1
|
Dong Y, Elgerbi A, Xie B, Choy JS, Sivasankar S. Actomyosin forces trigger a conformational change in desmoplakin within desmosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624364. [PMID: 39605443 PMCID: PMC11601634 DOI: 10.1101/2024.11.19.624364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Desmosomes are essential cell-cell adhesion organelles that enable tension-prone tissue, like the skin and heart, to withstand mechanical stress. Desmosomal anomalies are associated with numerous epidermal disorders and cardiomyopathies. Despite their critical role in maintaining tissue resilience, an understanding of how desmosomes sense and respond to mechanical stimuli is lacking. Here, we use a combination of super-resolution imaging, FRET-based tension sensors, atomistic computer simulations, and biochemical assays to demonstrate that actomyosin forces induce a conformational change in desmoplakin, a critical cytoplasmic desmosomal protein. We show that in human breast cancer MCF7 cells, actomyosin contractility reorients keratin intermediate filaments and directs force to desmoplakin along the keratin filament backbone. These forces induce a conformational change in the N-terminal plakin domain of desmoplakin, converting this domain from a folded (closed) to an extended (open) conformation. Our findings establish that desmoplakin is mechanosensitive and responds to changes in cellular load by undergoing a force-induced conformational change.
Collapse
|
2
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Khalesi R, Harvey N, Garshasbi M, Kalamati E, Youssefian L, Vahidnezhad H, Uitto J. Pathogenic DST sequence variants result in either epidermolysis bullosa simplex (EBS) or hereditary sensory and autonomic neuropathy type 6 (HSAN-VI). Exp Dermatol 2022; 31:949-955. [PMID: 35276021 DOI: 10.1111/exd.14562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
DST encodes bullous pemphigoid antigen-1 (BPAG1), a protein with eight tissue-specific isoforms expressed in the skin, muscle, brain, and nerves. Accordingly, mutations in this gene are associated with epidermolysis bullosa simplex (EBS) and hereditary sensory and autonomic neuropathy type 6 (HSAN-VI). The genotypic spectrum is attested to by 19 distinct mutations but genotype-phenotype correlation for both disorders is not well established. In this study, we performed next-generation sequencing (NGS) on two families with different phenotypic presentations, one fetus (P1) with musculoskeletal and neurological malformations established by prenatal ultrasound and family history, and a 15-year-old female (P2) with skin blistering. P1 had a novel homozygous nonsense mutation, DST: NM_001144769, c.3805C>T, p.R1269* within a region of homozygosity (ROH). This mutation resides within the plakin domain of BPAG1 and ablates all isoforms of this protein, leading to novel extracutaneous phenotypes consistent with HSAN-VI in P1. P2 had a recurrent homozygous mutation DST: NM_001723.7, c.3370C>T, p.Gln1124* that presented with giant, trauma-induced skin blisters without extracutaneous involvement. This mutation is located within the coiled-coil domain present on the skin isoform of DST, BPGA1-e, associated with EBS. In summary, we report two families with pathogenic DST variants and expand the spectrum of DST genotype and phenotypes.
Collapse
Affiliation(s)
- Raziyeh Khalesi
- Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
| | - Nailah Harvey
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Kalamati
- Obstetrics and Gynecology Department, Imam Zaman Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia
| |
Collapse
|
4
|
Wiche G, Castañón MJ. Cytoskeleton | Intermediate Filament Linker Proteins: Plectin and BPAG1. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021:200-219. [DOI: 10.1016/b978-0-12-819460-7.00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Motley WW, Züchner S, Scherer SS. Isoform-specific loss of dystonin causes hereditary motor and sensory neuropathy. NEUROLOGY-GENETICS 2020; 6:e496. [PMID: 32802955 PMCID: PMC7413632 DOI: 10.1212/nxg.0000000000000496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022]
Abstract
Objective To determine the genetic cause of axonal Charcot-Marie-Tooth disease in a small family with 2 affected siblings, one of whom had cerebellar features on examination. Methods Whole-exome sequencing of genomic DNA and analysis for recessively inherited mutations; PCR-based messenger RNA/complementary DNA analysis of transcripts to characterize the effects of variants identified by exome sequencing. Results We identified compound heterozygous mutations in dystonin (DST), which is alternatively spliced to create many plakin family linker proteins (named the bullous pemphigoid antigen 1 [BPAG1] proteins) that function to bridge cytoskeletal filament networks. One mutation (c.250C>T) is predicted to cause a nonsense mutation (p.R84X) that only affects isoform 2 variants, which have an N-terminal transmembrane domain; the other (c.8283+1G>A) mutates a consensus splice donor site and results in a 22 amino acid in-frame deletion in the spectrin repeat domain of all BPAG1a and BPAG1b isoforms. Conclusions These findings introduce a novel human phenotype, axonal Charcot-Marie-Tooth, of recessive DST mutations, and provide further evidence that BPAG1 plays an essential role in axonal health.
