1
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Curreli S, Tettelin H, Benedetti F, Krishnan S, Cocchi F, Reitz M, Gallo RC, Zella D. Analysis of DnaK Expression from a Strain of Mycoplasma fermentans in Infected HCT116 Human Colon Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22083885. [PMID: 33918708 PMCID: PMC8069837 DOI: 10.3390/ijms22083885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Several species of mycoplasmas, including Mycoplasma fermentans, are associated with certain human cancers. We previously isolated and characterized in our laboratory a strain of human mycoplasma M. fermentans subtype incognitus (MF-I1) able to induce lymphoma in a Severe Combined Immuno-Deficient (SCID) mouse model, and we demonstrated that its chaperone protein, DnaK, binds and reduces functions of human poly-ADP ribose polymerase-1 (PARP1) and ubiquitin carboxyl-terminal hydrolase protein-10 (USP10), which are required for efficient DNA repair and proper p53 activities, respectively. We also showed that other bacteria associated with human cancers (including Mycoplasmapneumoniae, Helicobacterpylori, Fusobacteriumnucleatum, Chlamydiathrachomatis, and Chlamydia pneumoniae) have closely related DnaK proteins, indicating a potential common mechanism of cellular transformation. Here, we quantify dnaK mRNA copy number by RT-qPCR analysis in different cellular compartments following intracellular MF-I1 infection of HCT116 human colon carcinoma cells. DnaK protein expression in infected cells was also detected and quantified by Western blot. The amount of viable intracellular mycoplasma reached a steady state after an initial phase of growth and was mostly localized in the cytoplasm of the invaded cells, while we detected a logarithmically increased number of viable extracellular bacteria. Our data indicate that, after invasion, MF-I1 is able to establish a chronic intracellular infection. Extracellular replication was more efficient while MF-I1 cultured in cell-free axenic medium showed a markedly reduced growth rate. We also identified modifications of important regulatory regions and heterogeneous lengths of dnaK mRNA transcripts isolated from intracellular and extracellular MF-I1. Both characteristics were less evident in dnaK mRNA transcripts isolated from MF-I1 grown in cell-free axenic media. Taken together, our data indicate that MF-I1, after establishing a chronic infection in eukaryotic cells, accumulates different forms of dnaK with efficient RNA turnover.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selvi Krishnan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| |
Collapse
|
3
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
4
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
5
|
Bagherinejad MR, Sadeghi HMM, Abedi D, Moazen F, Rabbani M. Effect of Twine-arginine Translocation-signaling Fusion System and Chaperones Co-expression on Secretory Expression of Somatropin. Adv Biomed Res 2018; 7:17. [PMID: 29456988 PMCID: PMC5812091 DOI: 10.4103/abr.abr_273_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Twine-arginine translocation (TAT) system is one of the exporting systems in Escherichia coli which could transport fully/semi-correctly folded proteins outside the reductive cytoplasmic space. In combination with co-expression with a chaperone system, the correctly folded proteins could be transported to oxidative periplasmic space and culture media to pass the main limitations in E. coli expression system such as misfolding and inclusion body formation. Materials and Methods: To study the effectiveness of signaling sequences and chaperone co-expression on the translocation of expressed protein, somatropin was selected as the target. Two common signal sequences in TAT system (TorA and SufI) were added at the N-terminal of somatropin and the cassettes were co-expressed in E. coli BL21 (DE3) by a chaperone team including DnaK/J-GrpeE. Results: The expression pattern studies including Western blotting and sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that somatropin is expressed in two cassettes. However, the pattern was different for two signaling sequences. Conclusion: The results confirmed that the approach of using TAT-signaling sequences and co-expression with the chaperone team could enhance translocation of protein to periplasmic space and culture media compared to control groups. Western blotting results showed that the signal sequence TorA could transport more expressed proteins to the periplasmic space and culture media in comparison with SufI. However, there was a considerable amount of human growth hormone in the cytoplasm which could not be transported outside the cytoplasmic space.
