Leppik M, Bao L, Truu T, Calvo-Noriega M, Freyer NS, Liiv A, Wang J, Blanco RC, Ero R, Remme J, Forster AC. Plasticity and conditional essentiality of modification enzymes for domain V of Escherichia coli 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2022; 28:796-807. [PMID: 35260421 PMCID: PMC9074899 DOI: 10.1261/rna.079096.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 06/03/2023]
Abstract
Escherichia coli rRNAs are post-transcriptionally modified at 36 positions but their modification enzymes are dispensable individually for growth, bringing into question their significance. However, a major growth defect was reported for deletion of the RlmE enzyme, which abolished a 2'O methylation near the peptidyl transferase center (PTC) of the 23S rRNA. Additionally, an adjacent 80-nt "critical region" around the PTC had to be modified to yield significant peptidyl transferase activity in vitro. Surprisingly, we discovered that an absence of just two rRNA modification enzymes is conditionally lethal (at 20°C): RlmE and RluC. At a permissive temperature (37°C), this double knockout was shown to abolish four modifications and be defective in ribosome assembly, though not more so than the RlmE single knockout. However, the double knockout exhibited an even lower rate of tripeptide synthesis than did the single knockout, suggesting an even more defective ribosomal translocation. A combination knockout of the five critical-region-modifying enzymes RluC, RlmKL, RlmN, RlmM, and RluE (not RlmE), which synthesize five of the seven critical-region modifications and 14 rRNA and tRNA modifications altogether, was viable (minor growth defect at 37°C, major at 20°C). This was surprising based on prior in vitro studies. This five-knockout combination had minimal effects on ribosome assembly and frameshifting at 37°C, but greater effects on ribosome assembly and in vitro peptidyl transferase activity at cooler temperatures. These results establish the conditional essentiality of bacterial rRNA modification enzymes and also reveal unexpected plasticity of modification of the PTC region in vivo.
Collapse
Affiliation(s)
- Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Margus Leppik
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Letian Bao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Triin Truu
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Maria Calvo-Noriega
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Nicola S Freyer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Aivar Liiv
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Rubén Crespo Blanco
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Rya Ero
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jaanus Remme
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Anthony C Forster
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| |
Collapse
|
6
|
Koculi E, Cho SS. RNA Post-Transcriptional Modifications in Two Large Subunit Intermediates Populated in E. coli Cells Expressing Helicase Inactive R331A DbpA. Biochemistry 2022; 61:833-842. [PMID: 35481783 DOI: 10.1021/acs.biochem.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
23S ribosomal RNA (rRNA) of Escherichia coli 50S large ribosome subunit contains 26 post-transcriptionally modified nucleosides. Here, we determine the extent of modifications in the 35S and 45S large subunit intermediates, accumulating in cells expressing the helicase inactive DbpA protein, R331A, and the native 50S large subunit. The modifications we characterized are 3-methylpseudouridine, 2-methyladenine, 5-hydroxycytidine, and nine pseudouridines. These modifications were detected using 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT) treatment followed by alkaline treatment. In addition, KMnO4 treatment of 23S rRNA was employed to detect 5-hydroxycytidine modification. CMCT and KMnO4 treatments produce chemical changes in modified nucleotides that cause reverse transcriptase misincorporations and deletions, which were detected employing next-generation sequencing. Our results show that the 2-methyladenine modification and seven uridines to pseudouridine isomerizations are present in both the 35S and 45S to similar extents as in the 50S. Hence, the enzymes that perform these modifications, namely, RluA, RluB, RluC, RluE, RluF, and RlmN, have already acted in the intermediates. Two uridines to pseudouridine isomerizations, the 3-methylpseudouridine and 5-hydroxycytidine modifications, are significantly less present in the 35S and 45S, as compared to the 50S. Therefore, the enzymes that incorporate these modifications, RluD, RlmH, and RlhA, are in the process of modifying the 35S and 45S or will incorporate these modifications during the later stages of ribosome assembly. Our study employs a novel high throughput and single nucleotide resolution technique for the detection of 2-methyladenine and two novel high throughput and single nucleotide resolution techniques for the detection of 5-hydroxycytidine.
Collapse
Affiliation(s)
- Eda Koculi
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
7
|
Bleichert P, Bütof L, Rückert C, Herzberg M, Francisco R, Morais PV, Grass G, Kalinowski J, Nies DH. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces. Appl Environ Microbiol 2020; 87:e01788-20. [PMID: 33067196 PMCID: PMC7755237 DOI: 10.1128/aem.01788-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.
