1
|
Garcia YE, Sjögren B, Osei-Owusu P. G protein regulation by RGS proteins in the pathophysiology of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2025; 328:H348-H360. [PMID: 39772618 DOI: 10.1152/ajpheart.00653.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Regulators of G protein signaling (RGS) proteins fine-tune signaling via heterotrimeric G proteins to maintain physiologic homeostasis in various organ systems of the human body including the brain, kidney, heart, and vasculature. Impaired regulation of G protein signaling by RGS proteins is implicated in the pathogenesis of several human diseases including various forms of cardiomyopathy such as hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Both genetic and nongenetic changes that impinge on G protein signaling in cardiomyocytes are implicated in the etiology of DCM, and there is accumulating evidence that such genetic and nongenetic changes affecting G protein signaling in cell types other than cardiomyocytes could serve as a DCM trigger in humans. This review discusses and highlights mammalian RGS proteins and their roles in cardiac physiology and disease, with a specific focus on the current understanding of the etiology of DCM and the pathogenic roles of RGS proteins that are prominently expressed in the cardiovascular system. Growing evidence suggests that defects in G protein regulation by RGS proteins in the cardiovascular system likely contribute to cardiomyocyte structural damage and decreased contractile function that hallmark DCM. Further studies that enhance the understanding of the dynamics of G protein regulation by RGS proteins in several cell types in the myocardium and the vasculature are critical to gaining more insight into the etiology of DCM and heart failure, and to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Yadhira E Garcia
- Department of Pharmaceutical Sciences, University of California, Irvine, California, United States
| | - Benita Sjögren
- Department of Pharmaceutical Sciences, University of California, Irvine, California, United States
- Department of Biological Chemistry, University of California, Irvine, California, United States
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Lockyer JL, Reading A, Vicenzi S, Zbela A, Viswanathan S, Delandre C, Newland JW, McMullen JPD, Marshall OJ, Gasperini R, Foa L, Lin JY. Selective optogenetic inhibition of Gα q or Gα i signaling by minimal RGS domains disrupts circuit functionality and circuit formation. Proc Natl Acad Sci U S A 2024; 121:e2411846121. [PMID: 39190348 PMCID: PMC11388284 DOI: 10.1073/pnas.2411846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
Collapse
Affiliation(s)
- Jayde L. Lockyer
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Agnieszka Zbela
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Saranya Viswanathan
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| | - Jake W. Newland
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| | - John P. D. McMullen
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| | - Owen J. Marshall
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Sandy Bay, TAS7005, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS7000, Australia
| |
Collapse
|
3
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Schalamun M, Molin EM, Schmoll M. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. BMC Genomics 2023; 24:372. [PMID: 37400774 PMCID: PMC10316542 DOI: 10.1186/s12864-023-09467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Eva Maria Molin
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| |
Collapse
|
5
|
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini R, Foa L, Lin JY. Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539674. [PMID: 37214843 PMCID: PMC10197587 DOI: 10.1101/2023.05.06.539674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein - Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Collapse
Affiliation(s)
- Jayde Lockyer
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
- Current affiliation, Moores Cancer Center, School of Medicine, Division of Regenerative Medicine, University of California, San Diego, California, USA
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Owen Marshall
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
6
|
Montañez-Miranda C, Perszyk RE, Harbin NH, Okalova J, Ramineni S, Traynelis SF, Hepler JR. Functional Assessment of Cancer-Linked Mutations in Sensitive Regions of Regulators of G Protein Signaling Predicted by Three-Dimensional Missense Tolerance Ratio Analysis. Mol Pharmacol 2023; 103:21-37. [PMID: 36384958 PMCID: PMC10955721 DOI: 10.1124/molpharm.122.000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Collapse
Affiliation(s)
- Carolina Montañez-Miranda
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Okalova
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Zhang Y, Chen R, Dong Y, Zhu J, Su K, Liu J, Xu J. Structural Studies Reveal Unique Non-canonical Regulators of G Protein Signaling Homology (RH) Domains in Sorting Nexins. J Mol Biol 2022; 434:167823. [PMID: 36103920 DOI: 10.1016/j.jmb.2022.167823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
As a subgroup of sorting nexins (SNXs) that contain regulator of G protein signaling homology (RH) domain, SNX-RH proteins, including SNX13, SNX14 and SNX25, were proposed to play bifunctional roles in protein sorting and GPCR signaling regulation. However, mechanistic details of SNX-RH proteins functioning via RH domain remain to be illustrated. Here, we delineate crystal structures of the RH domains of SNX13 and SNX25, revealing a homodimer of SNX13 RH domain mediated by unique extended α4 and α5 helices, and a thiol modulated homodimer of SNX25-RH triggered by a unique cysteine on α6 helix. Further studies showed that RH domains of SNX-RH do not possess binding capacity toward Gα subunits, owing to the lack of critical residues for interaction. Thus, this study identifies a group of novel non-canonical RH domains that can act as a dimerization module in sorting nexins, which provides structural basis for mechanism studies on SNX-RH protein functions.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kai Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
8
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
9
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
10
|
Jeong E, Kim Y, Jeong J, Cho Y. Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5. Nat Commun 2021; 12:6805. [PMID: 34815401 PMCID: PMC8611064 DOI: 10.1038/s41467-021-27147-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.