Collapse
Affiliation(s)
- Mohammad Reza Bagherinejad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir-Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryoush Abedi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Moazen
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Cherak SJ, Turner RJ. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme. Biomol Concepts 2018; 8:155-167. [PMID: 28688222 DOI: 10.1515/bmc-2017-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 11/15/2022] Open
Abstract
Protein folding and assembly into macromolecule complexes within the living cell are complex processes requiring intimate coordination. The biogenesis of complex iron sulfur molybdoenzymes (CISM) requires use of a system specific chaperone - a redox enzyme maturation protein (REMP) - to help mediate final folding and assembly. The CISM dimethyl sulfoxide (DMSO) reductase is a bacterial oxidoreductase that utilizes DMSO as a final electron acceptor for anaerobic respiration. The REMP DmsD strongly interacts with DMSO reductase to facilitate folding, cofactor-insertion, subunit assembly and targeting of the multi-subunit enzyme prior to membrane translocation and final assembly and maturation into a bioenergetic catalytic unit. In this article, we discuss the biogenesis of DMSO reductase as an example of the participant network for bacterial CISM maturation pathways.
Collapse
|
7
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
8
|
Lemaire ON, Bouillet S, Méjean V, Iobbi-Nivol C, Genest O. Chaperones in maturation of molybdoenzymes: Why specific is better than general? Bioengineered 2017; 8:133-136. [PMID: 27580420 DOI: 10.1080/21655979.2016.1218579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molybdoenzymes play essential functions in living organisms and, as a result, in various geochemical cycles. It is thus crucial to understand how these complex proteins become highly efficient enzymes able to perform a wide range of catalytic activities. It has been established that specific chaperones are involved during their maturation process. Here, we raise the question of the involvement of general chaperones acting in concert with dedicated chaperones or not.
Collapse
|
9
|
Pina-Pedrero S, Olvera À, Bensaid A. The extended leader peptide of Haemophilus parasuis trimeric autotransporters conditions their protein expression in Escherichia coli. Protein Expr Purif 2017; 133:15-24. [PMID: 28254554 DOI: 10.1016/j.pep.2017.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Trimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated. The 13 genes encoding the VtaA1 to VtaA13 passenger domains of the strain Nagasaki were cloned in the pASK-IBA33plus plasmid and expressed in E. coli. Recombinant protein production was higher for truncated forms in which the entire leader peptide was deleted, and the recombinant protein accumulated in the cytoplasm of the cells. The yield of protein production of the different VtaAs was size dependent, and reached maximal amount at 2-4 h post -induction. The optimization of these conditions allowed to scale-up the production to obtain enough recombinant protein to immunize large animals.
Collapse
Affiliation(s)
- Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Àlex Olvera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Chan CS, Turner RJ. Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:215-34. [PMID: 26621470 DOI: 10.1007/978-3-319-23603-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Protein folding and structure have been of interest since the dawn of protein chemistry. Following translation from the ribosome, a protein must go through various steps to become a functional member of the cellular society. Every protein has a unique function in the cell and is classified on this basis. Proteins that are involved in cellular respiration are the bioenergetic workhorses of the cell. Bacteria are resilient organisms that can survive in diverse environments by fine tuning these workhorses. One class of proteins that allow survival under anoxic conditions are anaerobic respiratory oxidoreductases, which utilize many different compounds other than oxygen as its final electron acceptor. Dimethyl sulfoxide (DMSO) is one such compound. Respiration using DMSO as a final electron acceptor is performed by DMSO reductase, converting it to dimethyl sulfide in the process. Microbial respiration using DMSO is reviewed in detail by McCrindle et al. (Adv Microb Physiol 50:147-198, 2005). In this chapter, we discuss the biogenesis of DMSO reductase as an example of the participant network for complex iron-sulfur molybdoenzyme maturation pathways.
Collapse
Affiliation(s)
- Catherine S Chan
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
11
|
Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them. Methods Mol Biol 2015; 1258:79-97. [PMID: 25447860 DOI: 10.1007/978-1-4939-2205-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms.
