1
|
Li S, Park J, Phan TM, Egelman EH, Bird JE, Shin JB. Tonotopic Specialization of MYO7A Isoforms in Auditory Hair Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646665. [PMID: 40236041 PMCID: PMC11996455 DOI: 10.1101/2025.04.01.646665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
1. Mutations in Myo7a cause Usher syndrome type 1B and non-syndromic deafness, but the precise function of MYO7A in sensory hair cells remains unclear. We identify and characterize a novel isoform, MYO7A-N, expressed in auditory hair cells alongside the canonical MYO7A-C. Isoform-specific knock-in mice reveal that inner hair cells primarily express MYO7A-C, while outer hair cells express both isoforms in opposing tonotopic gradients. Both localize to the upper tip-link insertion site, consistent with a role in the tip link for mechanotransduction. Loss of MYO7A-N leads to outer hair cell degeneration and progressive hearing loss. Cryo-EM structures reveal isoform-specific differences at actomyosin interfaces, correlating with distinct ATPase activities. These findings reveal an unexpected layer of molecular diversity within the mechanotransduction machinery. We propose that MYO7A isoform specialization enables fine-tuning of tip-link tension, thus hearing sensitivity, and contributes to the frequency-resolving power of the cochlea.
Collapse
|
2
|
Childers MC, Regnier M. Dynamics of the Pre-Powerstroke Myosin Lever Arm and the Effects of Omecamtiv Mecarbil. Int J Mol Sci 2024; 25:10425. [PMID: 39408754 PMCID: PMC11477208 DOI: 10.3390/ijms251910425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The binding of small molecules to sarcomeric myosin can elicit powerful effects on the chemomechanical cycle, making them effective therapeutics in the clinic and research tools at the benchtop. However, these myotropes can have complex effects that act on different phases of the crossbridge cycle and which depend on structural, dynamic, and environmental variables. While small molecule binding sites have been identified crystallographically and their effects on contraction studied extensively, small molecule-induced dynamic changes that link structure-function are less studied. Here, we use molecular dynamics simulations to explore how omecamtiv mecarbil (OM), a cardiac myosin-specific myotrope, alters the coordinated dynamics of the lever arm and the motor domain in the pre-powerstroke state. We show that the lever arm adopts a range of orientations and find that different lever arm orientations are accompanied by changes in the hydrogen bonding patterns near the converter. We find that the binding of OM to myosin reduces the conformational heterogeneity of the lever arm orientation and also adjusts the average lever arm orientation. Finally, we map out the distinct conformations and ligand-protein interactions adopted by OM. These results uncover some structural factors that govern the motor domain-tail orientations and the mechanisms by which OM primes the pre-powerstroke myosin heads.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
3
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Heeley DH, Belknap B, Atherton JL, Hasan SC, White HD. Effect of the N-terminal extension in myosin essential light chain A1 on the mechanism of actomyosin ATP hydrolysis. J Biol Chem 2024; 300:105521. [PMID: 38042484 PMCID: PMC10777021 DOI: 10.1016/j.jbc.2023.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Myosin essential light chains A1 and A2 are identical isoforms except for an extension of ∼40 amino acids at the N terminus of A1 that binds F-actin. The extension has no bearing on the burst hydrolysis rate (M-ATP → M-ADP-Pi) as determined by chemical quench flow (100 μM isoenzyme). Whereas actomyosin-S1A2 steady state MgATPase (low ionic strength, 20 °C) is hyperbolically dependent on concentration: Vmax 7.6 s-1, Kapp 6.4 μM (F-actin) and Vmax 10.1 s-1, Kapp 5.5 μM (native thin filaments, pCa 4), the relationship for myosin-S1A1 is bimodal; an initial rise at low concentration followed by a decline to one-third the Vmax of S1A2, indicative of more than one rate-limiting step and A1-enforced flux through the slower actomyosin-limited hydrolysis pathway. In double-mixing stopped-flow with an indicator, Ca(II)-mediated activation of Pi dissociation (regulatedAM-ADP-Pi → regulatedAM-ADP + Pi) is attenuated by A1 attachment to thin filaments (pCa 4). The maximum accelerated rates of Pi dissociation are: 81 s-1 (S1A1, Kapp 8.9 μM) versus 129 s-1 (S1A2, Kapp 58 μM). To investigate apomyosin-S1-mediated activation, thin filaments (EGTA) are premixed with a given isomyosin-S1 and double-mixing is repeated with myosin-S1A1 in the first mix. Similar maximum rates of Pi dissociation are observed, 44.5 s-1 (S1A1) and 47.1 s-1 (S1A2), which are lower than for Ca(II) activation. Overall, these results biochemically demonstrate how the longer light chain A1 can contribute to slower contraction and higher force and the shorter version A2 to faster contraction and lower force, consistent with their distribution in different types of striated muscle.
Collapse
Affiliation(s)
- David H Heeley
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada.