Collapse
Affiliation(s)
- William W Motley
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| | - Stephan Züchner
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| | - Steven S Scherer
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| |
Collapse
|
6
|
Lynch-Godrei A, De Repentigny Y, Yaworski RA, Gagnon S, Butcher J, Manoogian J, Stintzi A, Kothary R. Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterol Motil 2020; 32:e13773. [PMID: 31814231 DOI: 10.1111/nmo.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dystonia musculorum (Dstdt ) is a murine disease caused by recessive mutations in the dystonin (Dst) gene. Loss of dorsal root ganglion (DRG) sensory neurons, ataxia, and dystonic postures before death by postnatal day 18 (P18) is a hallmark feature. Recently we observed gas accumulation and discoloration in the small intestine and cecum in Dstdt mice by P15. The human disease resulting from dystonin loss-of-function, known as hereditary sensory and autonomic neuropathy type VI (HSAN-VI), has also been associated with gastrointestinal (GI) symptoms including chronic diarrhea and abdominal pain. As neuronal dystonin isoforms are expressed in the GI tract, we hypothesized that dystonin loss-of-function in Dstdt-27J enteric nervous system (ENS) neurons resulted in neurodegeneration associated with the GI abnormalities. METHODS We characterized the nature of the GI abnormalities observed in Dstdt mice through histological analysis of the gut, assessing the ENS for signs of neurodegeneration, evaluation of GI motility and absorption, and by profiling the microbiome. KEY RESULTS Though gut histology, ENS viability, and GI absorption were normal, slowed GI motility, thinning of the colon mucous layer, and reduced microbial richness/evenness were apparent in Dstdt-27J mice by P15. Parasympathetic GI input showed signs of neurodegeneration, while sympathetic did not. CONCLUSIONS & INFERENCES Dstdt-27J GI defects are not linked to ENS neurodegeneration, but are likely a result of an imbalance in autonomic control over the gut. Further characterization of HSAN-VI patient GI symptoms is necessary to determine potential treatments targeting symptom relief.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca A Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Manoogian
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Lynch-Godrei A, De Repentigny Y, Gagnon S, Trung MT, Kothary R. Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Hum Mol Genet 2019; 27:3598-3611. [PMID: 29982604 DOI: 10.1093/hmg/ddy250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - My Tran Trung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada
| |
Collapse
|
8
|
Manso JA, Gómez-Hernández M, Carabias A, Alonso-García N, García-Rubio I, Kreft M, Sonnenberg A, de Pereda JM. Integrin α6β4 Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure 2019; 27:952-964.e6. [PMID: 31006587 DOI: 10.1016/j.str.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
Abstract
Mechanical stability of epithelia requires firm attachment to the basement membrane via hemidesmosomes. Dysfunction of hemidesmosomal proteins causes severe skin-blistering diseases. Two plakins, plectin and BP230 (BPAG1e), link the integrin α6β4 to intermediate filaments in epidermal hemidesmosomes. Here, we show that a linear sequence within the isoform-specific N-terminal region of BP230 binds to the third and fourth FnIII domains of β4. The crystal structure of the complex and mutagenesis analysis revealed that BP230 binds between the two domains of β4. BP230 induces closing of the two FnIII domains that are locked in place by an interdomain ionic clasp required for binding. Disruption of BP230-β4 binding prevents recruitment of BP230 to hemidesmosomes in human keratinocytes, revealing a key role of this interaction for hemidesmosome assembly. Phosphomimetic substitutions in β4 and BP230 destabilize the complex. Thus, our study provides insights into the architecture of hemidesmosomes and potential mechanisms of regulation.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Noelia Alonso-García
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Inés García-Rubio
- Centro Universitario de la Defensa, Ctra. Huesca s/n, 50090 Zaragoza, Spain
| | - Maaike Kreft
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
9
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
10
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
11
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Moffat JJ, Ka M, Jung EM, Smith AL, Kim WY. The role of MACF1 in nervous system development and maintenance. Semin Cell Dev Biol 2017; 69:9-17. [PMID: 28579452 DOI: 10.1016/j.semcdb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amanda L Smith
