1
|
Cho THS, Murray C, Malpica R, Margain-Quevedo R, Thede GL, Lu J, Edwards RA, Glover JNM, Raivio TL. The sensor of the bacterial histidine kinase CpxA is a novel dimer of extracytoplasmic Per-ARNT-Sim domains. J Biol Chem 2024; 300:107265. [PMID: 38582452 PMCID: PMC11078701 DOI: 10.1016/j.jbc.2024.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Departments of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron Murray
- Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roxana Malpica
- Departments of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, México
| | | | - Gina L Thede
- Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Lu
- Departments of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ross A Edwards
- Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tracy L Raivio
- Departments of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
3
|
Red light-induced structure changes in phytochrome A from Pisum sativum. Sci Rep 2021; 11:2827. [PMID: 33531580 PMCID: PMC7854702 DOI: 10.1038/s41598-021-82544-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Phytochrome A (phyA) is a photoreceptor protein of plants that regulates the red/far-red light photomorphogenic responses of plants essential for growth and development. PhyA, composed of approximately 1100 amino acid residues, folds into photosensory and output signaling modules. The photosensory module covalently binds phytochromobilin as a chromophore for photoreversible interconversion between inactive red light-absorbing (Pr) and active far-red light-absorbing (Pfr) forms to act as a light-driven phosphorylation enzyme. To understand the molecular mechanism in the initial process of photomorphogenic response, we studied the molecular structures of large phyA (LphyA) from Pisum sativum, which lacks the 52 residues in the N-terminal, by small-angle X-ray scattering combined with multivariate analyses applied to molecular models predicted from the scattering profiles. According to our analyses, Pr was in a dimer and had a four-leaf shape, and the subunit was approximated as a bent rod of 175 × 50 Å. The scattering profile of Pfr was calculated from that recorded for a mixture of Pr and Pfr under red-light irradiation by using their population determined from the absorption spectrum. The Pfr dimer exhibited a butterfly shape composed of subunits with a straight rod of 175 × 50 Å. The shape differences between Pr and Pfr indicated conformational changes in the Pr/Pfr interconversion which would be essential to the interaction with protein molecules involved in transcriptional control.
Collapse
|
4
|
Serdyuk OP, Smolygina LD, Khristin MS. Membrane-Bound Bacteriophytochrome-Like Complex of Phototrophic Purple Non-Sulfur Bacterium Rhodopseudomonas palustris. DOKL BIOCHEM BIOPHYS 2018; 482:284-287. [PMID: 30397894 DOI: 10.1134/s1607672918050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 11/23/2022]
Abstract
A pigment-protein complex of yellow color with absorption maxima at 682 and 776 nm, characteristic for bacteriophytochromes, was isolated from the photosynthetic membranes of the purple bacterium Rhodopseudomonas palustris. Zinc-induced fluorescence of the complex indicated the presence of the biliverdin chromophore covalently bound to the protein. The parameters of low-temperature fluorescence (λ excitation at 680 nm, λ emission at 695 nm) indicated the ability of the complex to undergo photoconversion. These data, as well as the kinetics of accumulation of the red (Pr)-form on far red light, allowed the complex to be classified as a bacteriophytochrome-like complex with its localization in the photosynthetic membranes of Rps. palustris.
Collapse
Affiliation(s)
- O P Serdyuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia.
| | - L D Smolygina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - M S Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| |
Collapse
|
5
|
Takala H, Niebling S, Berntsson O, Björling A, Lehtivuori H, Häkkänen H, Panman M, Gustavsson E, Hoernke M, Newby G, Zontone F, Wulff M, Menzel A, Ihalainen JA, Westenhoff S. Light-induced structural changes in a monomeric bacteriophytochrome. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:054701. [PMID: 27679804 PMCID: PMC5010554 DOI: 10.1063/1.4961911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 05/11/2023]
Abstract
Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.