Collapse
Affiliation(s)
- Eunyoung Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihong Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
11
|
Krieger NS, Bushinsky DA. Metabolic Acidosis Regulates RGS16 and G-protein Signaling in Osteoblasts. Am J Physiol Renal Physiol 2021; 321:F424-F430. [PMID: 34396788 DOI: 10.1152/ajprenal.00166.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis stimulates cell-mediated net calcium efflux from bone mediated by increased osteoblastic cyclooxygenase 2 (COX2), leading to prostaglandin E2-induced stimulation of RANKL-induced osteoclastic bone resorption. The osteoblastic H+-sensing G-protein coupled receptor (GPCR), OGR1, is activated by acidosis and leads to increased bne resorption. As regulators of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral (NTL) or acidic (MET) medium. Cells were collected and RNA extracted for real time PCR analysis with mRNA levels normalized to RPL13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11 or RGS18mRNA did not differ between MET and NTL; however by 30' MET decreased RGS16 which persisted for 60' and 3h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gβγ signaling, was used to determine if downstream signaling by the βγ subunit was critical for the response to acidosis. Gallein decreased net Ca efflux from calvariae and COX2 and RANKL gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR, OGR1, to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
12
|
Bastin G, Luu L, Batchuluun B, Mighiu A, Beadman S, Zhang H, He C, Al Rijjal D, Wheeler MB, Heximer SP. RGS4-Deficiency Alters Intracellular Calcium and PKA-Mediated Control of Insulin Secretion in Glucose-Stimulated Beta Islets. Biomedicines 2021; 9:biomedicines9081008. [PMID: 34440212 PMCID: PMC8391461 DOI: 10.3390/biomedicines9081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic β-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from β-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient β-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
- Correspondence: ; Tel.: +33-658-469-334
| | - Lemieux Luu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Battsetseg Batchuluun
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Alexandra Mighiu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Stephanie Beadman
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Hangjung Zhang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Changhao He
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Scott P. Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
13
|
Lin CZ, Liu ZQ, Zhou WK, Ji T, Cao W. Effect of the regulator of G-protein signaling 2 on the proliferation and invasion of oral squamous cell carcinoma cells and its molecular mechanism. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:320-327. [PMID: 34041882 PMCID: PMC8218255 DOI: 10.7518/hxkq.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/15/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study aims to investigate the effect of the regulator of G-protein signaling 2 (RGS2) on the proliferation and invasion of oral squamous cell carcinoma (OSCC) cells and its potential molecular mechanism. Metho⁃ds The expression status and clinical significance of RGS2 in head and neck squamous cell carcinomas and matched adjacent normal tissues were evaluated using TCGA database. Three OSCC cell lines (i.e., SCC-9, Cal27, and Fadu) were overexpressed with RGS2, and the effect of RGS2 on cell proliferation and invasion was determined using the Transwell, clone formation, and cell counting kit (CCK)-8 assays. Moreover, the yeast two-hybrid scree-ning and co-immunoprecipitation (Co-IP) assays were conducted to detect the correlation of RGS2, four and a half LIM domains protein 1 (FHL1), and damage DNA-binding protein 1 (DDB1). RESULTS The expression level of RGS2 in OSCC was significantly lower than that in matched adjacent normal tissues (P=0.023). The high RGS2 expression level was negatively correlated with lymphovascular invasion (P<0.001). After transfection with lentiv-RGS2, the expression of RGS2 was increased, and the invasion and proliferation abilities of OSCC cell lines were evidently inhibited. FHL1 could competitively bind with RGS2, which decreased the integration of DDB1 and RGS2, inhibited the ubiquitination process of RGS2, and maintained the stability of the RGS2 protein. CONCLUSIONS RGS2 plays an important role in the inhibition of OSCC proliferation and invasion. The structure stability of RGS2 is competitively regulated by FHL1 and DDB1.
Collapse
Affiliation(s)
- Cheng-Zhong Lin
- The 2nd Dental Center, Ninth People,s Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhe-Qi Liu
- Dept. of Oral and Maxillofacial-Head and Neck Oncology, Ninth People,s Hospital, Shanghai Jiao Tong University, School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wen-Kai Zhou
- Dept. of Oral and Maxillofacial-Head and Neck Oncology, Ninth People,s Hospital, Shanghai Jiao Tong University, School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Tong Ji
- Dept. of Oral and Maxillofacial-Head and Neck Oncology, Ninth People,s Hospital, Shanghai Jiao Tong University, School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Dept. of Oral and Maxillofacial-Head and Neck Oncology, Ninth People,s Hospital, Shanghai Jiao Tong University, School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Zhang Y, Zhang X, Cheng A, Wang M, Yin Z, Huang J, Jia R. Apoptosis Triggered by ORF3 Proteins of the Circoviridae Family. Front Cell Infect Microbiol 2021; 10:609071. [PMID: 33604306 PMCID: PMC7884757 DOI: 10.3389/fcimb.2020.609071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptosis, a form of the programmed cell death, is an indispensable defense mechanism regulating cellular homeostasis and is triggered by multiple stimuli. Because of the regulation of apoptosis in cellular homeostasis, viral proteins with apoptotic activity are particular foci of on antitumor therapy. One representative viral protein is the open reading frame 3 (ORF3) protein, also named as apoptin in the Circoviridae chicken anemia virus (CAV), and has the ability to induce tumor-specific apoptosis. Proteins encoded by ORF3 in other circovirus species, such as porcine circovirus (PCV) and duck circovirus (DuCV), have also been reported to induce apoptosis, with subtle differences in apoptotic activity based on cell types. This article is aimed at reviewing the latest research advancements in understanding ORF3 protein-mediated apoptosis mechanisms of Circoviridae from three perspectives: subcellular localization, interactions with host proteins, and participation in multiple apoptotic signaling pathways, providing a scientific basis for circovirus pathogenesis and a reference on its potential anticancer function.
Collapse
Affiliation(s)
- Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Yoon SY, Roh DH, Yeo JH, Woo J, Han SH, Kim KS. Analgesic Efficacy of α 2 Adrenergic Receptor Agonists Depends on the Chronic State of Neuropathic Pain: Role of Regulator of G Protein Signaling 4. Neuroscience 2020; 455:177-194. [PMID: 33359660 DOI: 10.1016/j.neuroscience.2020.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The analgesic effect of alpha-2 adrenergic receptor (α2AR) agonists, which relieve chronic neuropathic pain, is highly variable among individuals. Here, we used a mouse model of spared nerve injury (SNI) to show that treatment time after the establishment of neuropathic pain was important for the variability in the analgesic efficacy of α2AR agonists, which was related to the activity of regulator of G-protein signaling protein 4 (RGS4). Intrathecal treatment with α2AR agonists, clonidine (0.1-1 nmol) or dexmedetomidine (0.3-1 nmol), relieved mechanical allodynia and thermal hyperalgesia on postoperative day (POD) 14, but their efficacy was weaker on POD28 and absent on POD56. The RGS4 level of plasma membrane was increased on POD56 compared to that on POD14. Moreover, in RGS4-deficient or RGS4 inhibitor (CCG50014)-treated mice, the analgesic effect of the α2AR agonists was conserved even on POD56. The increased plasma membrane RGS4 expression and the reduced level of active Gαi after clonidine injection on POD56 were completely restored by CCG50014. Higher doses of clonidine (10 nmol) and dexmedetomidine (3 nmol) relieved neuropathic pain on POD56 but were accompanied with serious side effects. Whereas, the coadministration of CCG50014 with clonidine (1 nmol) or dexmedetomidine (1 nmol) did not cause side effects. These findings demonstrated that SNI-induced increase in plasma membrane RGS4 expression was associated with low efficacy of α2AR agonists in a model of persistent, chronic neuropathic pain. Furthermore, α2AR agonist administration together with RGS4-targeted intervention represents a novel strategy for the treatment of neuropathic pain to overcome dose-limiting side effects.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; College of Korean Medicine, Dongshin University, Gunjae Road 185, Naju-si, Jeonnam 58245, Republic of Korea.