Collapse
|
12
|
‘Come into the fold’: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2971-2984. [DOI: 10.1016/j.bbamem.2014.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
|
13
|
Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1442-56. [PMID: 24269840 DOI: 10.1016/j.bbamcr.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
14
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
16
|
Waraho-Zhmayev D, Gkogka L, Yu TY, DeLisa MP. A microbial sensor for discovering structural probes of protein misfolding and aggregation. Prion 2013; 7:151-6. [PMID: 23357829 DOI: 10.4161/pri.23328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In all cell types, protein homeostasis, or "proteostasis," is maintained by sophisticated quality control networks that regulate protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. In one notable example, Escherichia coli employ a proteostasis system that determines whether substrates of the twin-arginine translocation (Tat) pathway are correctly folded and thus suitable for transport across the tightly sealed cytoplasmic membrane. Herein, we review growing evidence that the Tat translocase itself discriminates folded proteins from those that are misfolded and/or aggregated, preferentially exporting only the former. Genetic suppressors that inactivate this mechanism have recently been isolated and provide direct evidence for the participation of the Tat translocase in structural proofreading of its protein substrates. We also discuss how this discriminatory "folding sensor" has been exploited for the discovery of structural probes (e.g., sequence mutations, pharmacologic chaperones, intracellular antibodies) that modulate the folding and solubility of virtually any protein-of-interest, including those associated with aggregation diseases (e.g., α-synuclein, amyloid-β protein). Taken together, these studies highlight the utility of engineered bacteria for rapidly and inexpensively uncovering potent anti-aggregation factors.
Collapse
|
17
|
Lo SM, Theg SM. Role of vesicle-inducing protein in plastids 1 in cpTat transport at the thylakoid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:656-68. [PMID: 22487220 DOI: 10.1111/j.1365-313x.2012.05020.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
VIPP1 has been shown to be required for the proper formation of thylakoid membranes. However, studies on VIPP1 itself, as well as on PspA, its bacterial homolog, suggests that this protein may be involved in a number of additional functions, including protein translocation. The role of VIPP1 in protein translocation in the chloroplast has not been investigated. To this end, we conducted in vitro thylakoid protein transport assays to look at the effect of VIPP1 on the cpTat pathway, which is one of three translocation pathways found in both the chloroplast and its bacterial progenitor. We found that VIPP1 does indeed enhance protein transport through the cpTat pathway by up to 100%. The VIPP1 effect on cpTat activity occurs without interacting with the substrates or components of the translocon, and does not alter the energy potentials driving this translocation pathway. Instead, VIPP1 greatly enhances the amount of substrate bound productively to the thylakoids. Moreover, the presence of increasing VIPP1 concentrations in the reactions resulted in greater interactions between thylakoid membranes. Taken together, these results demonstrate a stimulatory role for VIPP1 in cpTat transport by enhancement of substrate binding, probably to the membrane lipid regions of the thylakoid. We propose a model in which VIPP1 facilitates reorganization of the thylakoid structure to increase substrate access to productive binding regions of the membrane as an early step in the cpTat pathway.
Collapse
Affiliation(s)
- Shari M Lo
- Section of Plant Biology, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
18
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Shanmugham A, Bakayan A, Völler P, Grosveld J, Lill H, Bollen YJM. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones. PLoS One 2012; 7:e34159. [PMID: 22479549 PMCID: PMC3316669 DOI: 10.1371/journal.pone.0034159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA) and TorD (specific for trimethylamine N-oxide reductase, TorA). Green fluorescent protein (GFP) was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves J. M. Bollen
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Hou B, Brüser T. The Tat-dependent protein translocation pathway. Biomol Concepts 2011; 2:507-23. [DOI: 10.1515/bmc.2011.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe twin-arginine translocation (Tat) pathway is found in bacteria, archaea, and plant chloroplasts, where it is dedicated to the transmembrane transport of fully folded proteins. These proteins contain N-terminal signal peptides with a specific Tat-system binding motif that is recognized by the transport machinery. In contrast to other protein transport systems, the Tat system consists of multiple copies of only two or three usually small (∼8–30 kDa) membrane proteins that oligomerize to two large complexes that transiently interact during translocation. Only one of these complexes includes a polytopic membrane protein, TatC. The other complex consists of TatA. Tat systems of plants, proteobacteria, and several other phyla contain a third component, TatB. TatB is evolutionarily and structurally related to TatA and usually forms tight complexes with TatC. Minimal two-component Tat systems lacking TatB are found in many bacterial and archaeal phyla. They consist of a ‘bifunctional’ TatA that also covers TatB functionalities, and a TatC. Recent insights into the structure and interactions of the Tat proteins have various important implications.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