Collapse
Affiliation(s)
| | - Lucy Bütof
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | | | - Martin Herzberg
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | - Romeu Francisco
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V Morais
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology, Bielefeld, Germany
| | - Dietrich H Nies
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| |
Collapse
|
8
|
Golubev A, Fatkhullin B, Khusainov I, Jenner L, Gabdulkhakov A, Validov S, Yusupova G, Yusupov M, Usachev K. Cryo‐EM structure of the ribosome functional complex of the human pathogen
Staphylococcus aureus
at 3.2 Å resolution. FEBS Lett 2020; 594:3551-3567. [DOI: 10.1002/1873-3468.13915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander Golubev
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Bulat Fatkhullin
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Institute of Protein Research Russian Academy of Sciences Puschino Russia
| | - Iskander Khusainov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Department of Molecular Sociology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Lasse Jenner
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Azat Gabdulkhakov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Institute of Protein Research Russian Academy of Sciences Puschino Russia
| | - Shamil Validov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Marat Yusupov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Konstantin Usachev
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
| |
Collapse
|
9
|
Lopez Sanchez MIG, Cipullo M, Gopalakrishna S, Khawaja A, Rorbach J. Methylation of Ribosomal RNA: A Mitochondrial Perspective. Front Genet 2020; 11:761. [PMID: 32765591 PMCID: PMC7379855 DOI: 10.3389/fgene.2020.00761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ribosomal RNA (rRNA) from all organisms undergoes post-transcriptional modifications that increase the diversity of its composition and activity. In mitochondria, specialized mitochondrial ribosomes (mitoribosomes) are responsible for the synthesis of 13 oxidative phosphorylation proteins encoded by the mitochondrial genome. Mitoribosomal RNA is also modified, with 10 modifications thus far identified and all corresponding modifying enzymes described. This form of epigenetic regulation of mitochondrial gene expression affects mitoribosome biogenesis and function. Here, we provide an overview on rRNA methylation and highlight critical work that is beginning to elucidate its role in mitochondrial gene expression. Given the similarities between bacterial and mitochondrial ribosomes, we focus on studies involving Escherichia coli and human models. Furthermore, we highlight the use of state-of-the-art technologies, such as cryoEM in the study of rRNA methylation and its biological relevance. Understanding the mechanisms and functional relevance of this process represents an exciting frontier in the RNA biology and mitochondrial fields.
Collapse
Affiliation(s)
- M Isabel G Lopez Sanchez
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Centre for Eye Research Australia, Melbourne, VIC, Australia
| | - Miriam Cipullo
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Anas Khawaja
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Xu X, Zhang H, Huang Y, Zhang Y, Wu C, Gao P, Teng Z, Luo X, Peng X, Wang X, Wang D, Pu J, Zhao H, Lu X, Lu S, Ye C, Dong Y, Lan R, Xu J. Beyond a Ribosomal RNA Methyltransferase, the Wider Role of MraW in DNA Methylation, Motility and Colonization in Escherichia coli O157:H7. Front Microbiol 2019; 10:2520. [PMID: 31798540 PMCID: PMC6863780 DOI: 10.3389/fmicb.2019.02520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
MraW is a 16S rRNA methyltransferase and plays a role in the fine-tuning of the ribosomal decoding center. It was recently found to contribute to the virulence of Staphylococcus aureus. In this study, we examined the function of MraW in Escherichia coli O157:H7 and found that the deletion of mraW led to decreased motility, flagellar production and DNA methylation. Whole-genome bisulfite sequencing showed a genome wide decrease of methylation of 336 genes and 219 promoters in the mraW mutant including flagellar genes. The methylation level of flagellar genes was confirmed by bisulfite PCR sequencing. Quantitative reverse transcription PCR results indicated that the transcription of these genes was also affected. MraW was furtherly observed to directly bind to the four flagellar gene sequences by electrophoretic mobility shift assay (EMSA). A common flexible motif in differentially methylated regions (DMRs) of promoters and coding regions of the four flagellar genes was identified. Reduced methylation was correlated with altered expression of 21 of the 24 genes tested. DNA methylation activity of MraW was confirmed by DNA methyltransferase activity assay in vitro and repressed by DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza). In addition, the mraW mutant colonized poorer than wild type in mice. We also found that the expression of mraZ in the mraW mutant was increased confirming the antagonistic effect of mraW on mraZ. In conclusion, mraW was found to be a DNA methylase and have a wide-ranging effect on E. coli O157:H7 including motility and virulence in vivo via genome wide methylation and mraZ antagonism.
Collapse
Affiliation(s)
- Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuan Zhang
- China Institute of Veterinary Drug Control, Haidian, China
| | - Changde Wu
- College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Pengya Gao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhongqiu Teng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaojing Peng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ji Pu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongqing Zhao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangshuang Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
11
|
Sergiev PV, Aleksashin NA, Chugunova AA, Polikanov YS, Dontsova OA. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol 2019; 14:226-235. [PMID: 29443970 DOI: 10.1038/nchembio.2569] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023]
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides. The structures of ribosomes from various organisms and organelles have also lately become available, enabling comparative structure-based analysis of rRNA methylation sites in various taxonomic groups. In addition to the conserved core of modified residues in ribosomes from the majority of studied organisms, structural analysis points to the functional roles of some of the rRNA methylations, which are discussed in this Review in an evolutionary context.