Collapse
Affiliation(s)
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | | | - Heikki Häkkänen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla , Jyväskylä 40014, Finland
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | | | - Gemma Newby
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | - Michael Wulff
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | | | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla , Jyväskylä 40014, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| |
Collapse
|
6
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
7
|
Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes. J Biol Chem 2015; 290:16383-92. [PMID: 25971964 DOI: 10.1074/jbc.m115.650127] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Alexander Björling
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Marko Linna
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Sebastian Westenhoff
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| |
Collapse
|
8
|
Signal amplification and transduction in phytochrome photosensors. Nature 2014; 509:245-248. [PMID: 24776794 PMCID: PMC4015848 DOI: 10.1038/nature13310] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2014] [Indexed: 11/25/2022]
Abstract
Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cellular functions in plants, bacteria, and fungi.1-9 Bacterial phytochromes consist of a photosensory core and a C-terminal regulatory domain.10,11 Structures of photosensory cores are reported in the resting state12-18 and conformational responses to light activation have been proposed in the vicinity of the chromophore.19-23 However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here, we report crystal and solution structures of the resting and active states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures reveal an open and closed form of the dimeric protein for the signalling and resting state, respectively. This nanometre scale rearrangement is controlled by refolding of an evolutionarily conserved “tongue”, which is in contact with the chromophore. The findings reveal an unusual mechanism where atomic scale conformational changes around the chromophore are first amplified into an Ångström scale distance change in the tongue, and further grow into a nanometre scale conformational signal. The structural mechanism is a blueprint for understanding how the sensor proteins connect to the cellular signalling network.
Collapse
|
9
|
Bellini D, Papiz MZ. Dimerization properties of theRpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1058-66. [DOI: 10.1107/s0907444912020537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/07/2012] [Indexed: 11/10/2022]
|
10
|
Njimona I, Lamparter T. Temperature effects on Agrobacterium phytochrome Agp1. PLoS One 2011; 6:e25977. [PMID: 22043299 PMCID: PMC3197147 DOI: 10.1371/journal.pone.0025977] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/14/2011] [Indexed: 01/18/2023] Open
Abstract
Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity of the holoprotein after far-red irradiation (where the red-light absorbing Pr form dominates) was stronger than that of the holoprotein after red irradiation (where the far red-absorbing Pfr form dominates). Phosphorylation activities of the apoprotein, far red-irradiated holoprotein, and red-irradiated holoprotein decreased when the temperature increased from 25°C to 35°C; at 40°C, almost no kinase activity was detected. The activity of a holoprotein sample incubated at 40°C was nearly completely restored when the temperature returned to 25°C. UV/visible spectroscopy indicated that the protein was not denatured up to 45°C. At 50°C, however, Pfr denatured faster than the dark-adapted sample containing the Pr form of Agp1. The Pr visible spectrum was unaffected by temperatures of 20–45°C, whereas irradiated samples exhibited a clear temperature effect in the 30–40°C range in which prolonged irradiation resulted in the photoconversion of Pfr into a new spectral species termed Prx. Pfr to Prx photoconversion was dependent on the His-kinase module of Agp1; normal photoconversion occurred at 40°C in the mutant Agp1-M15, which lacks the C-terminal His-kinase module, and in a domain-swap mutant in which the His-kinase module of Agp1 is replaced by the His-kinase/response regulator module of the other A. tumefaciens phytochrome, Agp2. The temperature-dependent kinase activity and spectral properties in the physiological temperature range suggest that Agp1 serves as an integrated light and temperature sensor in A. tumefaciens.
Collapse
Affiliation(s)
- Ibrahim Njimona
- Botanical Institute, Karlsruhe Institute of Technology (KIT) Campus South, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology (KIT) Campus South, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
11
|
Vierstra RD, Zhang J. Phytochrome signaling: solving the Gordian knot with microbial relatives. TRENDS IN PLANT SCIENCE 2011; 16:417-426. [PMID: 21719341 DOI: 10.1016/j.tplants.2011.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 05/28/2023]
Abstract
Phytochromes encompass a diverse collection of biliproteins that regulate numerous photoresponses in plants and microorganisms. Whereas the plant versions have proven experimentally intractable for structural studies, the microbial forms have recently provided important insights into how these photoreceptors work at the atomic level. Here, we review the current understanding of these microbial phytochromes, which shows that they have a modular dimeric architecture that propagates light-driven rotation of the bilin to distal contacts between adjacent signal output domains. Surprising features underpinning this signaling include: a deeply buried chromophore; a knot and hairpin loop that stabilizes the photosensing domain; and an extended helical spine that translates conformational changes in the photosensing domain to the output domain. Conservation within the superfamily both in modular construction and sequence strongly suggests that higher plant phytochromes work similarly as light-regulated toggle switches.