21
|
Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, Ke A, DeLisa MP. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 2011; 79:584-99. [PMID: 21255106 PMCID: PMC3040579 DOI: 10.1111/j.1365-2958.2010.07482.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A widespread feature in the genomes of most bacteria and archaea is an array of clustered, regularly interspaced short palindromic repeats (CRISPRs) that, together with a group of CRISPR-associated (Cas) proteins, mediate immunity against invasive nucleic acids such as plasmids and viruses. Here, the CRISPR-Cas system was activated in cells expressing a plasmid-encoded protein that was targeted to the twin-arginine translocation (Tat) pathway. Expression of this Tat substrate resulted in upregulation of the Cas enzymes and subsequent silencing of the encoding plasmid in a manner that required the BaeSR two-component regulatory system, which is known to respond to extracytoplasmic stress. Furthermore, we confirm that the CasCDE enzymes form a stable ternary complex and appear to function as the catalytic core of the Cas system to process CRISPR RNA into its mature form. Taken together, our results indicate that the CRISPR-Cas system targets DNA directly as part of a defence mechanism in bacteria that is overlapping with but not limited to phage infection.
Collapse
Affiliation(s)
| | - Charles Haitjema
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Qingqiu Huang
- Macromolecular Diffraction Facility at CHESS, Cornell University, Ithaca, NY, 14853 USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Ki Hyun Nam
- Macromolecular Diffraction Facility at CHESS, Cornell University, Ithaca, NY, 14853 USA
| | - Sarah Bernardis
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
22
|
Abstract
Microbes utilize defence systems with fundamental similarities to our innate and adaptive immune responses to protect themselves from harmful invaders. One system, made up of CRISPR loci & Cas proteins, incorporates recognizable features from the genomes of viruses (bacteriophages) and plasmids into bacterial genomes, where they are later used to direct a ribonucleoprotein complex to destroy invading nucleic acids upon re-exposure. CRISPR-mediated defence against invasive nucleic acids is found in most archaea and many eubacteria. Many aspects of this newly described defence system have not been worked out, including the molecular mechanisms by which foreign nucleic acids are incorporated into microbial genomes during adaption and destroyed during interference. In this issue of Molecular Microbiology, DeLisa and colleagues provide insight into how this form of microbial immunity might be regulated in eubacteria. They demonstrate that Escherichia coli CRISPR-mediated immunity requires the presence of the BaeSR two-component system under certain conditions. Since BaeSR regulate an envelope stress response, their data imply that immunity against invading, foreign nucleic acids may be somehow linked to stresses to the bacterial membrane. These observations will help pave the way to understanding how and when CRISPR-based immunity may be important in driving evolution and adaptation in eubacteria.
Collapse
Affiliation(s)
- Tracy Raivio
- University of Alberta - Biological Sciences, CW405A Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
23
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
24
|
Li H, Chang L, Howell JM, Turner RJ. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1301-9. [PMID: 20153451 PMCID: PMC3288112 DOI: 10.1016/j.bbapap.2010.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 12/23/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Many bacterial oxidoreductases depend on the Tat translocase for correct cell localization. Substrates for the Tat translocase possess twin-arginine leaders. System specific chaperones or redox enzyme maturation proteins (REMPs) are a group of proteins implicated in oxidoreductase maturation. DmsD is a REMP discovered in Escherichia coli, which interacts with the twin-arginine leader sequence of DmsA, the catalytic subunit of DMSO reductase. In this study, we identified several potential interacting partners of DmsD by using several in vitro protein-protein interaction screening approaches, including affinity chromatography, co-precipitation, and cross-linking. Candidate hits from these in vitro findings were analyzed by in vivo methods of bacterial two-hybrid (BACTH) and bimolecular fluorescence complementation (BiFC). From these data, DmsD was confirmed to interact with the general molecular chaperones DnaK, DnaJ, GrpE, GroEL, Tig and Ef-Tu. In addition, DmsD was also found to interact with proteins involved in the molybdenum cofactor biosynthesis pathway. Our data suggests that DmsD may play a role as a "node" in escorting its substrate through a cascade of chaperone assisted protein-folding maturation events.