Collapse
Affiliation(s)
- Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anastasia A Chugunova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Kirpekar F, Hansen LH, Mundus J, Tryggedsson S, Teixeira Dos Santos P, Ntokou E, Vester B. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes. RNA Biol 2018; 15:1060-1070. [PMID: 29947286 DOI: 10.1080/15476286.2018.1486662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilizing structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterized as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterized enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.
Collapse
Affiliation(s)
- Finn Kirpekar
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Lykke H Hansen
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Julie Mundus
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Stine Tryggedsson
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | | | - Eleni Ntokou
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Birte Vester
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
13
|
Kyuma T, Kimura S, Hanada Y, Suzuki T, Sekimizu K, Kaito C. Ribosomal RNA methyltransferases contribute toStaphylococcus aureusvirulence. FEBS J 2015; 282:2570-84. [DOI: 10.1111/febs.13302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/03/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsuhiko Kyuma
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; Japan
| | - Yuichi Hanada
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Chikara Kaito
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| |
Collapse
|
14
|
Sergeeva OV, Bogdanov AA, Sergiev PV. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 2014; 117:110-8. [PMID: 25511423 DOI: 10.1016/j.biochi.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
A ribosome is a ribonucleoprotein that performs the synthesis of proteins. Ribosomal RNA of all organisms includes a number of modified nucleotides, such as base or ribose methylated and pseudouridines. Methylated nucleotides are highly conserved in bacteria and some even universally. In this review we discuss available data on a set of modification sites in the most studied bacteria, Escherichia coli. While most rRNA modification enzymes are known for this organism, the function of the modified nucleotides is rarely identified.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- O V Sergeeva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143025, Russia.
| | - A A Bogdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P V Sergiev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
15
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|
16
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
17
|
Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV, Bogdanov AA, Dontsova OA. Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res 2013; 42:e27. [PMID: 24265225 PMCID: PMC3936739 DOI: 10.1093/nar/gkt1160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical landscape of natural RNA species is decorated with the large number of modified nucleosides. Some of those could easily be detected by reverse transcription, while others permit only high-performance liquid chromatography or mass-spectrometry detection. Presence of m6A nucleoside at a particular position of long RNA molecule is challenging to observe. Here we report an easy and high-throughput method for detection of m6A nucleosides in RNA based on high-resolution melting analysis. The method relies on the previous knowledge of the modified nucleoside position at a particular place of RNA and allows rapid screening for conditions or genes necessary for formation of that modification.
Collapse
Affiliation(s)
- Anna Y Golovina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia, Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, Moscow 119992, Russia and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
18
|
Golovina AY, Dzama MM, Osterman IA, Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA. The last rRNA methyltransferase of E. coli revealed: the yhiR gene encodes adenine-N6 methyltransferase specific for modification of A2030 of 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2012; 18:1725-1734. [PMID: 22847818 PMCID: PMC3425786 DOI: 10.1261/rna.034207.112] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.
Collapse
Affiliation(s)
- Anna Y. Golovina
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Margarita M. Dzama
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Ilya A. Osterman
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Marina V. Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Alexey A. Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia
| |
Collapse
|
19
|
Sergeeva OV, Prokhorova IV, Ordabaev Y, Tsvetkov PO, Sergiev PV, Bogdanov AA, Makarov AA, Dontsova OA. Properties of small rRNA methyltransferase RsmD: mutational and kinetic study. RNA (NEW YORK, N.Y.) 2012; 18:1178-1185. [PMID: 22535590 PMCID: PMC3358640 DOI: 10.1261/rna.032763.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Ribosomal RNA modification is accomplished by a variety of enzymes acting on all stages of ribosome assembly. Among rRNA methyltransferases of Escherichia coli, RsmD deserves special attention. Despite its minimalistic domain architecture, it is able to recognize a single target nucleotide G966 of the 16S rRNA. RsmD acts late in the assembly process and is able to modify a completely assembled 30S subunit. Here, we show that it possesses superior binding properties toward the unmodified 30S subunit but is unable to bind a 30S subunit modified at G966. RsmD is unusual in its ability to withstand multiple amino acid substitutions of the active site. Such efficiency of RsmD may be useful to complete the modification of a 30S subunit ahead of the 30S subunit's involvement in translation.
Collapse
Affiliation(s)
- Olga V. Sergeeva
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Irina V. Prokhorova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Yerdos Ordabaev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Philipp O. Tsvetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexey A. Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| |
Collapse
|
20
|
Burakovsky DE, Prokhorova IV, Sergiev PV, Milón P, Sergeeva OV, Bogdanov AA, Rodnina MV, Dontsova OA. Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation. Nucleic Acids Res 2012; 40:7885-95. [PMID: 22649054 PMCID: PMC3439901 DOI: 10.1093/nar/gks508] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m2G966 and m5C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m2G966/m5C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNAfMet to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m2G966 and m5C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.