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Manganelli F, Parisi S, Nolano M, Tao F, Paladino S, Pisciotta C, Tozza S, Nesti C, Rebelo AP, Provitera V, Santorelli FM, Shy ME, Russo T, Zuchner S, Santoro L. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 2017; 88:2132-2140. [PMID: 28468842 DOI: 10.1212/wnl.0000000000003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To describe a second hereditary sensory autonomic neuropathy type VI (HSAN-VI) family harboring 2 novel heterozygous mutations in the dystonin (DST) gene and to evaluate their effect on neurons derived from induced pluripotent stem cells (iPSC). METHODS The family consisted of 3 affected siblings from nonconsanguineous healthy parents. All members underwent clinical and electrophysiologic evaluation and genetic analysis. Two patients underwent quantitative sensory testing (QST), cardiovascular reflexes, dynamic sweat test, and skin biopsy to evaluate somatic and autonomic cutaneous innervation and to get fibroblast cultures for developing iPSC-derived neurons. RESULTS Onset occurred in the first decade, with painless and progressive mutilating distal ulcerations leading to amputation and joint deformity. Sensation to pain, touch, and vibration was reduced. Autonomic disturbances included hypohidrosis, pupillary abnormalities, and gastrointestinal and sexual dysfunction. Nerve conduction studies showed a severe axonal sensory neuropathy. QST and autonomic functional studies were abnormal. Skin biopsy revealed a lack of sensory and autonomic nerve fibers. Genetic analysis revealed 2 pathogenic mutations in the DST gene affecting exclusively the DST neuronal isoform-a2. Neurons derived from iPSC showed absence or very low levels of DST protein and short and dystrophic neuritis or no projections at all. CONCLUSIONS Unlike the previous HSAN-VI family, our description indicates that DST mutations may be associated with a nonlethal and nonsyndromic phenotype. Neuronal loss affects large and small sensory nerve fibers as well as autonomic ones. Induced-PSC findings suggest that dystonin defect might alter proper development of the peripheral nerves. Dystonin-a2 plays a major role in the HSAN-VI phenotype.
Collapse
Affiliation(s)
- Fiore Manganelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Silvia Parisi
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Maria Nolano
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Feifei Tao
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Simona Paladino
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Chiara Pisciotta
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stefano Tozza
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Claudia Nesti
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Adriana P Rebelo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Vincenzo Provitera
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Filippo M Santorelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Michael E Shy
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Tommaso Russo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stephan Zuchner
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Lucio Santoro
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
14
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
15
|
Hu L, Su P, Li R, Yin C, Zhang Y, Shang P, Yang T, Qian A. Isoforms, structures, and functions of versatile spectraplakin MACF1. BMB Rep 2016; 49:37-44. [PMID: 26521939 PMCID: PMC4914211 DOI: 10.5483/bmbrep.2016.49.1.185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chong Yin
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tuanmin Yang
- Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
16
|
Abstract
This review discusses the spectrin superfamily of proteins that function to connect cytoskeletal elements to each other, the cell membrane, and the nucleus. The signature domain is the spectrin repeat, a 106-122-amino-acid segment comprising three α-helices. α-actinin is considered to be the ancestral protein and functions to cross-link actin filaments. It then evolved to generate spectrin and dystrophin that function to link the actin cytoskeleton to the cell membrane, as well as the spectraplakins and plakins that link cytoskeletal elements to each other and to junctional complexes. A final class comprises the nesprins, which are able to bind to the nuclear membrane. This review discusses the domain organization of the various spectrin family members, their roles in protein-protein interactions, and their roles in disease, as determined from mutations, and it also describes the functional roles of the family members as determined from null phenotypes.