Collapse
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
12
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Purcell EB, McDonald CA, Palfey BA, Crosson S. An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry 2010; 49:6761-70. [PMID: 20593779 DOI: 10.1021/bi1006404] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flavin-binding LOV domains are broadly conserved in plants, fungi, archaea, and bacteria. These approximately 100-residue photosensory modules are generally encoded within larger, multidomain proteins that control a range of blue light-dependent physiologies. The bacterium Caulobacter crescentus encodes a soluble LOV-histidine kinase, LovK, that regulates the adhesive properties of the cell. Full-length LovK is dimeric as are a series of systematically truncated LovK constructs containing only the N-terminal LOV sensory domain. Nonconserved sequence flanking the LOV domain functions to tune the signaling lifetime of the protein. Size exclusion chromatography and small-angle X-ray scattering (SAXS) demonstrate that the LOV sensor domain does not undergo a large conformational change in response to photon absorption. However, limited proteolysis identifies a sequence flanking the C-terminus of the LOV domain as a site of light-induced change in protein conformation and dynamics. On the basis of SAXS envelope reconstruction and bioinformatic prediction, we propose this dynamic region of structure is an extended C-terminal coiled coil that links the LOV domain to the histidine kinase domain. To test the hypothesis that LOV domain signaling is affected by cellular redox state in addition to light, we measured the reduction potential of the LovK FMN cofactor. The measured potential of -258 mV is congruent with the redox potential of Gram-negative cytoplasm during logarithmic growth (-260 to -280 mV). Thus, a fraction of LovK in the cytosol may be in the reduced state under typical growth conditions. Chemical reduction of the FMN cofactor of LovK attenuates the light-dependent ATPase activity of the protein in vitro, demonstrating that LovK can function as a conditional photosensor that is regulated by the oxidative state of the cellular environment.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
14
|
Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2010; 107:10872-7. [PMID: 20534495 DOI: 10.1073/pnas.1001908107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are a collection of dimeric photoreceptors that direct a diverse array of responses in plants and microorganisms through photoconversion between a red light-absorbing ground state Pr, and a far-red light-absorbing photoactivated state Pfr. Photoconversion from Pr to Pfr is initiated by a light-driven rotation within the covalently attached bilin, which then triggers a series of protein conformational changes in the binding pocket. These movements ultimately affect an appended output module, which often has reversible protein kinase activity. Propagation of the light signal from the bilin to the output module likely depends on the dimerization interface but its architecture and response to phototransformation remain unclear. Here, we used single particle cryoelectron microscopy to determine the quaternary arrangement of the phytochrome dimer as Pr, using the bacteriophytochrome (BphP) from Deinococcus radiodurans. Contrary to the long-standing view that the two monomers are held together solely via their C-terminal region, we provide unambiguous evidence that the N-terminal bilin-binding region of BphP also provides a dimerization interface with the C-terminal kinase domain appearing as a more flexible appendage. The BphP monomers dimerize in parallel with the polypeptides intimately twisting around each other in a right-handed fashion. Based on this electron microscopic picture, we propose that the light-driven conformational changes transmitted from the chromophore to the output module along the spine of this extensive dimer interface is the central feature underpinning phytochrome signaling.