Collapse
|
21
|
Kimura S, Ikeuchi Y, Kitahara K, Sakaguchi Y, Suzuki T, Suzuki T. Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. Nucleic Acids Res 2012; 40:4071-85. [PMID: 22210896 PMCID: PMC3351187 DOI: 10.1093/nar/gkr1287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 11/28/2011] [Accepted: 12/14/2011] [Indexed: 12/18/2022] Open
Abstract
Modifications of rRNAs are clustered in functional regions of the ribosome. In Helix 74 of Escherichia coli 23S rRNA, guanosines at positions 2069 and 2445 are modified to 7-methylguanosine(m(7)G) and N(2)-methylguanosine(m(2)G), respectively. We searched for the gene responsible for m(7)G2069 formation, and identified rlmL, which encodes the methyltransferase for m(2)G2445, as responsible for the biogenesis of m(7)G2069. In vitro methylation of rRNA revealed that rlmL encodes a fused methyltransferase responsible for forming both m(7)G2069 and m(2)G2445. We renamed the gene rlmKL. The N-terminal RlmL activity for m(2)G2445 formation was significantly enhanced by the C-terminal RlmK. Moreover, RlmKL had an unwinding activity of Helix 74, facilitating cooperative methylations of m(7)G2069 and m(2)G2445 during biogenesis of 50S subunit. In fact, we observed that RlmKL was involved in the efficient assembly of 50S subunit in a mutant strain lacking an RNA helicase deaD.
Collapse
MESH Headings
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Guanosine/analogs & derivatives
- Guanosine/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Protein Structure, Tertiary
- RNA Helicases/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Roovers M, Oudjama Y, Fislage M, Bujnicki JM, Versées W, Droogmans L. The open reading frame TTC1157 of Thermus thermophilus HB27 encodes the methyltransferase forming N²-methylguanosine at position 6 in tRNA. RNA (NEW YORK, N.Y.) 2012; 18:815-24. [PMID: 22337946 PMCID: PMC3312568 DOI: 10.1261/rna.030411.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
N(2)-methylguanosine (m(2)G) is found at position 6 in the acceptor stem of Thermus thermophilus tRNA(Phe). In this article, we describe the cloning, expression, and characterization of the T. thermophilus HB27 methyltransferase (MTase) encoded by the TTC1157 open reading frame that catalyzes the formation of this modified nucleoside. S-adenosyl-L-methionine is used as donor of the methyl group. The enzyme behaves as a monomer in solution. It contains an N-terminal THUMP domain predicted to bind RNA and contains a C-terminal Rossmann-fold methyltransferase (RFM) domain predicted to be responsible for catalysis. We propose to rename the TTC1157 gene trmN and the corresponding protein TrmN, according to the bacterial nomenclature of tRNA methyltransferases. Inactivation of the trmN gene in the T. thermophilus HB27 chromosome led to a total absence of m(2)G in tRNA but did not affect cell growth or the formation of other modified nucleosides in tRNA(Phe). Archaeal homologs of TrmN were identified and characterized. These proteins catalyze the same reaction as TrmN from T. thermophilus. Individual THUMP and RFM domains of PF1002 from Pyrococcus furiosus were produced. These separate domains were inactive and did not bind tRNA, reinforcing the idea that the THUMP domain acts in concert with the catalytic domain to target a particular position of the tRNA molecule.
Collapse
Affiliation(s)
- Martine Roovers
- Institut de Recherches Microbiologiques Jean-Marie Wiame, B-1070 Bruxelles, Belgium
| | - Yamina Oudjama
- Institut de Recherches Microbiologiques Jean-Marie Wiame, B-1070 Bruxelles, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB Department of Structural Biology, 1050 Brussels, Belgium
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, PL-61-614 Poznan, Poland
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- VIB Department of Structural Biology, 1050 Brussels, Belgium
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université Libre de Bruxelles (ULB), B-1070 Bruxelles, Belgium
| |
Collapse
|
23
|
Sergiev PV, Golovina AY, Sergeeva OV, Osterman IA, Nesterchuk MV, Bogdanov AA, Dontsova OA. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets? Nucleic Acids Res 2012; 40:5694-705. [PMID: 22411911 PMCID: PMC3384335 DOI: 10.1093/nar/gks219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions.