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02454, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02454, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Se Hee Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Key-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
16
|
Cytoprotective Effect of Ascorbic Acid and Rutin against Oxidative Changes in the Proteome of Skin Fibroblasts Cultured in a Three-Dimensional System. Nutrients 2020; 12:nu12041074. [PMID: 32294980 PMCID: PMC7230807 DOI: 10.3390/nu12041074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/16/2023] Open
Abstract
The combination of ascorbic acid and rutin, commonly used in oral preparations for their antioxidant and anti-inflammatory properties, can also be used to protect skin cells from the effects of UV radiation in sunlight. Here, we tested the potential protective effect of ascorbic acid and rutin used together in UVB-irradiated human skin fibroblasts, and assessed the proteomic profile of these cells, grown in a three-dimensional (3D) system. Proteomic findings revealed a combined effect of ascorbic acid and rutin in UV-irradiated fibroblasts against overexpression of pro-inflammatory signaling proteins and DNA reorganization/expression. These effects were not observed when cells were treated with either compounds alone. The antioxidant effects of ascorbic acid and rutin also prevented protein modifications by lipid peroxidation products. Further, ascorbic acid stimulated rutin-protein adduct formation, which supports intra/extracellular signaling and the Nrf2/ARE antioxidant pathway, contributing to the protective effects against UV-induced oxidative stress. The combined effect of ascorbic acid and rutin suggests that this combination of compounds is potentially effective against skin damage caused by UV radiation.
Collapse
|
17
|
Mark MD, Wollenweber P, Gesk A, Kösters K, Batzke K, Janoschka C, Maejima T, Han J, Deneris ES, Herlitze S. RGS2 drives male aggression in mice via the serotonergic system. Commun Biol 2019; 2:373. [PMID: 31633064 PMCID: PMC6789038 DOI: 10.1038/s42003-019-0622-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022] Open
Abstract
Aggressive behavior in our modern, civilized society is often counterproductive and destructive. Identifying specific proteins involved in the disease can serve as therapeutic targets for treating aggression. Here, we found that overexpression of RGS2 in explicitly serotonergic neurons augments male aggression in control mice and rescues male aggression in Rgs2-/- mice, while anxiety is not affected. The aggressive behavior is directly correlated to the immediate early gene c-fos induction in the dorsal raphe nuclei and ventrolateral part of the ventromedial nucleus hypothalamus, to an increase in spontaneous firing in serotonergic neurons and to a reduction in the modulatory action of Gi/o and Gq/11 coupled 5HT and adrenergic receptors in serotonergic neurons of Rgs2-expressing mice. Collectively, these findings specifically identify that RGS2 expression in serotonergic neurons is sufficient to drive male aggression in mice and as a potential therapeutic target for treating aggression.
Collapse
Affiliation(s)
- Melanie D. Mark
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Annika Gesk
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katja Kösters
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katharina Batzke
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Claudia Janoschka
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640 Japan
| | - Jing Han
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Evan S. Deneris
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH USA
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
18
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species. mSphere 2018; 3:3/3/e00208-18. [PMID: 29898980 PMCID: PMC6001613 DOI: 10.1128/mspheredirect.00208-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/31/2023] Open
Abstract
Cryptococcus neoformans and related species are encapsulated basidiomycetous fungi that cause meningoencephalitis in individuals with immune deficiency. This pathogen has a tractable genetic system; however, gene disruption via electroporation remains difficult, while biolistic transformation is often limited by lack of multiple genetic markers and the high initial cost of equipment. The approach using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has become the technology of choice for gene editing in many organisms due to its simplicity, efficiency, and versatility. The technique has been successfully demonstrated in C. neoformans and Cryptococcus deneoformans in which two DNA plasmids expressing either the Streptococcus pyogenesCAS9 gene or the guide RNA (gRNA) were employed. However, potential adverse effects due to constitutive expression and the time-consuming process of constructing vectors to express each gRNA remain as a primary barrier for wide adaptation. This report describes the delivery of preassembled CRISPR-Cas9-gRNA ribonucleoproteins (RNPs) via electroporation that is able to generate edited mutant alleles. RNP-mediated CRISPR-Cas9 was used to replace the wild-type GIB2 gene encoding a Gβ-like/RACK1 Gib2 protein with a gib2::NAT allele via homologous recombination in both C. neoformans and C. deneoformans In addition, a DNA plasmid (pCnCas9:U6-gRNA) that expresses both Cas9 and gRNA, allowing for convenient yet low-cost DNA-mediated gene editing, is described. pCnCas9:U6-gRNA contains an endogenous U6 promoter for gRNA expression and restriction sites for one-step insertion of a gRNA. These approaches and resources provide new opportunities to accelerate genetic studies of Cryptococcus species.IMPORTANCE For genetic studies of the Cryptococcus genus, generation of mutant strains is often hampered by a limited number of selectable genetic markers, the tedious process of vector construction, side effects, and other limitations, such as the high cost of acquiring a particle delivery system. CRISPR-Cas9 technology has been demonstrated in Cryptococcus for genome editing. However, it remains labor-intensive and time-consuming since it requires the identification of a suitable type III RNA polymerase promoter for gRNA expression. In addition, there may be potential adverse effects caused by constitutive expressions of Cas9 and gRNA. Here, I report the use of a ribonucleoprotein-mediated CRISPR-Cas9 technique for genome editing of C. neoformans and related species. Together with the custom-constructed pCnCas9:U6-gRNA vector that allows low-cost and time-saving DNA-based CRISPR-Cas9, my approach adds to the molecular toolbox for dissecting the molecular mechanism of pathogenesis in this important group of fungal pathogens.
Collapse
|
21
|
Chen Y, Booth C, Wang H, Wang RX, Terzi D, Zachariou V, Jiao K, Zhang J, Wang Q. Effective Attenuation of Adenosine A1R Signaling by Neurabin Requires Oligomerization of Neurabin. Mol Pharmacol 2017; 92:630-639. [PMID: 28954816 PMCID: PMC5676298 DOI: 10.1124/mol.117.109462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
The adenosine A1 receptor (A1R) is a key mediator of the neuroprotective effect by endogenous adenosine. Yet targeting this receptor for neuroprotection is challenging due to its broad expression throughout the body. A mechanistic understanding of the regulation of A1R signaling is necessary for the future design of therapeutic agents that can selectively enhance A1R-mediated responses in the nervous system. In this study, we demonstrate that A1R activation leads to a sustained localization of regulator of G protein signaling 4 (RGS4) at the plasma membrane, a process that requires neurabin (a neural tissue-specific protein). A1R and RGS4 interact with the overlapping regions of neurabin. In addition, neurabin domains required for oligomerization are essential for formation of the A1R/neurabin/RGS4 ternary complex, as well as for stable localization of RGS4 at the plasma membrane and attenuation of A1R signaling. Thus, A1R and RGS4 each likely interact with one neurabin molecule in a neurabin homo-oligomer to form a ternary complex, representing a novel mode of regulation of G protein-coupled receptor signaling by scaffolding proteins. Our mechanistic analysis of neurabin-mediated regulation of A1R signaling in this study will be valuable for the future design of therapeutic agents that can selectively enhance A1R-mediated responses in the nervous system.