Collapse
|
15
|
Kyndt JA, Fitch JC, Seibeck S, Borucki B, Heyn MP, Meyer TE, Cusanovich MA. Regulation of the Ppr Histidine Kinase by Light-Induced Interactions between Its Photoactive Yellow Protein and Bacteriophytochrome Domains. Biochemistry 2010; 49:1744-54. [DOI: 10.1021/bi901591m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John A. Kyndt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - John C. Fitch
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Sven Seibeck
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Berthold Borucki
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Maarten P. Heyn
- Biophysics group, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Terry E. Meyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Michael A. Cusanovich
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
16
|
Sharda S, Koay MST, Kim YJ, Engelhard M, Gärtner W. A non-hydrolyzable ATP derivative generates a stable complex in a light-inducible two-component system. J Biol Chem 2009; 284:33999-4004. [PMID: 19808667 DOI: 10.1074/jbc.m109.017772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isothermal calorimetry (ITC) measurements yielded the binding constants during complex formation of light-inducible histidine kinases (HK) and their cognate CheY-type response regulators (RR). HK-RR interactions represent the core function of the bacterial two-component system, which is also present in many bacterial phytochromes. Here, we have studied the recombinant forms of phytochromes CphA and CphB from the cyanobacterium Tolypothrix PCC7601 and their cognate RRs RcpA and RcpB. The interaction between the two reaction partners (HK and RR) was studied in the presence and absence of ATP. A complex formation was observable in the presence of ATP, but specific interactions were only found when a non-hydrolyzable ATP derivative was added to the mixture. Also, the incubation of the HK domain alone (expressed as a recombinant protein) with the RR did not yield specific interactions, indicating that the HK domain is only active as a component of the full-length phytochrome. Considering also previous studies on the same proteins (Hübschmann, T., Jorissen, H. J. M. M., Börner, T., Gärtner, W., and de Marsac, N. (2001) Eur. J. Biochem. 268, 3383-3389) we now conclude that the HK domains of these phytochromes are active only when the chromophore domain is in its Pr form. The formerly documented phosphate transfer between the HK domain and the RR takes place via a transiently formed protein-protein complex, which becomes detectable by ITC in the presence of a non-hydrolyzable ATP derivative. This finding is of interest also in relation to the function of some (blue light-sensitive) photoreceptors that carry the HK domain and the RR fused together in one single protein.
Collapse
Affiliation(s)
- Shivani Sharda
- Max Planck Institute for Bioinorganic Chemistry, 45413 Mülheim, Germany
| | | | | | | | | |
Collapse
|
17
|
Bacteriophytochromes Control Photosynthesis in Rhodopseudomonas palustris. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
19
|
Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci U S A 2008; 105:14715-20. [PMID: 18799746 DOI: 10.1073/pnas.0806718105] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 A resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an "arm" structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.
Collapse
|
20
|
Abstract
The phytochrome protein superfamily reveals a diversity of mechanisms of action. Proteins of the phytochrome superfamily of red/far-red light receptors have a variety of biological roles in plants, algae, bacteria and fungi and demonstrate a diversity of spectral sensitivities and output signaling mechanisms. Over the past few years the first three-dimensional structures of phytochrome light-sensing domains from bacteria have been determined.
Collapse
|
21
|
Giraud E, Verméglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:141-153. [PMID: 18612842 DOI: 10.1007/s11120-008-9323-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Since the first discovery of a bacteriophytochrome in Rhodospirillum centenum, numerous bacteriophytochromes have been identified and characterized in other anoxygenic photosynthetic bacteria. This review is focused on the biochemical and biophysical properties of bacteriophytochromes with a special emphasis on their roles in the synthesis of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | |
Collapse
|
22
|
The PHY domain is required for conformational stability and spectral integrity of the bacteriophytochrome from Deinococcus radiodurans. Biochem Biophys Res Commun 2008; 369:1120-4. [PMID: 18331835 DOI: 10.1016/j.bbrc.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/01/2008] [Indexed: 11/23/2022]
Abstract
Bacteriophytochrome from Deinococcus radiodurans (DrBphP) is a plant phytochrome homolog. To investigate the interaction of chromophore and protein structure, we purified recombinant DrBphP and performed biochemical analyses. Differences of apo- and holo-protein in electrophoretic properties in native gels and their susceptibility to trypsin indicate changes in both the conformation and surface topography of this protein as a result of chromophore assembly. Furthermore, proteolysis to Pr and Pfr conformers displayed distinctive cleavage patterns with a noticeable Pr-specific tryptic fragment. Of interest, a prolonged tryptic digestion showed a more severe impact upon the Pfr form. Most importantly, when we assessed the extent of dark reversion to evaluate the role of the cleaved part, a rapidly accelerated reversion was observed upon cleavage at residues 329-505 corresponding to the PHY domain. Our data thus show that the PHY domain is necessary for the Pfr stabilization and spectral integrity of DrBphP.