Collapse
Affiliation(s)
- Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang KT, Desmolaize B, Nan J, Zhang XW, Li LF, Douthwaite S, Su XD. Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic Acids Res 2012; 40:5138-48. [PMID: 22362734 PMCID: PMC3367195 DOI: 10.1093/nar/gks160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 23S rRNA nucleotide m(2)G2445 is highly conserved in bacteria, and in Escherichia coli this modification is added by the enzyme YcbY. With lengths of around 700 amino acids, YcbY orthologs are the largest rRNA methyltransferases identified in Gram-negative bacteria, and they appear to be fusions from two separate proteins found in Gram-positives. The crystal structures described here show that both the N- and C-terminal halves of E. coli YcbY have a methyltransferase active site and their folding patterns respectively resemble the Streptococcus mutans proteins Smu472 and Smu776. Mass spectrometric analyses of 23S rRNAs showed that the N-terminal region of YcbY and Smu472 are functionally equivalent and add the m(2)G2445 modification, while the C-terminal region of YcbY is responsible for the m(7)G2069 methylation on the opposite side of the same helix (H74). Smu776 does not target G2069, and this nucleotide remains unmodified in Gram-positive rRNAs. The E.coli YcbY enzyme is the first example of a methyltransferase catalyzing two mechanistically different types of RNA modification, and has been renamed as the Ribosomal large subunit methyltransferase, RlmKL. Our structural and functional data provide insights into how this bifunctional enzyme evolved.
Collapse
Affiliation(s)
- Kai-Tuo Wang
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Menezes S, Gaston KW, Krivos KL, Apolinario EE, Reich NO, Sowers KR, Limbach PA, Perona JJ. Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14. Nucleic Acids Res 2011; 39:7641-55. [PMID: 21693558 PMCID: PMC3177210 DOI: 10.1093/nar/gkr475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 11/30/2022] Open
Abstract
The modified nucleosides N(2)-methylguanosine and N(2)(2)-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m(2)G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m(2)G at position 6 in tRNA(Cys). The 381 amino acid Trm14 protein possesses a canonical RNA recognition THUMP domain at the amino terminus, followed by a γ-class Rossmann fold amino-methyltransferase catalytic domain featuring the signature NPPY active site motif. Trm14 is associated with cluster of orthologous groups (COG) 0116, and most closely resembles the m(2)G10 tRNA methylase Trm11. Phylogenetic analysis reveals a canonical archaeal/bacterial evolutionary separation with 20-30% sequence identities between the two branches, but it is likely that the detailed functions of COG 0116 enzymes differ between the archaeal and bacterial domains. In the archaeal branch, the protein is found exclusively in thermophiles. More distantly related Trm14 homologs were also identified in eukaryotes known to possess the m(2)G6 tRNA modification.
Collapse
Affiliation(s)
- Sheena Menezes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kirk W. Gaston
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kady L. Krivos
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Ethel E. Apolinario
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kevin R. Sowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Patrick A. Limbach
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - John J. Perona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
26
|
Kumar A, Saigal K, Malhotra K, Sinha KM, Taneja B. Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. J Biol Chem 2011; 286:19652-61. [PMID: 21474448 PMCID: PMC3103344 DOI: 10.1074/jbc.m110.200428] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/24/2011] [Indexed: 11/06/2022] Open
Abstract
Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Histones/chemistry
- Histones/genetics
- Histones/metabolism
- Methylation
- Mycobacterium tuberculosis/enzymology
- Mycobacterium tuberculosis/genetics
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Structure-Activity Relationship
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Atul Kumar
- From the Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi University Campus, Delhi 110007 and
| | - Kashyap Saigal
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Ketan Malhotra
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Krishna Murari Sinha
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Bhupesh Taneja
- From the Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi University Campus, Delhi 110007 and
| |
Collapse
|
27
|
Siibak T, Remme J. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified. RNA (NEW YORK, N.Y.) 2010; 16:2023-32. [PMID: 20719918 PMCID: PMC2941110 DOI: 10.1261/rna.2160010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/15/2010] [Indexed: 05/25/2023]
Abstract
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol/pharmacology
- DNA Primers/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Pseudouridine/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Triinu Siibak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
28
|
Jewett MC, Forster AC. Update on designing and building minimal cells. Curr Opin Biotechnol 2010; 21:697-703. [PMID: 20638265 DOI: 10.1016/j.copbio.2010.06.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 12/11/2022]
Abstract
Minimal cells comprise only the genes and biomolecular machinery necessary for basic life. Synthesizing minimal and minimized cells will improve understanding of core biology, enhance development of biotechnology strains of bacteria, and enable evolutionary optimization of natural and unnatural biopolymers. Design and construction of minimal cells is proceeding in two different directions: 'top-down' reduction of bacterial genomes in vivo and 'bottom-up' integration of DNA/RNA/protein/membrane syntheses in vitro. Major progress in the past 5 years has occurred in synthetic genomics, minimization of the Escherichia coli genome, sequencing of minimal bacterial endosymbionts, identification of essential genes, and integration of biochemical systems.