Collapse
Affiliation(s)
- Yunjia Chen
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Christopher Booth
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Hongxia Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Raymond X Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Dimitra Terzi
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Venetia Zachariou
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Kai Jiao
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Jin Zhang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| | - Qin Wang
- Departments of Cell, Developmental, and Integrative Biology (Y.C., H.W., R.X.W., Q.W.) and Genetics (K.J.), University of Alabama, Birmingham, Alabama; Department of Pharmacology, University of California, San Diego, California (C.B., J.Z.); and Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York (D.T., V.Z.)
| |
Collapse
|
22
|
Doyen PJ, Vergouts M, Pochet A, Desmet N, van Neerven S, Brook G, Hermans E. Inflammation-associated regulation of RGS in astrocytes and putative implication in neuropathic pain. J Neuroinflammation 2017; 14:209. [PMID: 29078779 PMCID: PMC5658970 DOI: 10.1186/s12974-017-0971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. Methods In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. Results We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1β, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. Conclusion Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.
Collapse
Affiliation(s)
- Pierre J Doyen
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Maxime Vergouts
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Amandine Pochet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Nathalie Desmet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Sabien van Neerven
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Gary Brook
- Institute for Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Emmanuel Hermans
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium.
| |
Collapse
|
23
|
Moretti M, Wang L, Grognet P, Lanver D, Link H, Kahmann R. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungusUstilago maydis. Mol Microbiol 2017; 105:901-921. [DOI: 10.1111/mmi.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marino Moretti
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Lei Wang
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Pierre Grognet
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Daniel Lanver
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Hannes Link
- Dynamic Control of Metabolic Networks; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 16, Marburg D-35043 Germany
| | - Regine Kahmann
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| |
Collapse
|
24
|
Hwang IY, Park C, Harrison K, Kehrl JH. Normal Thymocyte Egress, T Cell Trafficking, and CD4 + T Cell Homeostasis Require Interactions between RGS Proteins and Gα i2. THE JOURNAL OF IMMUNOLOGY 2017; 198:2721-2734. [PMID: 28235863 DOI: 10.4049/jimmunol.1601433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022]
Abstract
Adaptive immunity depends on mature thymocytes leaving the thymus to enter the bloodstream and the trafficking of T cells through lymphoid organs. Both of these require heterotrimeric Gαi protein signaling, whose intensity and duration are controlled by the regulator of G protein signaling (RGS) proteins. In this study, we show that RGS protein/Gαi2 interactions are essential for normal thymocyte egress, T cell trafficking, and homeostasis. Mature thymocytes with a Gαi2 mutation that disables RGS protein binding accumulated in the perivascular channels of thymic corticomedullary venules. Severe reductions in peripheral naive CD4+ T cells and regulatory T cells occurred. The mutant CD4+ T cells adhered poorly to high endothelial venules and exhibited defects in lymph node entrance and egress. The kinetics of chemokine receptor signaling were disturbed, including chemokine- induced integrin activation. Despite the thymic and lymph node egress defects, sphingosine-1-phosphate signaling was not obviously perturbed. This study reveals how RGS proteins modulate Gαi2 signaling to facilitate thymocyte egress and T cell trafficking.
Collapse
Affiliation(s)
- Il-Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
Eusemann TN, Willmroth F, Fiebich B, Biber K, van Calker D. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS One 2015; 10:e0134934. [PMID: 26263491 PMCID: PMC4532427 DOI: 10.1371/journal.pone.0134934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The “regulators of g-protein signalling” (RGS) comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells) and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.
Collapse
Affiliation(s)
- Till Nicolas Eusemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Frank Willmroth
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Bernd Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Doupnik CA. RGS Redundancy and Implications in GPCR-GIRK Signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:87-116. [PMID: 26422983 DOI: 10.1016/bs.irn.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulators of G protein signaling (RGS proteins) are key components of GPCR complexes, interacting directly with G protein α-subunits to enhance their intrinsic GTPase activity. The functional consequence is an accelerated termination of G protein effectors including certain ion channels. RGS proteins have a profound impact on the membrane-delimited gating behavior of G-protein-activated inwardly rectifying K(+) (GIRK) channels as demonstrated in reconstitution assays and recent RGS knockout mice studies. Akin to GPCRs and G protein αβγ subunits, multiple RGS isoforms are expressed within single GIRK-expressing neurons, suggesting functional redundancy and/or specificity in GPCR-GIRK channel signaling. The extent and impact of RGS redundancy in neuronal GPCR-GIRK channel signaling is currently not fully appreciated; however, recent studies from RGS knockout mice are providing important new clues on the impact of individual endogenous RGS proteins and the extent of RGS functional redundancy. Incorporating "tools" such as engineered RGS-resistant Gαi/o subunits provide an important assessment method for determining the impact of all endogenous RGS proteins on a given GPCR response and an accounting benchmark to assess the impact of individual RGS knockouts on overall RGS redundancy within a given neuron. Elucidating the degree of regulation attributable to specific RGS proteins in GIRK channel function will aid in the assessment of individual RGS proteins as viable therapeutic targets in epilepsy, ataxia's, memory disorders, and a growing list of neurological disorders.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
27
|
Choi CY, Rho SB, Kim HS, Han J, Bae J, Lee SJ, Jung WW, Chun T. The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction. J Gen Virol 2015; 96:1098-1108. [DOI: 10.1099/vir.0.000046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/06/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chang-Yong Choi
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si 410-769, Republic of Korea
| | - Hyun-Sook Kim
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | - Jihye Han
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joonbeom Bae
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
28
|