Collapse
|
23
|
Lee J, Tomchick DR, Brautigam CA, Machius M, Kort R, Hellingwerf KJ, Gardner KH. Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Biochemistry 2008; 47:4051-64. [PMID: 18324779 DOI: 10.1021/bi7021156] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bacillus subtilis KinA protein is a histidine protein kinase that controls the commitment of this organism to sporulate in response to nutrient deprivation and several other conditions. Prior studies indicated that the N-terminal Per-ARNT-Sim domain (PAS-A) plays a critical role in the catalytic activity of this enzyme, as demonstrated by the significant decrease of the autophosphorylation rate of a KinA protein lacking this domain. On the basis of the environmental sensing role played by PAS domains in a wide range of proteins, including other bacterial sensor kinases, it has been suggested that the PAS-A domain plays an important regulatory role in KinA function. We have investigated this potential by using a combination of biophysical and biochemical methods to examine PAS-A structure and function, both in isolation and within the intact protein. Here, we present the X-ray crystal structure of the KinA PAS-A domain, showing that it crystallizes as a homodimer using beta-sheet/beta-sheet packing interactions as observed for several other PAS domain complexes. Notably, we observed two dimers with tertiary and quaternary structure differences in the crystalline lattice, indicating significant structural flexibility in these domains. To confirm that KinA PAS-A also forms dimers in solution, we used a combination of NMR spectroscopy, gel filtration chromatography, and analytical ultracentrifugation, the results of which are all consistent with the crystallographic results. We experimentally tested the importance of several residues at the dimer interface using site-directed mutagenesis, finding changes in the PAS-A domain that significantly alter KinA enzymatic activity in vitro and in vivo. These results support the importance of PAS domains within KinA and other histidine kinases and suggest possible routes for natural or artificial regulation of kinase activity.
Collapse
Affiliation(s)
- James Lee
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-8816, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Koch MHJ, Bras W. Synchrotron radiation studies of non-crystalline systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b703892p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Borg OA, Durbeej B. Relative Ground and Excited-State pKa Values of Phytochromobilin in the Photoactivation of Phytochrome: A Computational Study. J Phys Chem B 2007; 111:11554-65. [PMID: 17845025 DOI: 10.1021/jp0727953] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the plant photoreceptor phytochrome from an inactive (Pr) to an active form (Pfr) is accomplished by a red-light induced Z --> E photoisomerization of its phytochromobilin chromophore. In recent years, the question whether the photoactivation involves a change in chromophore protonation state has been the subject of many experimental studies. Here, we have used quantum chemical methods to calculate relative ground and excited-state pKa values of the different pyrrole moieties of phytochromobilin in a protein-like environment. Assuming (based on experimental data) a Pr ZaZsZa chromophore and considering isomerizations at C15 and C5, it is found that moieties B and C are the strongest acids both in the ground state and in the bright first singlet excited state, which is rationalized in simple geometric and electronic terms. It is also shown that neither light absorption nor isomerization increases the acidity of phytochromobilin relative to the reference Pr state with all pyrrolenic nitrogens protonated. Hence, provided that the subset of chromophore geometries under investigation is biologically relevant, there appears to be no intrinsic driving force for a proton-transfer event. In a series of benchmark calculations, the performance of ab initio and time-dependent density functional theory methods for excited-state studies of phytochromobilin is evaluated in light of available experimental data.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, S-75120 Uppsala, Sweden
| | | |
Collapse
|
26
|
Yang X, Stojković EA, Kuk J, Moffat K. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc Natl Acad Sci U S A 2007; 104:12571-6. [PMID: 17640891 PMCID: PMC1941510 DOI: 10.1073/pnas.0701737104] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Indexed: 11/18/2022] Open
Abstract
Bacteriophytochromes RpBphP2 and RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris work in tandem to modulate synthesis of the light-harvesting complex LH4 in response to light. Although RpBphP2 and RpBphP3 share the same domain structure with 52% sequence identity, they demonstrate distinct photoconversion behaviors. RpBphP2 exhibits the "classical" phytochrome behavior of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states, whereas RpBphP3 exhibits novel photoconversion between Pr and a near-red (Pnr) light-absorbing states. We have determined the crystal structure at 2.2-A resolution of the chromophore binding domains of RpBphP3, covalently bound with chromophore biliverdin IXalpha. By combining structural and sequence analyses with site-directed mutagenesis, we identify key residues that directly modulate the photochemical properties of RpBphP3 and RpBphP2. Remarkably, we identify a region spanning residues 207-212 in RpBphP3, in which a single mutation, L207Y, causes this unusual bacteriophytochrome to revert to the classical phenotype that undergoes reversible photoconversion between the Pr and Pfr states. The reverse mutation, Y193L, in the corresponding region in RpBphP2 significantly diminishes the formation of the Pfr state. We propose that residues 207-212 and the spatially adjacent conserved residues, Asp-216 and Tyr-272, interact with the chromophore and form part of the interface between the chromophore binding domains and the PHY domain that modulates photoconversion.