Collapse
Affiliation(s)
- Haiming Li
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Limei Chang
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Jenika M. Howell
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
25
|
Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 2010; 10:53. [PMID: 20167112 PMCID: PMC2848651 DOI: 10.1186/1471-2180-10-53] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.
Collapse
Affiliation(s)
- Sandrine Koechler
- UMR7156 Génétique Moléculaire, Génomique et Microbiologie, CNRS Université de Strasbourg, 28 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kostecki JS, Li H, Turner RJ, DeLisa MP. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. PLoS One 2010; 5:e9225. [PMID: 20169075 PMCID: PMC2821923 DOI: 10.1371/journal.pone.0009225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 01/18/2010] [Indexed: 11/23/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of gram-negative and gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways.
Collapse
Affiliation(s)
- Jan S. Kostecki
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Haiming Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Matthew P. DeLisa
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
27
|
Holzapfel E, Moser M, Schiltz E, Ueda T, Betton JM, Müller M. Twin-Arginine-Dependent Translocation of SufI in the Absence of Cytosolic Helper Proteins. Biochemistry 2009; 48:5096-105. [DOI: 10.1021/bi900520d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva Holzapfel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Michael Moser
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Emile Schiltz
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
- Institute of Organic Chemistry and Biochemistry, University of Freiburg, Albert-Strasse 21, D-79104 Freiburg, Germany
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Jean-Michel Betton
- Unité Biochimie Structurale, CNRS URA 2185, Institut Pasteur, 75724 Paris cedex 15, France
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| |
Collapse
|
28
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
29
|
Cross BCS, Sinning I, Luirink J, High S. Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol 2009; 10:255-64. [PMID: 19305415 DOI: 10.1038/nrm2657] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.
Collapse
Affiliation(s)
- Benedict C S Cross
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
30
|
Kolaj O, Spada S, Robin S, Wall JG. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 2009; 8:9. [PMID: 19173718 PMCID: PMC2642769 DOI: 10.1186/1475-2859-8-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/27/2009] [Indexed: 12/13/2022] Open
Abstract
Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e.g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed - and largely unpredictable - results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-to-express recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Olga Kolaj
- Department of Chemical and Environmental Sciences and Materials and Surface Science Institute, University of Limerick, National Technology Park, Limerick, Ireland.
| | | | | | | |
Collapse
|
31
|
Frielingsdorf S, Jakob M, Klösgen RB. A stromal pool of TatA promotes Tat-dependent protein transport across the thylakoid membrane. J Biol Chem 2008; 283:33838-45. [PMID: 18842584 PMCID: PMC2662211 DOI: 10.1074/jbc.m806334200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/07/2008] [Indexed: 11/06/2022] Open
Abstract
In chloroplasts and bacteria, the Tat (twin-arginine translocation) system is engaged in transporting folded passenger proteins across the thylakoid and cytoplasmic membranes, respectively. To date, three membrane proteins (TatA, TatB, and TatC) have been identified to be essential for Tat-dependent protein translocation in the plant system, whereas soluble factors seem not to be required. In contrast, in the bacterial system, several cytosolic chaperones were described to be involved in Tat transport processes. Therefore, we have examined whether stromal or peripherally associated membrane proteins also play a role in Tat transport across the thylakoid membrane. Analyzing both authentic precursors as well as the chimeric 16/23 protein, which allows us to study each step of the translocation process individually, we demonstrate that a soluble form of TatA is present in the chloroplast stroma, which significantly improves the efficiency of Tat-dependent protein transport. Furthermore, this soluble TatA is able to reconstitute the Tat transport properties of thylakoid membranes that are transport-incompetent due to extraction with solutions of chaotropic salts.