Jules J, Yang S, Chen W, Li YP. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:47-75. [PMID: 26123302 DOI: 10.1016/bs.pmbts.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA; Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
29
|
Yoon SY, Woo J, Park JO, Choi EJ, Shin HS, Roh DH, Kim KS. Intrathecal RGS4 inhibitor, CCG50014, reduces nociceptive responses and enhances opioid-mediated analgesic effects in the mouse formalin test. Anesth Analg 2015; 120:671-677. [PMID: 25695583 DOI: 10.1213/ane.0000000000000607] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The regulator of G-protein signaling protein type 4 (RGS4) accelerates the guanosine triphosphatase activity of G(αi) and G(αo), resulting in the inactivation of G-protein-coupled receptor signaling. An opioid receptor (OR), a G(αi)-coupled receptor, plays an important role in pain modulation in the central nervous system. In this study, we examined whether (1) spinal RGS4 affected nociceptive responses in the formalin pain test, (2) this RGS4-mediated effect was involved in OR activation, and (3) the µ-OR agonist-induced antinociceptive effect was modified by RGS4 modulation. METHODS Formalin (1%, 20 µL) was injected subcutaneously into the right hindpaws of male 129S4/SvJae×C57BL/6J (RGS4(+/+) or RGS4(-/-)) mice, and the licking responses were counted for 40 minutes. The time periods (seconds) spent licking the injected paw during 0 to 10 minutes (early phase) and 10 to 40 minutes (late phase) were measured as indicators of acute nociception and inflammatory pain response, respectively. An RGS4 inhibitor, CCG50014, and/or a µ-OR agonist, [D-Ala², N-MePhe⁴, Gly-ol]-enkephalin (DAMGO), were intrathecally injected 5 minutes before the formalin injection. A nonselective OR antagonist, naloxone, was intraperitoneally injected 30 minutes before the CCG50014 injection. RESULTS Mice that received the formalin injection exhibited typical biphasic nociceptive behaviors. The nociceptive responses in RGS4-knockout mice were significantly decreased during the late phase but not during the early phase. Similarly, intrathecally administered CCG50014 (10, 30, or 100 nmol) attenuated the nociceptive responses during the late phase in a dose-dependent manner. The antinociceptive effect of the RGS4 inhibitor was totally blocked by naloxone (5 mg/kg). In contrast, intrathecal injection of DAMGO achieved a dose-dependent reduction of the nociceptive responses at the early and late phases. This analgesic effect of DAMGO was significantly enhanced by the genetic depletion of RGS4 or by coadministration of CCG50014 (10 nmol). CONCLUSIONS These findings demonstrated that spinal RGS4 inhibited the endogenous or exogenous OR-mediated antinociceptive effect in the formalin pain test. Thus, the inhibition of RGS4 activity can enhance OR agonist-induced analgesia. The enhancement of OR agonist-induced analgesia by coadministration of the RGS4 inhibitor suggests a new therapeutic strategy for the management of inflammatory pain.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- From the Center for Neuroscience, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea; Laboratory of Cell Death and Human Diseases, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea; Center for Cognition and Sociality, Institute for Basic Science, Yusung-gu, Daejeon, Republic of Korea; Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul, Seoul, Republic of Korea; and Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Stewart A, Maity B, Fisher RA. Two for the Price of One: G Protein-Dependent and -Independent Functions of RGS6 In Vivo. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:123-51. [PMID: 26123305 DOI: 10.1016/bs.pmbts.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulator of G protein signaling 6 (RGS6) is unique among the members of the RGS protein family as it remains the only protein with the demonstrated capacity to control G protein-dependent and -independent signaling cascades in vivo. RGS6 inhibits signaling mediated by γ-aminobutyric acid B receptors, serotonin 1A receptors, μ opioid receptors, and muscarinic acetylcholine 2 receptors. RGS6 deletion triggers distinct behavioral phenotypes resulting from potentiated signaling by these G protein-coupled receptors namely ataxia, a reduction in anxiety and depression, enhanced analgesia, and increased parasympathetic tone, respectively. In addition, RGS6 possesses potent proapoptotic and growth suppressive actions. In heart, RGS6-dependent reactive oxygen species (ROS) production promotes doxorubicin (Dox)-induced cardiomyopathy, while in cancer cells RGS6/ROS signaling is necessary for activation of the ataxia telangiectasia mutated/p53/apoptosis pathway required for the chemotherapeutic efficacy of Dox. Further, by facilitating Tip60 (trans-acting regulator protein of HIV type 1-interacting protein 60 kDa)-dependent DNA methyltransferase 1 degradation, RGS6 suppresses cellular transformation in response to oncogenic Ras. The culmination of these G protein-independent actions results in potent tumor suppressor actions of RGS6 in the murine mammary epithelium. This work summarizes evidence from human genetic studies and model animals implicating RGS6 in normal physiology, disease, and the pharmacological actions of multiple drugs. Though efforts by multiple laboratories have contributed to the ever-growing RGS6 oeuvre, the pleiotropic nature of this gene will likely lead to additional work detailing the importance of RGS6 in neuropsychiatric disorders, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
31
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
32
|
Banaei-Esfahani A, Moazzeni H, Nosar PN, Amin S, Arefian E, Soleimani M, Yazdani S, Elahi E. MicroRNAs that target RGS5. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:108-14. [PMID: 25810883 PMCID: PMC4366720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/16/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVES An earlier meta-analysis on gene expression data derived from four microarray, two cDNA library, and one SAGE experiment had identified RGS5 as one of only ten non-housekeeping genes that were reported to be expressed in human trabecular meshwork (TM) cells by all studies. RGS5 encodes regulator of G-protein signaling-5. The TM tissue is the route of aqueous fluid outflow, and is relevant to the pathology of glaucoma. MicroRNAs constitute the most recently identified components of the cellular machinery for gene regulation in eukaryotic cells. Given our long standing interest in glaucoma, we aimed to identify miRNAs that may target RGS5. MATERIALS AND METHODS Eight miRNAs were selected for study using bioinformatics tools and available data on miRNAs expressed in the eye. Their effects were assessed using the dual luciferase assay. 3'-UTR segments of RGS5 mRNA were cloned downstream of a luciferase coding gene in psiCHECK2 vectors, and these were co-transfected with each of the miRNAs into HEK293 cells. RESULTS The outcomes evidenced that one or more of the segments are in fact targeted by miR-7, miR-9, miR-96, miR-23a, miR-23b, miR-204, and miR-211. Down regulations by the miRNAs were statistically significant. The effect of miR-204 is considered particularly important as this miRNA is well known to regulate eye development and to affect multiple ocular functions. CONCLUSION Our results justify further studies on regulation of RGS5 expression and RGS5 downstream functions by these miRNAs.