Collapse
Affiliation(s)
- Xiaojing Yang
- *Department of Biochemistry and Molecular Biology and
| | | | - Jane Kuk
- *Department of Biochemistry and Molecular Biology and
| | - Keith Moffat
- *Department of Biochemistry and Molecular Biology and
- Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| |
Collapse
|
27
|
Braatsch S, Johnson JA, Noll K, Beatty JT. The O2-responsive repressor PpsR2 but not PpsR1 transduces a light signal sensed by the BphP1 phytochrome inRhodopseudomonas palustrisCGA009. FEMS Microbiol Lett 2007; 272:60-4. [PMID: 17456182 DOI: 10.1111/j.1574-6968.2007.00734.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Regulatory properties of bacteriophytochrome BphP1 were evaluated with respect to the photosynthesis gene transcription repressors PpsR1 and PpsR2 of Rhodopseudomonas palustris strain CGA009 in gene complementation, replacement and deletion experiments. The results indicate that 750 nm wavelength light activates BphP1 to antagonize repression of photosynthesis gene expression by PpsR2, but not PpsR1. It is suggested that an equilibrium exists between BphP1-active and -inactive conformations, with 750 nm light shifting the equilibrium to an active conformation, although a phenotypically detectable component of BphP1 is in the active conformation in the absence of illumination.
Collapse
Affiliation(s)
- Stephan Braatsch
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
28
|
Vuillet L, Kojadinovic M, Zappa S, Jaubert M, Adriano JM, Fardoux J, Hannibal L, Pignol D, Verméglio A, Giraud E. Evolution of a bacteriophytochrome from light to redox sensor. EMBO J 2007; 26:3322-31. [PMID: 17581629 PMCID: PMC1933401 DOI: 10.1038/sj.emboj.7601770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/29/2007] [Indexed: 11/08/2022] Open
Abstract
Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase, thus behaving as a bona fide bacteriophytochrome. However, in most strains, RpBphP4 does not to bind this chromophore. This loss of light sensing is replaced by a redox-sensing ability coupled to kinase activity. Phylogenetic analysis is consistent with an evolutionary scenario, where a bacteriophytochrome ancestor has adapted from light to redox sensing. Both types of RpBphP4 regulate the synthesis of light harvesting (LH2) complexes according to the light or redox conditions, respectively. They modulate the affinity of a transcription factor binding to the promoter regions of LH2 complex genes by controlling its phosphorylation status. This is the first complete description of a bacteriophytochrome signal transduction pathway involving a two-component system.
Collapse
Affiliation(s)
- Laurie Vuillet
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Mila Kojadinovic
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Sébastien Zappa
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Jean-Marc Adriano
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Joël Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Laure Hannibal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - David Pignol
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - André Verméglio
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
- These authors contributed equally to this work
- SBVME-Laboratoire de Bioénergétique Cellulaire, CEA Cadarache bâtment 156, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint Paul lez Durance 13108, France. Tel.: +33 44225 4630; Fax: +33 4422 54701; E-mail:
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
- These authors contributed equally to this work
| |
Collapse
|
29
|
Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 2007; 282:12298-309. [PMID: 17322301 DOI: 10.1074/jbc.m611824200] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Jaubert M, Lavergne J, Fardoux J, Hannibal L, Vuillet L, Adriano JM, Bouyer P, Pignol D, Giraud E, Verméglio A. A singular bacteriophytochrome acquired by lateral gene transfer. J Biol Chem 2007; 282:7320-8. [PMID: 17218312 DOI: 10.1074/jbc.m611173200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, 34398 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|