Collapse
Affiliation(s)
- Stefan Frielingsdorf
- Institute of Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
32
|
Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane. Antimicrob Agents Chemother 2008; 53:242-8. [PMID: 18981261 DOI: 10.1128/aac.00642-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Lactamases represent the major resistance mechanism of gram-negative bacteria against beta-lactam antibiotics. The amino acid sequences of these proteins vary widely, but all are located in the periplasm of bacteria. In this study, we investigated the translocation mechanism of representative beta-lactamases in an Escherichia coli model. N-terminal signal sequence analyses, antibiotic activity assay, and direct measurement of translocation of a green fluorescent protein (GFP) reporter fused to beta-lactamases revealed that most were exported via the Sec pathway. However, the Stenotrophomonas maltophilia L2 beta-lactamase was exported via the E. coli Tat translocase, while the S. maltophilia L1 beta-lactamase was Sec dependent. These results show the possible Tat-dependent translocation of beta-lactamases in the E. coli model system. In addition, the mutation of the cytoskeleton-encoding gene mreB, which may be involved in the spatial organization of penicillin-binding proteins, decreased the MIC of beta-lactams for beta-lactamase-producing E. coli. These findings provide new knowledge about beta-lactamase translocation, a putative new target for addressing beta-lactamase-mediated resistance.
Collapse
|
33
|
The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl Environ Microbiol 2008; 74:7507-13. [PMID: 18931290 DOI: 10.1128/aem.01401-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis alpha-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.
Collapse
|
34
|
Fisher AC, Kim J, Perez‐Rodriguez R, Tullman‐Ercek D, Fish WR, Henderson LA, DeLisa MP. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb Biotechnol 2008; 1:403-15. [PMID: 21261860 PMCID: PMC3057487 DOI: 10.1111/j.1751-7915.2008.00041.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/21/2008] [Accepted: 05/22/2008] [Indexed: 11/29/2022] Open
Abstract
Historically, the general secretory (Sec) pathway of Gram-negative bacteria has served as the primary route by which heterologous proteins are delivered to the periplasm in numerous expression and engineering applications. Here we have systematically examined the twin-arginine translocation (Tat) pathway as an alternative, and possibly advantageous, secretion pathway for heterologous proteins. Overall, we found that: (i) export efficiency and periplasmic yield of a model substrate were affected by the composition of the Tat signal peptide, (ii) Tat substrates were correctly processed at their N-termini upon reaching the periplasm and (iii) proteins fused to maltose-binding protein (MBP) were reliably exported by the Tat system, but only when correctly folded; aberrantly folded MBP fusions were excluded by the Tat pathway's folding quality control feature. We also observed that Tat export yield was comparable to Sec for relatively small, well-folded proteins, higher relative to Sec for proteins that required cytoplasmic folding, and lower relative to Sec for larger, soluble fusion proteins. Interestingly, the specific activity of material purified from the periplasm was higher for certain Tat substrates relative to their Sec counterparts, suggesting that Tat expression can give rise to relatively pure and highly active proteins in one step.
Collapse
Affiliation(s)
- Adam C. Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, USA
| | - Jae‐Young Kim
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, USA
| | | | - Danielle Tullman‐Ercek
- Department of Pharmaceutical Chemistry and California Institute for Quantitative Biomedical Research (QB3), University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J Bacteriol 2008; 190:6428-38. [PMID: 18658266 DOI: 10.1128/jb.00749-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a system used by some bacteria to export proteins out from the cytosol to the cell surface or extracellular environment. A functional Tat pathway exists in the important human pathogen Mycobacterium tuberculosis. Identification of the substrates exported by the Tat pathway can help define the role that this pathway plays in the physiology and pathogenesis of M. tuberculosis. Here we used a reporter of Tat export, a truncated beta-lactamase, 'BlaC, to experimentally identify M. tuberculosis proteins with functional Tat signal sequences. Of the 13 proteins identified, one lacks the hallmark of a Tat-exported substrate, the twin-arginine dipeptide, and another is not predicted by in silico analysis of the annotated M. tuberculosis genome. Full-length versions of a subset of these proteins were tested to determine if the native proteins are Tat exported. For three proteins, expression in a Deltatat mutant of Mycobacterium smegmatis revealed a defect in precursor processing compared to expression in the wild type, indicating Tat export of the full-length proteins. Conversely, two proteins showed no obvious Tat export in M. smegmatis. One of this latter group of proteins was the M. tuberculosis virulence factor phospholipase C (PlcB). Importantly, when tested in M. tuberculosis a different result was obtained and PlcB was exported in a twin-arginine-dependent manner. This suggests the existence of an M. tuberculosis-specific factor(s) for Tat export of a proven virulence protein. It also emphasizes the importance of domains beyond the Tat signal sequence and bacterium-specific factors in determining if a given protein is Tat exported.