Collapse
Affiliation(s)
- Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hamidreza Moazzeni
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooya Naseri Nosar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sadaf Amin
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran,School of Biology, College of Science, University of Tehran, Tehran, Iran,*Corresponding author: Elahe Elahi. College of Science, University of Tehran, Tehran, Iran. Tel: +98-9122181251; Fax: +98-21-66405141; ,
| |
Collapse
|
33
|
GIRK Channels: A Potential Link Between Learning and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:239-77. [PMID: 26422987 DOI: 10.1016/bs.irn.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of drug-associated cues to reinitiate drug craving and seeking, even after long periods of abstinence, has led to the hypothesis that addiction represents a form of pathological learning, in which drugs of abuse hijack normal learning and memory processes to support long-term addictive behaviors. In this chapter, we review evidence suggesting that G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels are one mechanism through which numerous drugs of abuse can modulate learning and memory processes. We will examine the role of GIRK channels in two forms of experience-dependent long-term changes in neuronal function: homeostatic plasticity and synaptic plasticity. We will also discuss how drug-induced changes in GIRK-mediated signaling can lead to changes that support the development and maintenance of addiction.
Collapse
|
34
|
Delesque-Touchard N, Pendaries C, Volle-Challier C, Millet L, Salel V, Hervé C, Pflieger AM, Berthou-Soulie L, Prades C, Sorg T, Herbert JM, Savi P, Bono F. Regulator of G-protein signaling 18 controls both platelet generation and function. PLoS One 2014; 9:e113215. [PMID: 25405900 PMCID: PMC4236145 DOI: 10.1371/journal.pone.0113215] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023] Open
Abstract
RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tania Sorg
- Department of Scientific Operations PhenoPro, Mouse Clinical Institute (MCI), Strasbourg, France
| | | | - Pierre Savi
- Early to Candidate (E2C), Sanofi, Toulouse, France
| | | |
Collapse
|
35
|
ADEBIYI ADEBOWALE. RGS2 regulates urotensin II-induced intracellular Ca2+ elevation and contraction in glomerular mesangial cells. J Cell Physiol 2014; 229:502-11. [PMID: 24105430 PMCID: PMC11250777 DOI: 10.1002/jcp.24470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
Urotensin II (UII), a vasoactive peptide modulates renal hemodynamics. However, the physiological functions of UII in glomerular cells are unclear. In particular, whether UII alters mesangial tone remains largely unknown. The present study investigates the physiological effects of UII on glomerular mesangial cells (GMCs). This study also tested the hypothesis that the regulator of G-protein signaling (RGS) controls UII receptor (UTR) activity in GMCs. RT-PCR, Western immunoblotting, and immunofluorescence revealed UTR expression in cultured murine GMCs. Mouse UII (mUII) stimulated Ca(2+) release from intracellular stores and activated store-operated Ca(2+) entry (SOCE) in the cells. mUII also caused a reduction in planar GMC surface area. mUII-induced [Ca(2+)]i elevation and contraction were attenuated by SB 657510, a UTR antagonist, araguspongin B, an inositol 1,4,5-trisphosphate receptor antagonist, thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, and La(3+), a store-operated Ca(2+) channel blocker, but not nimodipine, an L-type Ca(2+) channel blocker. In situ proximity ligation assay indicated molecular proximity between endogenous RGS2 and UTR in the cells. Treatment of GMCs with mUII elevated plasma membrane expression of RGS2 by ∼2-fold. mUII also increased the interaction between RGS2 and UTR in the cells. siRNA-mediated knockdown of RGS2 in murine GMCs increased mUII-induced [Ca(2+)]i elevation and contraction by ∼35 and 31%, respectively. These findings indicate that mUII-induced SOCE results in murine GMC contraction. These data also suggest that UTR activation stimulates RGS2 recruitment to GMC plasma membrane as a negative feedback mechanism to regulate UTR signaling.
Collapse
Affiliation(s)
- ADEBOWALE ADEBIYI
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
36
|
Keinan D, Yang S, Cohen RE, Yuan X, Liu T, Li YP. Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 2014; 19:634-48. [PMID: 24389209 DOI: 10.2741/4232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS gene expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases.
Collapse
Affiliation(s)
- David Keinan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Robert E Cohen
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Xue Yuan
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Tongjun Liu
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham AL 35294, USA
| |
Collapse
|
37
|
Siehler S. G12/13-dependent signaling of G-protein-coupled receptors: disease context and impact on drug discovery. Expert Opin Drug Discov 2013; 2:1591-604. [PMID: 23488903 DOI: 10.1517/17460441.2.12.1591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the plasma membrane via intracellular activation of heterotrimeric G proteins. The signal transduction pathways of Gs, Gi and Gq protein families are widely studied, whereas signaling properties of G12 proteins are only emerging. Many GPCRs were found to couple to G12/13 proteins in addition to coupling to one or more other types of G proteins. G12/13 proteins couple GPCRs to activation of the small monomeric GTPase RhoA. Activation of RhoA modulates various downstream effector systems relevant to diseases such as hypertension, artherosclerosis, asthma and cancer. GPCR screening assays exist for Gs-, Gi- and Gq-linked pathways, whereas a drug-screening assay for the G12-Rho pathway was developed only recently. The review gives an overview of the present understanding of the G12/13-related biology of GPCRs.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, WSJ-88.2.05, 4002 Basel, Switzerland +41 61 324 8946 ; +41 61 324 2870 ;
| |
Collapse
|
38
|
Nance MR, Kreutz B, Tesmer VM, Sterne-Marr R, Kozasa T, Tesmer JJG. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure 2013; 21:438-48. [PMID: 23434405 DOI: 10.1016/j.str.2012.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood. In crystal structures of the RGS2-Gαq complex, RGS2 docks to Gαq in a different orientation from that observed in RGS-Gαi/o complexes. Despite its unique pose, RGS2 maintains canonical interactions with the switch regions of Gαq in part because its α6 helix adopts a distinct conformation. We show that RGS2 forms extensive interactions with the α-helical domain of Gαq that contribute to binding affinity and GAP potency. RGS subfamilies that do not serve as GAPs for Gαq are unlikely to form analogous stabilizing interactions.