Collapse
Affiliation(s)
- Michael C Jewett
- Department of Chemical and Biological Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | |
Collapse
|
29
|
Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Légaré D, Ouellette M. Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 2009; 19:1214-23. [PMID: 19351617 PMCID: PMC2704432 DOI: 10.1101/gr.089342.108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/02/2009] [Indexed: 12/22/2022]
Abstract
Linezolid is a member of a novel class of antibiotics, with resistance already being reported. We used whole-genome sequencing on three independent Streptococcus pneumoniae strains made resistant to linezolid in vitro in a step-by-step fashion. Analysis of the genome assemblies revealed mutations in the 23S rRNA gene in all mutants including, notably, G2576T, a previously recognized resistance mutation. Mutations in an additional 31 genes were also found in at least one of the three sequenced genomes. We concentrated on three new mutations that were found in at least two independent mutants. All three mutations were experimentally confirmed to be involved in antibiotic resistance. Mutations upstream of the ABC transporter genes spr1021 and spr1887 were correlated with increased expression of these genes and neighboring genes of the same operon. Gene inactivation supported a role for these ABC transporters in resistance to linezolid and other antibiotics. The hypothetical protein spr0333 contains an RNA methyltransferase domain, and mutations within that domain were found in all S. pneumoniae linezolid-resistant strains. Primer extension experiments indicated that spr0333 methylates G2445 of the 23S rRNA and mutations in spr0333 abolished this methylation. Reintroduction of a nonmutated version of spr0333 in resistant bacteria reestablished G2445 methylation and led to cells being more sensitive to linezolid and other antibiotics. Interestingly, the spr0333 ortholog was also mutated in a linezolid-resistant clinical Staphylococcus aureus isolate. Whole-genome sequencing and comparative analyses of S. pneumoniae resistant isolates was useful for discovering novel resistance mutations.
Collapse
Affiliation(s)
- Jie Feng
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Andréanne Lupien
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Jessica Wasserscheid
- McGill University and Génome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada
| | - Ken Dewar
- McGill University and Génome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| |
Collapse
|
30
|
Golovina AY, Sergiev PV, Golovin AV, Serebryakova MV, Demina I, Govorun VM, Dontsova OA. The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). RNA (NEW YORK, N.Y.) 2009; 15:1134-41. [PMID: 19383770 PMCID: PMC2685529 DOI: 10.1261/rna.1494409] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/27/2009] [Indexed: 05/24/2023]
Abstract
Transfer RNA is highly modified. Nucleotide 37 of the anticodon loop is represented by various modified nucleotides. In Escherichia coli, the valine-specific tRNA (cmo(5)UAC) contains a unique modification, N(6)-methyladenosine, at position 37; however, the enzyme responsible for this modification is unknown. Here we demonstrate that the yfiC gene of E. coli encodes an enzyme responsible for the methylation of A37 in tRNA(1)(Val). Inactivation of yfiC gene abolishes m(6)A formation in tRNA(1)(Val), while expression of the yfiC gene from a plasmid restores the modification. Additionally, unmodified tRNA(1)(Val) can be methylated by recombinant YfiC protein in vitro. Although the methylation of m(6)A in tRNA(1)(Val) by YfiC has little influence on the cell growth under standard conditions, the yfiC gene confers a growth advantage under conditions of osmotic and oxidative stress.
Collapse
Affiliation(s)
- Anna Y Golovina
- Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
31
|
Purta E, O'Connor M, Bujnicki JM, Douthwaite S. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol 2009; 72:1147-58. [PMID: 19400805 DOI: 10.1111/j.1365-2958.2009.06709.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits or ribosomes. Nucleotide C2498 is situated within a highly conserved and heavily modified rRNA sequence, and YgdE's activity is influenced by other modification enzymes that target this region. Phylogenetically, YgdE is placed in the cluster of orthologous groups COG2933 together with S-adenosylmethionine-dependent, Rossmann-fold methyltransferases such as the archaeal and eukaryotic RNA-guided fibrillarins. The ygdE gene has been redesignated rlmM for rRNA large subunit methyltransferase M.
Collapse
Affiliation(s)
- Elzbieta Purta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
32
|
Deletion of the Escherichia coli uup gene encoding a protein of the ATP binding cassette superfamily affects bacterial competitiveness. Res Microbiol 2008; 159:671-7. [PMID: 18848624 DOI: 10.1016/j.resmic.2008.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/19/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Bacteria use a variety of mechanisms for intercellular communication. Here we show that deletion of the uup gene, which encodes a soluble ATP binding cassette (ABC) ATPase, renders the mutant strain sensitive to its parent when they are grown together in the same medium. Our data suggest that the decrease in viability of the mutant is dependent on direct cell-to-cell contact with the parent strain. Furthermore, we show that the presence of intact Walker B motifs in Uup is required for immunity or resistance to the parental strain, suggesting that ATP hydrolysis is an important determinant of this phenotype.
Collapse
|
33
|
Sunita S, Tkaczuk KL, Purta E, Kasprzak JM, Douthwaite S, Bujnicki JM, Sivaraman J. Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. J Mol Biol 2008; 383:652-66. [PMID: 18789337 DOI: 10.1016/j.jmb.2008.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 11/28/2022]
Abstract
Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 A to a final R-factor of 0.194 (R(free)=0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously found in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a beta-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.