Collapse
Affiliation(s)
- Ronald K H Liem
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
17
|
Ortega E, Manso JA, Buey RM, Carballido AM, Carabias A, Sonnenberg A, de Pereda JM. The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. J Biol Chem 2016; 291:18643-62. [PMID: 27413182 DOI: 10.1074/jbc.m116.732909] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 11/06/2022] Open
Abstract
Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1-SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7-SR9 at lower resolution. The SR7-SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3-SR6 and SR7-SR9 regions are rod-like segments and that SR3-SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - José A Manso
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Rubén M Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain, the Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Salamanca, 37007, Spain, and
| | - Ana M Carballido
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Carabias
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain,
| |
Collapse
|
18
|
Yue J, Zhang Y, Liang WG, Gou X, Lee P, Liu H, Lyu W, Tang WJ, Chen SY, Yang F, Liang H, Wu X. In vivo epidermal migration requires focal adhesion targeting of ACF7. Nat Commun 2016; 7:11692. [PMID: 27216888 PMCID: PMC5476826 DOI: 10.1038/ncomms11692] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7’s NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement. The spectraplakin protein ACF7 binds to actin at focal adhesions and targets microtubule plus ends to focal adhesions, promoting their disassembly. Here the authors reveal that ACF7 is phosphorylated by Src/FAK, and this regulates actin binding and focal adhesion dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wanqing Lyu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, Kentucky 40292, USA
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Kang H, Weiss TM, Bang I, Weis WI, Choi HJ. Structure of the Intermediate Filament-Binding Region of Desmoplakin. PLoS One 2016; 11:e0147641. [PMID: 26808545 PMCID: PMC4726743 DOI: 10.1371/journal.pone.0147641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
Desmoplakin (DP) is a cytoskeletal linker protein that connects the desmosomal cadherin/plakoglobin/plakophilin complex to intermediate filaments (IFs). The C-terminal region of DP (DPCT) mediates IF binding, and contains three plakin repeat domains (PRDs), termed PRD-A, PRD-B and PRD-C. Previous crystal structures of PRDs B and C revealed that each is formed by 4.5 copies of a plakin repeat (PR) and has a conserved positively charged groove on its surface. Although PRDs A and B are linked by just four amino acids, B and C are separated by a 154 residue flexible linker, which has hindered crystallographic analysis of the full DPCT. Here we present the crystal structure of a DPCT fragment spanning PRDs A and B, and elucidate the overall architecture of DPCT by small angle X-ray scattering (SAXS) analysis. The structure of PRD-A is similar to that of PRD-B, and the two domains are arranged in a quasi-linear arrangement, and separated by a 4 amino acid linker. Analysis of the B-C linker region using secondary structure prediction and the crystal structure of a homologous linker from the cytolinker periplakin suggests that the N-terminal ~100 amino acids of the linker form two PR-like motifs. SAXS analysis of DPCT indicates an elongated but non-linear shape with Rg = 51.5 Å and Dmax = 178 Å. These data provide the first structural insights into an IF binding protein containing multiple PRDs and provide a foundation for studying the molecular basis of DP-IF interactions.
Collapse
Affiliation(s)
- Hyunook Kang
- Dept. of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Thomas M. Weiss
- SLAC National Laboratory, Menlo Park, California, United States of America
| | - Injin Bang
- Dept. of Biological Sciences, Seoul National University, Seoul, South Korea
| | - William I. Weis
- Depts. of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hee-Jung Choi
- Dept. of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
|
21
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
22
|
Gamper I, Fleck D, Barlin M, Spehr M, El Sayad S, Kleine H, Maxeiner S, Schalla C, Aydin G, Hoss M, Litchfield DW, Lüscher B, Zenke M, Sechi A. GAR22β regulates cell migration, sperm motility, and axoneme structure. Mol Biol Cell 2015; 27:277-94. [PMID: 26564797 PMCID: PMC4713131 DOI: 10.1091/mbc.e15-06-0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 01/24/2023] Open
Abstract
Spatiotemporal cytoskeleton remodeling is crucial for several biological processes. GAR22β interacts with EB1 via a novel noncanonical amino acid sequence and is pivotal for cell motility and focal adhesion turnover. GAR22β is also crucial for generation, motility, and ultrastructural organization of spermatozoa. Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.
Collapse
Affiliation(s)
- Ivonne Gamper
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - David Fleck
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, D-52074 Aachen, Germany
| | - Meltem Barlin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marc Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sara El Sayad
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Henning Kleine
- Institute of Biochemistry and Molecular Biology, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - Sebastian Maxeiner
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Gülcan Aydin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
23
|
Jan A, Basit S, Wakil SM, Ramzan K, Ahmad W. A novel homozygous variant in the dsp gene underlies the first case of non-syndromic form of alopecia. Arch Dermatol Res 2015; 307:793-801. [DOI: 10.1007/s00403-015-1590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/31/2015] [Accepted: 06/29/2015] [Indexed: 02/04/2023]
|
24
|
Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol 2015; 569:117-37. [PMID: 26778556 DOI: 10.1016/bs.mie.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.