Collapse
Affiliation(s)
- Mark R Nance
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mu XM, Shi W, Sun LX, Li H, Wang YR, Jiang ZZ, Zhang LY. Pristimerin inhibits breast cancer cell migration by up- regulating regulator of G protein signaling 4 expression. Asian Pac J Cancer Prev 2013; 13:1097-104. [PMID: 22799288 DOI: 10.7314/apjcp.2012.13.4.1097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. METHODS The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. RESULTS We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. CONCLUSION Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Xian-Min Mu
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang X, Xiong LW, El Ayadi A, Boehning D, Putkey JA. The calmodulin regulator protein, PEP-19, sensitizes ATP-induced Ca2+ release. J Biol Chem 2012. [PMID: 23204517 DOI: 10.1074/jbc.m112.411314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca(2+) binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca(2+) binding activity, which may modulate Ca(2+) binding to CaM by stabilizing an initial Ca(2+)-CaM complex or by electrostatically steering Ca(2+) to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca(2+) dynamics, we tested the hypothesis that it influences ligand-dependent Ca(2+) release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca(2+) release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca(2+) oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca(2+) binding to CaM greatly inhibit its effect on ATP-induced Ca(2+) release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca(2+) mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology and Structural Biology Imaging Center, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Relationship between Rgs2 gene expression level and anxiety and depression-like behaviour in a mutant mouse model: serotonergic involvement. Int J Neuropsychopharmacol 2012; 15:1307-18. [PMID: 22040681 DOI: 10.1017/s1461145711001453] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
RGS2 is a member of a family of proteins that negatively modulate G-protein coupled receptor transmission. Variations in the RGS2 gene were found to be associated in humans with anxious and depressive phenotypes. We sought to study the relationship of Rgs2 expression level to depression and anxiety-like behavioural features, sociability and brain 5-HT1A and 5-HT1B receptor expression. We studied male mice carrying a mutation that causes lower Rgs2 gene expression, employing mice heterozygous (Het) or homozygous (Hom) for this mutation, or wild-type (WT). Mice were subjected to behavioural tests reflecting depressive-like behaviour [forced swim test (FST), novelty suppressed feeding test (NSFT)], elevated plus maze (EPM) for evaluation of anxiety levels and the three-chamber sociability test. The possible involvement of raphe nucleus 5-HT1A receptors in these behavioural features was examined by 8-OH-DPAT-induced hypothermia. Expression levels of 5-HT1A and 5-HT1B receptors in the cortex, raphe nucleus and hypothalamus were compared among mice of the different Rgs2 genotype groups. NSFT results demonstrated that Hom mice showed more depressive-like features than Rgs2 Het and WT mice. A trend for such a relationship was also suggested by the FST results. EPM and sociability test results showed Hom and Het mice to be more anxious and less sociable than WT mice. In addition Hom and Het mice were characterized by lower basal body temperature and demonstrated less 8-OH-DPAT-induced hypothermia than WT mice. Finally, Hom and Het mice had significantly lower 5-HT1A and 5-HT1B receptor expression levels in the raphe than WT mice. Our findings demonstrate a relationship between Rgs2 gene expression level and a propensity for anxious and depressive-like behaviour and reduced social interaction that may involve changes in serotonergic receptor expression.
Collapse
|
42
|
Variations in target gene expression and pathway profiles in the mouse hippocampus following treatment with different effective compounds for ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:797-806. [PMID: 22622953 DOI: 10.1007/s00210-012-0743-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
Abstract
In order to elucidate the overlapping and diverse pharmacological protective mechanisms of different Chinese medicinal compounds, we investigated the alteration of gene expression and activation of signaling pathways in the mouse hippocampus after treatment of cerebral ischemia-reperfusion injury with various compounds. A microarray including 16,463 genes was used to identify differentially expressed genes among six treatment groups: baicalin (BA), jasminoidin (JA), cholic acid (CA), concha margaritiferausta (CM), sham, and vehicle. The US Food and Drug Administration (FDA) ArrayTrack system and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to screen significantly altered genes and pathways (P < 0.05, fold change >1.5). Vehicle treatment alone resulted in alteration of 726 genes (283 upregulated, 443 downregulated) compared to the sham treatment group. BA, JA, and CA treatments, but not CM treatment, were effective in reducing infarct volume compared with vehicle treatment (P < 0.05). Compared with the CM group, a total of 167 (73 upregulated, 94 downregulated), 379 (211 upregulated, 168 downregulated), and 181 (76 upregulated, 105 downregulated) altered genes were found in the BA, JA, and CA groups, respectively. The numbers of overlapping genes between the BA and JA, BA and CA, and JA and CA groups were 28 (16 upregulated, 12 downregulated), 14 (4 upregulated, 10 downregulated), and 31 (8 upregulated, 23 downregulated), respectively. Three overlapping genes were identified among the BA, JA, and CA treatment groups: Il1rap, Gnb5, and Wdr38. Based on KEGG pathway analysis, two, seven, and four pathways were significantly activated in the BA, JA, and CA groups, respectively, when compared to the CM group. The ATP-binding cassette (ABC) transporters general pathway was activated by BA and JA treatment, and the mitogen-activated protein kinase (MAPK) signaling pathway was activated by JA and CA treatment. Alteration of IL-1 and Hspa1a expression was found by real time reverse transcription polymerase chain reaction, confirming the results of the microarray analysis. Our data demonstrated that polytypic profiles of 167-379 altered genes exist in the mouse hippocampus treated with different compounds known to be therapeutically effective in cerebral ischemia-reperfusion injury, and we were able to identify overlapping genes and pathways among these groups. Therefore, these different compounds may function through both overlapping and distinct pharmacological mechanisms to exert their therapeutic action.
Collapse
|
43
|
MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 2012; 7:e35646. [PMID: 22545125 PMCID: PMC3335800 DOI: 10.1371/journal.pone.0035646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1β is mediated by the activation of NFκB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. METHODOLOGY/PRINCIPAL FINDINGS Cultured cells at first passage were treated with or without IL-1β (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1β stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1β. Mutation of the AP1-binding site within Rgs4 promoter increased the promoter activity. Western blot analysis confirmed that IL-1β treatment increased the phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1β increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter. CONCLUSION/SIGNIFICANCE Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in regulating Rgs4 transcription in rabbit colonic smooth muscle cells. This negative regulation may aid in maintaining the transient level of RGS4 expression.
Collapse
|
44
|
Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood 2012; 119:3799-807. [DOI: 10.1182/blood-2011-11-390369] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In contrast, treatment of platelets with prostacyclin and nitric oxide, which trigger inhibitory cyclic nucleotide signaling involving cyclic AMP-dependent protein kinase A (PKA) and cyclic GMP-dependent protein kinase I (PKGI), induces the phosphorylation of serine 216 of RGS18 and the detachment of 14-3-3. Serine 216 phosphorylation is able to block 14-3-3 binding to RGS18 even in the presence of thrombin, thromboxane A2, or ADP. 14-3-3–deficient RGS18 is more active compared with 14-3-3–bound RGS18, leading to a more pronounced inhibition of thrombin-induced release of calcium ions from intracellular stores. Therefore, PKA- and PKGI-mediated detachment of 14-3-3 activates RGS18 to block Gq-dependent calcium signaling. These findings indicate cross-talk between platelet activation and inhibition pathways at the level of RGS18 and Gq.
Collapse
|
45
|
Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci 2012; 32:2683-95. [PMID: 22357852 DOI: 10.1523/jneurosci.4125-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.