Collapse
Affiliation(s)
- S Sunita
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
34
|
YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. J Mol Biol 2008; 383:641-51. [PMID: 18786544 DOI: 10.1016/j.jmb.2008.08.061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/13/2008] [Accepted: 08/21/2008] [Indexed: 11/20/2022]
Abstract
Methylation at the 5-position of cytosine [m(5)C (5-methylcytidine)] occurs at three RNA nucleotides in Escherichia coli. All these modifications are at highly conserved nucleotides in the rRNAs, and each is catalyzed by its own m(5)C methyltransferase enzyme. Two of the enzymes, RsmB and RsmF, are already known and methylate 16S rRNA at nucleotides C967 and C1407, respectively. Here, we report the identity of the third E. coli m(5)C methyltransferase. Analysis of rRNAs by matrix-assisted laser desorption/ionization mass spectrometry showed that inactivation of the yccW gene leads to loss of m(5)C methylation at nucleotide 1962 in E. coli 23S rRNA. This methylation is restored by complementing the knockout strain with a plasmid-encoded copy of the yccW gene. Purified recombinant YccW protein retains its specificity for C1962 in vitro and methylates naked 23S rRNA isolated from the yccW knockout strain. However, YccW does not methylate assembled 50S subunits, and this is somewhat surprising as the published crystal structures show nucleotide C1962 to be fully accessible at the subunit interface. YccW-directed methylation at nucleotide C1962 is conserved in bacteria, and loss of this methylation in E. coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m(5)C methyltransferases RsmB and RsmF and is in fact more similar to known m(5)U (5-methyluridine) RNA methyltransferases. In keeping with the previously proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI.
Collapse
|
35
|
Toh SM, Mankin AS. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol 2008; 380:593-7. [PMID: 18554609 DOI: 10.1016/j.jmb.2008.05.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
A number of nucleotide residues in ribosomal RNA (rRNA) undergo specific posttranscriptional modifications. The roles of most modifications are unclear, but their clustering in functionally important regions of rRNA suggests that they might either directly affect the activity of the ribosome or modulate its interactions with ligands. Of the 25 modified nucleotides in Escherichia coli 23S rRNA, 14 are located in the peptidyl transferase center, the main antibiotic target in the large ribosomal subunit. Since nucleotide modifications have been closely associated with both antibiotic sensitivity and antibiotic resistance, loss of some of these posttranscriptional modifications may affect the susceptibility of bacteria to antibiotics. We investigated the antibiotic sensitivity of E. coli cells in which the genes of 8 rRNA-modifying enzymes targeting the peptidyl transferase center were individually inactivated. The lack of pseudouridine at position 2504 of 23S rRNA was found to significantly increase the susceptibility of bacteria to peptidyl transferase inhibitors. Therefore, this indigenous posttranscriptional modification may have evolved as an intrinsic resistance mechanism protecting bacteria against natural antibiotics.
Collapse
Affiliation(s)
- Seok-Ming Toh
- Center for Pharmaceutical Biotechnology m/c 870, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | |
Collapse
|
36
|
Toh SM, Xiong L, Bae T, Mankin AS. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA (NEW YORK, N.Y.) 2008; 14:98-106. [PMID: 18025251 PMCID: PMC2151032 DOI: 10.1261/rna.814408] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
A2503 in 23S rRNA of the gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction.
Collapse
Affiliation(s)
- Seok-Ming Toh
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
37
|
The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol 2007; 375:291-300. [PMID: 18021804 DOI: 10.1016/j.jmb.2007.10.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/07/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
N(6)-Methyladenosine 1618 of Escherichia coli 23 S rRNA is located in a cluster of modified nucleotides 12 A away from the nascent peptide tunnel of the ribosome. Here, we describe the identification of gene ybiN encoding an enzyme responsible for methylation of A1618. Knockout of the ybiN gene leads to loss of modification at A1618. The modification is restored if ybiN knock-out strain has been co-transformed with a plasmid expressing the ybiN gene. On the basis of these results we suggest that ybiN gene should be renamed to rlmF in accordance with the accepted nomenclature for rRNA methyltransferases. Recombinant YbiN protein is able to methylate partially deproteinized 50 S ribosomal subunit, so-called 3.5 M LiCl core particle in vitro, but neither the completely assembled 50 S subunits nor completely deproteinized 23 S rRNA. Both lack of the ybiN gene and it's over-expression leads to growth retardation and loss of cell fitness comparative to the parental strain. It might be suggested that A1618 modification could be necessary for the exit tunnel interaction with some unknown regulatory peptides.