Collapse
|
25
|
Abstract
Plectin and BPAG1e belong to the plakin family of high-molecular-weight proteins that interconnect the cytoskeletal systems and anchor them to junctional complexes. Plectin and BPAG1e are prototypical plakins with a similar tripartite modular structure. The N- and C-terminal regions are built of multiple discrete structural domains, while the central rod domain mediates dimerization by coiled-coil interactions. Owing to the mosaic organization of plakins, the structure of their constituent individual domains or small multi-domain segments can be analyzed isolated. Yet, understanding the integrated function of large regions, oligomers, and heterocomplexes of plakins is difficult due to the large and segmented structure. Here, we describe methods for the production of plectin and BPAG1e samples suitable for structural and biophysical analysis. In addition, we discuss the combination of hybrid methods that yield information at several resolution levels to study the complex, multi-domain, and flexible structure of plakins.
Collapse
|
26
|
Poliakova K, Adebola A, Leung CL, Favre B, Liem RKH, Schepens I, Borradori L. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts. PLoS One 2014; 9:e107535. [PMID: 25244344 PMCID: PMC4171495 DOI: 10.1371/journal.pone.0107535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Collapse
Affiliation(s)
- Kseniia Poliakova
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- * E-mail:
| | - Adijat Adebola
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Conrad L. Leung
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Bertrand Favre
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ronald K. H. Liem
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Isabelle Schepens
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Luca Borradori
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
27
|
Nicolas A, Delalande O, Hubert JF, Le Rumeur E. The spectrin family of proteins: A unique coiled-coil fold for various molecular surface properties. J Struct Biol 2014; 186:392-401. [DOI: 10.1016/j.jsb.2014.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
|
28
|
Bouameur JE, Favre B, Borradori L. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol 2013; 134:885-894. [PMID: 24352042 DOI: 10.1038/jid.2013.498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Abstract
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bertrand Favre
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Luca Borradori
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Applewhite DA, Grode KD, Duncan MC, Rogers SL. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 2013; 24:2885-93. [PMID: 23885120 PMCID: PMC3771950 DOI: 10.1091/mbc.e12-11-0798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The authors investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot) and found that Shot undergoes an intramolecular conformational change that regulates its cross-linking activity. This intramolecular interaction depends on Shot's NH2-terminal actin-binding domain and EF-hand-GAS2 domain. Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.
Collapse
Affiliation(s)
- Derek A Applewhite
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | | | | | |
Collapse
|
30
|
Winter L, Wiche G. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:77-93. [PMID: 22864774 DOI: 10.1007/s00401-012-1026-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/12/2012] [Accepted: 07/23/2012] [Indexed: 12/20/2022]
Abstract
Plectin, a giant multifunctional cytolinker protein, plays a crucial role in stabilizing and orchestrating intermediate filament networks in cells. Mutations in the human plectin gene result in multiple diseases manifesting with muscular dystrophy, skin blistering, and signs of neuropathy. The most common disease caused by plectin deficiency is epidermolysis bullosa simplex (EBS)-MD, a rare autosomal-recessive skin blistering disorder with late-onset muscular dystrophy. EBS-MD patients and plectin-deficient mice display pathologic desmin-positive protein aggregates, degenerated myofibrils, and mitochondrial abnormalities, the hallmarks of myofibrillar myopathies. In addition to EBS-MD, plectin mutations have been shown to cause EBS-MD with a myasthenic syndrome, limb-girdle muscular dystrophy type 2Q, EBS with pyloric atresia, and EBS-Ogna. This review focuses on clinical and pathological manifestations of these plectinopathies. It addresses especially plectin's role in skeletal muscle, where a loss of muscle fiber integrity and profound changes of myofiber cytoarchitecture are observed in its absence. Furthermore, the highly complex genetic and molecular structure of plectin is discussed; a high number of differentially spliced exons give rise to a variety of different isoforms, which fulfill distinct functions in different cell types and tissues. Plectin's abilities to act as a dynamic organizer of intermediate filament networks and to interact with a multitude of different interaction partners are the basis for its function as a scaffolding platform for proteins involved in signaling. Finally, the article addresses a series of genetically manipulated mouse lines that were generated to serve as powerful models to study functional and molecular consequences of plectin gene defects.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
31
|
Cellular and Molecular Biology of Neuronal Dystonin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:85-120. [DOI: 10.1016/b978-0-12-405210-9.00003-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Annexin A9 is a periplakin interacting partner in membrane-targeted cytoskeletal linker protein complexes. FEBS Lett 2012; 586:3090-6. [PMID: 22841549 DOI: 10.1016/j.febslet.2012.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/12/2022]
Abstract
Periplakin regulates keratin organisation and participates in the assembly of epidermal cornified envelopes. A proteomic approach identified annexin A9 as a novel interacting partner for periplakin N-terminus. The presence of annexin A9 in complexes with periplakin was confirmed by immunoblotting of proteins immunoprecipitated by anti-HA or anti-annexin A9 antibodies. Both endogenous and GFP-tagged annexin A9 co-localise with endogenous periplakin and transfected periplakin N-terminus at MCF-7 cell borders and aggregate after Okadaic acid treatment. Annexin A9 and periplakin co-localise in the epidermis and annexin A9 is up-regulated in differentiating keratinocytes, but the epidermal annexin A9 expression does not require periplakin.