Collapse
|
46
|
Osei-Owusu P, Sabharwal R, Kaltenbronn KM, Rhee MH, Chapleau MW, Dietrich HH, Blumer KJ. Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem 2012; 287:12541-9. [PMID: 22354966 DOI: 10.1074/jbc.m111.332130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling. Blood 2011; 119:1935-45. [PMID: 22210881 DOI: 10.1182/blood-2011-10-387910] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are essential for normal hemostasis, but close regulation is required to avoid the destructive effects of either inappropriate platelet activation or excessive responses to injury. Here, we describe a novel complex comprising the scaffold protein, spinophilin (SPL), and the tyrosine phosphatase, SHP-1, and show that it can modulate platelet activation by sequestering RGS10 and RGS18, 2 members of the regulator of G protein signaling family. We also show that SPL/RGS/SHP1 complexes are present in resting platelets where constitutive phosphorylation of SPL(Y398) creates an atypical binding site for SHP-1. Activation of the SHP-1 occurs on agonist-induced phosphorylation of SHP-1(Y536), triggering dephosphorylation and decay of the SPL/RGS/SHP1 complex. Preventing SHP-1 activation blocks decay of the complex and produces a gain of function. Conversely, deleting spinophilin in mice inhibits platelet activation. It also attenuates the rise in platelet cAMP normally caused by endothelial prostacyclin (PGI(2)). Thus, we propose that the role of the SPL/RGS/SHP1 complex in platelets is time and context dependent. Before injury, the complex helps maintain the quiescence of circulating platelets by maximizing the impact of PGI(2). After injury, the complex gradually releases RGS proteins, limiting platelet activation and providing a mechanism for temporal coordination of pro thrombotic and antithrombotic inputs.
Collapse
|
48
|
Kosloff M, Travis AM, Bosch DE, Siderovski DP, Arshavsky VY. Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat Struct Mol Biol 2011; 18:846-53. [PMID: 21685921 PMCID: PMC3130846 DOI: 10.1038/nsmb.2068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/07/2011] [Indexed: 11/09/2022]
Abstract
The diverse Regulator of G protein Signaling (RGS) family sets the timing of G protein signaling. To understand how the structure of RGS proteins determines their common ability to inactivate G proteins and their selective G protein recognition, we combined structure-based energy calculations with biochemical measurements of RGS activity. We found a previously unidentified group of variable 'Modulatory' residues that reside at the periphery of the RGS domain-G protein interface and fine-tune G protein recognition. Mutations of Modulatory residues in high-activity RGS proteins impaired RGS function, whereas redesign of low-activity RGS proteins in critical Modulatory positions yielded complete gain of function. Therefore, RGS proteins combine a conserved core interface with peripheral Modulatory residues to selectively optimize G protein recognition and inactivation. Finally, we show that our approach can be extended to analyze interaction specificity across other large protein families.
Collapse
Affiliation(s)
- Mickey Kosloff
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
49
|
Altered expression and function of regulator of G-protein signaling-17 (RGS17) in hepatocellular carcinoma. Cell Signal 2011; 23:1603-10. [PMID: 21620966 DOI: 10.1016/j.cellsig.2011.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 11/22/2022]
Abstract
Guanine nucleotide regulatory proteins (G-proteins) are central to normal hepatocyte function and are implicated in hepatic disease initiation and progression. Regulators of G-protein signaling (RGS) are critical to defining G-protein-dependent signal fidelity, yet the role of RGS proteins in the liver is poorly defined. The aims of this study were to determine RGS17 expression in normal and transformed hepatic tissue and cells, and address the function of RGS17 in hepatic tumorgenicity. RGS17 expression was determined in human and rat HCC tissue and cell lines. Molecular approaches were used to alter RGS17 expression in HCC cells, effects on cell function measured, and RGS17 association with specific Gα-subunits determined. Using these approaches RGS17 mRNA, but not protein, was detectable in human and rat HCC tissue and cells. Conversely, RGS17 mRNA was not detected in normal tissue, isolated hepatocytes, or non-tumorigenic hepatic cells. Subsequent studies using transfected cells demonstrated that RGS17 proteins were not post-translationally modified in HCC cells, and RGS17 expression is governed by protein degradation and not via miRNAs. Notwithstanding inherently low RGS17 protein levels, altering RGS17 expression profoundly affected HCC cell mitogenesis and migration. Analysis of RGS17-G-protein interaction demonstrated RGS17 associates with both Giα- and Gqα-subunits in HCC cells of human and rat origin. In conclusion, these data demonstrate that, despite difficulties in measuring endogenous RGS protein expression, RGS17 is differentially expressed in HCC and plays a central role in regulating transformed hepatocyte tumorgenicity.
Collapse
|
50
|
Matsuzaki N, Nishiyama M, Song D, Moroi K, Kimura S. Potent and selective inhibition of angiotensin AT1 receptor signaling by RGS2: roles of its N-terminal domain. Cell Signal 2011; 23:1041-9. [PMID: 21291998 DOI: 10.1016/j.cellsig.2011.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/05/2011] [Accepted: 01/24/2011] [Indexed: 11/24/2022]
Abstract
Emerging evidence indicates that R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in functional regulation in the cardiovascular system. In this study, we compared effects of three R4/B subfamily proteins, RGS2, RGS4 and RGS5 on angiotensin AT1 receptor signaling, and investigated roles of the N-terminus of RGS2. In HEK293T cells expressing AT1 receptor stably, intracellular Ca(2+) responses induced by angiotensin II were much more strongly attenuated by RGS2 than by RGS4 and RGS5. N-terminally deleted RGS2 proteins lost this potent inhibitory effect. Replacement of the N-terminal residues 1-71 of RGS2 with the corresponding residues (1-51) of RGS5 decreased significantly the inhibitory effect. On the other hand, replacement of the residues 1-51 of RGS5 with the residues 1-71 of RGS2 increased the inhibitory effect dramatically. Furthermore, we investigated functional contribution of N-terminal subdomains of RGS2, namely, an N-terminal region (residues 16-55) with an amphipathic α helix domain (the subdomain N1), a probable non-specific membrane-targeting subdomain, and another region (residues 56-71) between the α helix and the RGS box (the subdomain N2), a probable GPCR-recognizing subdomain. RGS2 chimera proteins with the residues 1-33 or 34-52 of RGS5 showed weak inhibitory activity, and either of RGS5 chimera proteins with residues 1-55 or 56-71 of RGS2 showed strong inhibitory effects on AT1 receptor signaling. The present study indicates the essential roles of both N-terminal subdomains for the potent inhibitory activity of RGS2 on AT1 receptor signaling.
Collapse
Affiliation(s)
- Naoko Matsuzaki
- Department of Biochemistry and Molecular Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|