Collapse
|
36
|
Abstract
The Tat (twin-arginine transport) pathway is a protein-targeting system dedicated to the transmembrane translocation of fully folded proteins. This system is highly prevalent in the cytoplasmic membranes of bacteria and archaea, and is also found in the thylakoid membranes of plant chloroplasts and possibly also in the inner membrane of plant mitochondria. Proteins are targeted to a membrane-embedded Tat translocase by specialized N-terminal twin-arginine signal peptides bearing an SRRXFLK amino acid motif. The genes encoding components of the Tat translocase were discovered approx. 10 years ago, and, since then, research in this area has expanded on a global scale. In this review, the key discoveries in this field are summarized, and recent studies of bacterial twin-arginine signal-peptide-binding proteins are discussed.
Collapse
Affiliation(s)
- F Sargent
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
37
|
Maillard J, Spronk CAEM, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F. Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci U S A 2007; 104:15641-6. [PMID: 17901208 PMCID: PMC2000414 DOI: 10.1073/pnas.0703967104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves a "Tat proofreading" process in which chaperones bind twin-arginine signal peptides, thus preventing premature export. The initial Tat signal-binding proteins described belonged to the TorD family, which are required for assembly of N- and S-oxide reductases. Here, we report that E. coli NapD is a Tat signal peptide-binding chaperone involved in biosynthesis of the Tat-dependent nitrate reductase NapA. NapD binds tightly and specifically to the NapA twin-arginine signal peptide and suppresses signal peptide translocation activity such that transport via the Tat pathway is retarded. High-resolution, heteronuclear, multidimensional NMR spectroscopy reveals the 3D solution structure of NapD. The chaperone adopts a ferredoxin-type fold, which is completely distinct from the TorD family. Thus, NapD represents a new family of twin-arginine signal-peptide-binding proteins.
Collapse
Affiliation(s)
- Julien Maillard
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Chris A. E. M. Spronk
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, and
| | - Grant Buchanan
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Verity Lyall
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David J. Richardson
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Geerten W. Vuister
- **Protein Biophysics Group, Institute for Molecules and Materials, Radboud University, 6525 ED, Nijmegen, The Netherlands; and
| | - Frank Sargent
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
38
|
Strauch EM, Georgiou G. A bacterial two-hybrid system based on the twin-arginine transporter pathway of E. coli. Protein Sci 2007; 16:1001-8. [PMID: 17456749 PMCID: PMC2206650 DOI: 10.1110/ps.062687207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have developed a bacterial two-hybrid system for the detection of interacting proteins that capitalizes on the folding quality control mechanism of the Twin Arginine Transporter (Tat) pathway. The Tat export pathway is responsible for the membrane translocation of folded proteins, including proteins consisting of more than one polypeptide, only one of which contains a signal peptide ("hitchhiker export"). Here, one protein (bait) is expressed as a fusion to a Tat signal peptide, whereas the second protein (prey) is fused to a protein reporter that can confer a phenotype only after export into the bacterial periplasmic space. Since the prey-reporter fusion lacks a signal peptide, it can only be exported as a complex with the bait-signal peptide fusion that is capable of targeting the Tat translocon. Using maltose-binding protein as a reporter, clones expressing interacting proteins can be grown on maltose minimal media or on MacConkey plates. In addition, we introduce the use of the cysteine disulfide oxidase DsbA as a reporter. Export of a signal peptide-prey:bait-DsbA complex into the periplasm allows complementation of dsbA(-) mutants and restores the formation of active alkaline phosphatase, which in turn can be detected by a chromogenic assay.
Collapse
Affiliation(s)
- Eva-Maria Strauch
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
39
|
Brüser T. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 2007; 76:35-45. [PMID: 17476499 DOI: 10.1007/s00253-007-0991-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.
Collapse
Affiliation(s)
- Thomas Brüser
- Institute of Biology, Division of Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|