Collapse
|
33
|
Muthu M, Richardson KA, Sutherland-Smith AJ. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS One 2012; 7:e40066. [PMID: 22911693 PMCID: PMC3401230 DOI: 10.1371/journal.pone.0040066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.
Collapse
Affiliation(s)
- Muralidharan Muthu
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Kylie A. Richardson
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
34
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
35
|
Suozzi KC, Wu X, Fuchs E. Spectraplakins: master orchestrators of cytoskeletal dynamics. J Cell Biol 2012; 197:465-75. [PMID: 22584905 PMCID: PMC3352950 DOI: 10.1083/jcb.201112034] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/23/2012] [Indexed: 01/26/2023] Open
Abstract
The dynamics of different cytoskeletal networks are coordinated to bring about many fundamental cellular processes, from neuronal pathfinding to cell division. Increasing evidence points to the importance of spectraplakins in integrating cytoskeletal networks. Spectraplakins are evolutionarily conserved giant cytoskeletal cross-linkers, which belong to the spectrin superfamily. Their genes consist of multiple promoters and many exons, yielding a vast array of differential splice forms with distinct functions. Spectraplakins are also unique in their ability to associate with all three elements of the cytoskeleton: F-actin, microtubules, and intermediate filaments. Recent studies have begun to unveil their role in a wide range of processes, from cell migration to tissue integrity.
Collapse
Affiliation(s)
- Kathleen C. Suozzi
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Xiaoyang Wu
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- The Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
36
|
Untethering the nuclear envelope and cytoskeleton: biologically distinct dystonias arising from a common cellular dysfunction. Int J Cell Biol 2012; 2012:634214. [PMID: 22611399 PMCID: PMC3352338 DOI: 10.1155/2012/634214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
Most cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells. We suggest that through a shared interaction with the nuclear envelope protein nesprin-3α, torsinA and the neuronal dystonin-a2 isoform comprise a bridge complex between the outer nuclear membrane and the cytoskeleton, which is critical for some aspects of neuronal development and function. Elucidation of the overlapping roles of torsinA and dystonin-a2 in nuclear/endoplasmic reticulum dynamics should provide insights into the cellular mechanisms underlying the dystonic phenotype.
Collapse
|
37
|
Bhanot K, Young KG, Kothary R. MAP1B and clathrin are novel interacting partners of the giant cyto-linker dystonin. J Proteome Res 2011; 10:5118-27. [PMID: 21936565 DOI: 10.1021/pr200564g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dystonin is a large multidomain cytoskeletal-associated protein that plays an essential role in the nervous system. Loss of dystonin results in neuromuscular dysfunction and early death in a mouse mutant called dystonia musculorum. Conserved among related proteins, the plakin domain is a defining feature of all major dystonin isoforms, yet its interactions have not been explored in detail. The purpose of the present study was to identify novel interacting partners of the plakin domain of the neuronal isoform of dystonin (dystonin-a). Newly identified interacting proteins discovered through a pull-down assay were validated using coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays. Microtubule associated protein 1B (MAP1B), a microtubule stabilizing protein, and clathrin heavy chain, the major component of the clathrin triskelion, were identified as interaction partners for dystonin-a. Increased levels of phosphorylated MAP1B suggest a misregulation of MAP1B and a potentially novel component of the dt pathology. This work will further facilitate our understanding of how cytoskeletal proteins can affect and regulate neurodegenerative disorders.
Collapse
Affiliation(s)
- Kunal Bhanot
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
38
|
The Nonlinear Structure of the Desmoplakin Plakin Domain and the Effects of Cardiomyopathy-Linked Mutations. J Mol Biol 2011; 411:1049-61. [DOI: 10.1016/j.jmb.2011.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 11/15/2022]
|
39
|
Crystal structure of a rigid four-spectrin-repeat fragment of the human desmoplakin plakin domain. J Mol Biol 2011; 409:800-12. [PMID: 21536047 DOI: 10.1016/j.jmb.2011.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 12/17/2022]
Abstract
The plakin protein family serves to connect cell-cell and cell-matrix adhesion molecules to the intermediate filament cytoskeleton. Desmoplakin (DP) is an integral part of desmosomes, where it links desmosomal cadherins to the intermediate filaments. The 1056-amino-acid N-terminal region of DP contains a plakin domain common to members of the plakin family. Plakin domains contain multiple copies of spectrin repeats (SRs). We determined the crystal structure of a fragment of DP, residues 175-630, consisting of four SRs and an inserted SH3 domain. The four repeats form an elongated, rigid structure. The SH3 domain is present in a loop between two helices of an SR and interacts extensively with the preceding SR in a manner that appears to limit inter-repeat flexibility. The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that the SH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.