Collapse
|
38
|
Chow CS, Lamichhane TN, Mahto SK. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem Biol 2007; 2:610-9. [PMID: 17894445 PMCID: PMC2535799 DOI: 10.1021/cb7001494] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all kingdoms of life, RNAs undergo specific post-transcriptional modifications. More than 100 different analogues of the four standard RNA nucleosides have been identified. Modifications in ribosomal RNAs (rRNAs) are highly prevalent and cluster in regions of the ribosome that have functional importance, have a high level of nucleotide conservation, and typically lack proteins. Modifications also play roles in determining antibiotic resistance or sensitivity. A wide spectrum of chemical diversity from the modifications provides the ribosome with a broader range of possible interactions between rRNA regions, transfer RNA, messenger RNA, proteins, or ligands by influencing local rRNA folds and fine-tuning the translation process. The collective importance of the modified nucleosides in ribosome function has been demonstrated for a number of organisms, and further studies may reveal how the individual players regulate these functions through synergistic or cooperative effects.
Collapse
Affiliation(s)
- Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
39
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
40
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
41
|
Sunita S, Purta E, Durawa M, Tkaczuk KL, Swaathi J, Bujnicki JM, Sivaraman J. Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC. Nucleic Acids Res 2007; 35:4264-74. [PMID: 17576679 PMCID: PMC1934991 DOI: 10.1093/nar/gkm411] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 A resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.
Collapse
Affiliation(s)
- S. Sunita
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Elzbieta Purta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Malgorzata Durawa
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Karolina L. Tkaczuk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - J. Swaathi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Janusz M. Bujnicki
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
- *To whom correspondence should be addressed. +65 65161163+65 67792486
| |
Collapse
|
42
|
Sergiev PV, Bogdanov AA, Dontsova OA. Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Nucleic Acids Res 2007; 35:2295-301. [PMID: 17389639 PMCID: PMC1874633 DOI: 10.1093/nar/gkm104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Five nearly universal methylated guanine-(N2) residues are present in bacterial rRNA in the ribosome. To date four out of five ribosomal RNA guanine-(N2)-methyltransferases are described. RsmC(YjjT) methylates G1207 of the 16S rRNA. RlmG(YgjO) and RlmL(YcbY) are responsible for the 23S rRNA m2G1835 and m2G2445 formation, correspondingly. RsmD(YhhF) is necessary for methylation of G966 residue of 16S rRNA. Structure of Escherichia coli RsmD(YhhF) methyltransferase and the structure of the Methanococcus jannaschii RsmC ortholog were determined. All ribosomal guanine-(N2)-methyltransferases have similar AdoMet-binding sites. In relation to the ribosomal substrate recognition, two enzymes that recognize assembled subunits are relatively small single domain proteins and two enzymes that recognize naked rRNA are larger proteins containing separate methyltransferase- and RNA-binding domains. The model for recognition of specific target nucleotide is proposed. The hypothetical role of the m2G residues in rRNA is discussed.
Collapse
Affiliation(s)
| | | | - Olga A. Dontsova
- *To whom correspondence should be addressed. +7-495-9395418+7-495-9393181
| |
Collapse
|
43
|
Jiang M, Sullivan SM, Walker AK, Strahler JR, Andrews PC, Maddock JR. Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. J Bacteriol 2007; 189:3434-44. [PMID: 17337586 PMCID: PMC1855874 DOI: 10.1128/jb.00090-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of the large ribosomal subunit requires the coordinate assembly of two rRNAs and 33 ribosomal proteins. In vivo, additional ribosome assembly factors, such as helicases, GTPases, pseudouridine synthetases, and methyltransferases, are also critical for ribosome assembly. To identify novel ribosome-associated proteins, we used a proteomic approach (isotope tagging for relative and absolute quantitation) that allows for semiquantitation of proteins from complex protein mixtures. Ribosomal subunits were separated by sucrose density centrifugation, and the relevant fractions were pooled and analyzed. The utility and reproducibility of the technique were validated via a double duplex labeling method. Next, we examined proteins from 30S, 50S, and translating ribosomes isolated at both 16 degrees C and 37 degrees C. We show that the use of isobaric tags to quantify proteins from these particles is an excellent predictor of the particles with which the proteins associate. Moreover, in addition to bona fide ribosomal proteins, additional proteins that comigrated with different ribosomal particles were detected, including both known ribosomal assembly factors and unknown proteins. The ribosome association of several of these proteins, as well as others predicted to be associated with ribosomes, was verified by immunoblotting. Curiously, deletion mutants for the majority of these ribosome-associated proteins had little effect on cell growth or on the polyribosome profiles.
Collapse
Affiliation(s)
- M Jiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A, Savchenko A, Joachimiak A, Dontsova OA. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. J Biol Chem 2007; 282:5880-7. [PMID: 17189261 PMCID: PMC2885967 DOI: 10.1074/jbc.m608214200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.
Collapse
Affiliation(s)
- Dmitry V. Lesnyak
- Department of Bioinformatics and Bioengineering, Moscow State University, Moscow 119992, Russia
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Petr V. Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Alexey A. Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Olga A. Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|