Collapse
|
40
|
Ortega E, Buey RM, Sonnenberg A, de Pereda JM. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem 2011; 286:12429-38. [PMID: 21288893 PMCID: PMC3069446 DOI: 10.1074/jbc.m110.197467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | - Rubén M. Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
- the Laboratory of Biomolecular Research, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland, and
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M. de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| |
Collapse
|
41
|
Abstract
The cytoplasmic surface of intercellular junctions is a complex network of molecular interactions that link the extracellular region of the desmosomal cadherins with the cytoskeletal intermediate filaments. Although 3D structures of the major plaque components are known, the overall architecture remains unknown. We used cryoelectron tomography of vitreous sections from human epidermis to record 3D images of desmosomes in vivo and in situ at molecular resolution. Our results show that the architecture of the cytoplasmic surface of the desmosome is a 2D interconnected quasiperiodic lattice, with a similar spatial organization to the extracellular side. Subtomogram averaging of the plaque region reveals two distinct layers of the desmosomal plaque: a low-density layer closer to the membrane and a high-density layer further away from the membrane. When combined with a heuristic, allowing simultaneous constrained fitting of the high-resolution structures of the major plaque proteins (desmoplakin, plakophilin, and plakoglobin), it reveals their mutual molecular interactions and explains their stoichiometry. The arrangement suggests that alternate plakoglobin-desmoplakin complexes create a template on which desmosomal cadherins cluster before they stabilize extracellularly by binding at their N-terminal tips. Plakophilins are added as a molecular reinforcement to fill the gap between the formed plaque complexes and the plasma membrane.
Collapse
|
42
|
Rezniczek GA, Walko G, Wiche G. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol Clin 2010; 28:33-41. [PMID: 19945614 DOI: 10.1016/j.det.2009.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plectin is an important organizer of the keratin filament cytoskeleton in basal keratinocytes. It is essential for anchoring these filaments to the extracellular matrix via hemidesmosomal integrins. Loss of plectin or incorrect function of the protein due to mutations in its gene can lead to various forms of the skin blistering disease, epidermolysis bullosa simplex. Severity and subtype of the disease is dependent on the specific mutation and can be associated with (late-onset) muscular dystrophy or pyloric atresia. Mouse models mimicking the human phenotypes allow detailed study of plectin function.
Collapse
Affiliation(s)
- Günther A Rezniczek
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | | |
Collapse
|
43
|
Steiner-Champliaud MF, Schneider Y, Favre B, Paulhe F, Praetzel-Wunder S, Faulkner G, Konieczny P, Raith M, Wiche G, Adebola A, Liem RK, Langbein L, Sonnenberg A, Fontao L, Borradori L. BPAG1 isoform-b: Complex distribution pattern in striated and heart muscle and association with plectin and α-actinin. Exp Cell Res 2010; 316:297-313. [DOI: 10.1016/j.yexcr.2009.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
44
|
Abstract
Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.
Collapse
|
45
|
de Pereda JM, Ortega E, Alonso-García N, Gómez-Hernández M, Sonnenberg A. Advances and perspectives of the architecture of hemidesmosomes: lessons from structural biology. Cell Adh Migr 2009; 3:361-4. [PMID: 19736524 DOI: 10.4161/cam.3.4.9525] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hemidesmosomes (HD) are adhesive protein complexes that mediate stable attachment of basal epithelial cells to the underlying basement membrane. The organization of HDs relies on a complex network of protein-protein interactions, in which integrin alpha6beta4 and plectin play an essential role. Here we summarize the current knowledge of the structure of hemidesmosomal proteins, which includes the structures of the first and second fibronectin type III (FnIII) domains and the calx-beta domain of the integrin beta4 subunit, the actin binding domain of plectin, and two non-overlapping pairs of spectrin repeats of plectin and BPAG1e. Binding of plectin to the beta4 subunit is critical for the formation and the stability of HDs. The recent 3D structure of the primary complex between the integrin beta4 subunit and plectin has provided a first insight into the macromolecular recognition mechanisms responsible for HD assembly. Two missense mutations in beta4 linked to non lethal forms of epidermolysis bullosa map on the plectin-binding surface. Finally, the formation of the beta4-plectin complex induces conformational changes in beta4 and plectin, suggesting that their interaction may be subject to allosteric regulation.
Collapse
Affiliation(s)
- José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Unamuno, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
46
|
O'Neill GM. The coordination between actin filaments and adhesion in mesenchymal migration. Cell Adh Migr 2009; 3:355-7. [PMID: 19684475 DOI: 10.4161/cam.3.4.9468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibers behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibers). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.
Collapse
Affiliation(s)
- Geraldine M O'Neill
- Focal Adhesion Biology Group, Oncology Research Unit, The Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, Australia.
| |
Collapse
|
47
|
Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD, Flitney FW, Jones JCR. Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength. J Cell Sci 2009; 122:1390-400. [PMID: 19366731 DOI: 10.1242/jcs.043042] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Much effort has been expended on analyzing how microfilament and microtubule cytoskeletons dictate the interaction of cells with matrix at adhesive sites called focal adhesions (FAs). However, vimentin intermediate filaments (IFs) also associate with the cell surface at FAs in endothelial cells. Here, we show that IF recruitment to FAs in endothelial cells requires beta3 integrin, plectin and the microtubule cytoskeleton, and is dependent on microtubule motors. In CHO cells, which lack beta3 integrin but contain vimentin, IFs appear to be collapsed around the nucleus, whereas in CHO cells expressing beta3 integrin (CHOwtbeta3), vimentin IFs extend to FAs at the cell periphery. This recruitment is regulated by tyrosine residues in the beta3 integrin cytoplasmic tail. Moreover, CHOwtbeta3 cells exhibit significantly greater adhesive strength than CHO or CHO cells expressing mutated beta3 integrin proteins. These differences require an intact vimentin network. Therefore, vimentin IF recruitment to the cell surface is tightly regulated and modulates the strength of adhesion of cells to their substrate.
Collapse
Affiliation(s)
- Ramona Bhattacharya
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 2009; 113:5377-84. [PMID: 19168783 DOI: 10.1182/blood-2008-10-184291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of betaI-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the betaI-spectrin 14,15 di-repeat unit to 2.1 A resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64 degrees) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.
Collapse
|
49
|
Abstract
As key components of the erythrocyte membrane skeleton, spectrin and ankyrin specifically interact to tether the spectrin cytoskeleton to the cell membrane. The structure of the spectrin binding domain of ankyrin and the ankyrin binding domain of spectrin have been solved to elucidate the structural basis for ankyrin-spectrin recognition. The structure of repeats 14 and 15 of spectrin shows that these repeats are similar to all other spectrin repeats. One feature that could account for the preference of ankyrin for these repeats is the presence of a conserved, negatively charged patch on one side of repeat 14. The structure of the ankyrin ZU5 domain shows a novel structure containing a beta core. The structure reveals that the canonical ZU5 consensus sequence is likely to be missing an important region that codes for a beta strand that forms part of the core of the domain. In addition, a positively charged region is suggestive of a binding surface for the negatively charged spectrin repeat 14. Previously reported mutants of ankyrin that map to this region lie mostly on the surface of the protein, although at least one is likely to be part of the core.
Collapse
|
50
|
Pavkov T, Egelseer EM, Tesarz M, Svergun DI, Sleytr UB, Keller W. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 2008; 16:1226-37. [PMID: 18682224 DOI: 10.1016/j.str.2008.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
Abstract
Surface layers (S-layers) comprise the outermost cell envelope component of most archaea and many bacteria. Here we present the structure of the bacterial S-layer protein SbsC from Geobacillus stearothermophilus, showing a very elongated and flexible molecule, with strong and specific binding to the secondary cell wall polymer (SCWP). The crystal structure of rSbsC((31-844)) revealed a novel fold, consisting of six separate domains, which are connected by short flexible linkers. The N-terminal domain exhibits positively charged residues regularly spaced along the putative ligand binding site matching the distance of the negative charges on the extended SCWP. Upon SCWP binding, a considerable stabilization of the N-terminal domain occurs. These findings provide insight into the processes of S-layer attachment to the underlying cell wall and self-assembly, and also accommodate the observed mechanical strength, the polarity of the S-layer, and the pronounced requirement for surface flexibility inherent to cell growth and division.
Collapse
Affiliation(s)
- Tea Pavkov
- Institute of Molecular Biosciences, Structural Biology, University of Graz, Humboldtsrasse 50/3, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|