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jennifer L Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Stephanie C Hasan
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
5
|
Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Cryo-EM structure of the human cardiac myosin filament. Nature 2023; 623:853-862. [PMID: 37914935 PMCID: PMC10846670 DOI: 10.1038/s41586-023-06691-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Pumping of the heart is powered by filaments of the motor protein myosin that pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly1. Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years2. Here we solve the structure of the main (cMyBP-C-containing) region of the human cardiac filament using cryo-electron microscopy. The reconstruction reveals the architecture of titin and cMyBP-C and shows how myosin's motor domains (heads) form three different types of motif (providing functional flexibility), which interact with each other and with titin and cMyBP-C to dictate filament architecture and function. The packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps to generate the cardiac super-relaxed state3; how titin and cMyBP-C may contribute to length-dependent activation4; and how mutations in myosin and cMyBP-C might disturb interactions, causing disease5,6. The reconstruction resolves past uncertainties and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Collapse
Affiliation(s)
- Debabrata Dutta
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Vu Nguyen
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth S Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Cryo-EM structure of the human cardiac myosin filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536274. [PMID: 37090534 PMCID: PMC10120621 DOI: 10.1101/2023.04.11.536274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Pumping of the heart is powered by filaments of the motor protein myosin, which pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly 1 . Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years 2 . Here, we have solved the structure of the main (cMyBP-C-containing) region of the human cardiac filament to 6 Å resolution by cryo-EM. The reconstruction reveals the architecture of titin and cMyBP-C for the first time, and shows how myosin's motor domains (heads) form 3 different types of motif (providing functional flexibility), which interact with each other and with specific domains of titin and cMyBP-C to dictate filament architecture and regulate function. A novel packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps generate the cardiac super-relaxed state 3 , how titin and cMyBP-C may contribute to length-dependent activation 4 , and how mutations in myosin and cMyBP-C might disrupt interactions, causing disease 5, 6 . A similar structure is likely in vertebrate skeletal myosin filaments. The reconstruction resolves past uncertainties, and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Collapse
|
7
|
Sonne A, Peverelli L, Hernandez-Lain A, Domínguez-González C, Andersen JL, Milone M, Beggs AH, Ochala J. Myosin post-translational modifications and function in the presence of myopathy-linked truncating MYH2 mutations. Am J Physiol Cell Physiol 2023; 324:C769-C776. [PMID: 36745529 DOI: 10.1152/ajpcell.00002.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congenital myopathies are a vast group of genetic muscle diseases. Among the causes are mutations in the MYH2 gene resulting in truncated type IIa myosin heavy chains (MyHCs). The precise cellular and molecular mechanisms by which these mutations induce skeletal muscle symptoms remain obscure. Hence, in the present study, we aimed to explore whether such genetic defects would alter the presence as well as the post-translational modifications of MyHCs and the functionality of myosin molecules. For this, we dissected muscle fibers from four myopathic patients with MYH2 truncating mutations and from five human healthy controls. We then assessed 1) MyHCs presence/post-translational modifications using LC/MS; 2) relaxed myosin conformation and concomitant ATP consumption with a loaded Mant-ATP chase setup; 3) myosin activation with an unloaded in vitro motility assay; and 4) cellular force production with a myofiber mechanical setup. Interestingly, the type IIa MyHC with one additional acetylated lysine (Lys35-Ac) was present in the patients. This was accompanied by 1) a higher ATP demand of myosin heads in the disordered-relaxed conformation; 2) faster actomyosin kinetics; and 3) reduced muscle fiber force. Overall, our findings indicate that MYH2 truncating mutations impact myosin presence/functionality in human adult mature myofibers by disrupting the ATPase activity and actomyosin complex. These are likely important molecular pathological disturbances leading to the myopathic phenotype in patients.
Collapse
Affiliation(s)
- Alexander Sonne
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lorenzo Peverelli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione, IRCCS Ca' Granda Ospedale Maggiore, Policlinico, Milan, Italy
| | - Aurelio Hernandez-Lain
- Neuropathology Unit, Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain.,imas12 Research Institute, Rare Diseases Network Biomedical Research Center (CIBERER), 12 de Octubre University Hospital, Madrid, Spain
| | - Cristina Domínguez-González
- imas12 Research Institute, Rare Diseases Network Biomedical Research Center (CIBERER), 12 de Octubre University Hospital, Madrid, Spain.,Neuromuscular Unit, Department of Neurology, 12 de Octubre University Hospital, Madrid, Spain
| | - Jesper L Andersen
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, University Copenhagen Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Trieu TA, Nguyen PA, Le MN, Chu HN. Myosin-II proteins are involved in the growth, morphogenesis, and virulence of the human pathogenic fungus Mucor circinelloides. Front Cell Infect Microbiol 2022; 12:1031463. [PMID: 36590583 PMCID: PMC9800795 DOI: 10.3389/fcimb.2022.1031463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Mucormycosis is an emerging lethal invasive fungal infection. The infection caused by fungi belonging to the order Mucorales has been reported recently as one of the most common fungal infections among COVID-19 patients. The lack of understanding of pathogens, particularly at the molecular level, is one of the reasons for the difficulties in the management of the infection. Myosin is a diverse superfamily of actin-based motor proteins that have various cellular roles. Four families of myosin motors have been found in filamentous fungi, including myosin I, II, V, and fungus-specific chitin synthase with myosin motor domains. Our previous study on Mucor circinelloides, a common pathogen of mucormycosis, showed that the Myo5 protein (ID 51513) belonging to the myosin type V family had a critical impact on the growth and virulence of this fungus. In this study, to investigate the roles of myosin II proteins in M. circinelloides, silencing phenotypes and null mutants corresponding to myosin II encoding genes, designated mcmyo2A (ID 149958) and mcmyo2B (ID 136314), respectively, were generated. Those mutant strains featured a significantly reduced growth rate and impaired sporulation in comparison with the wild-type strain. Notably, the disruption of mcmyo2A led to an almost complete lack of sporulation. Both mutant strains displayed abnormally short, septate, and inflated hyphae with the presence of yeast-like cells and an unusual accumulation of pigment-filled vesicles. In vivo virulence assays of myosin-II mutant strains performed in the invertebrate model Galleria mellonella indicated that the mcmyo2A-knockout strain was avirulent, while the pathogenesis of the mcmyo2B null mutant was unaltered despite the low growth rate and impaired sporulation. The findings provide suggestions for critical contributions of the myosin II proteins to the polarity growth, septation, morphology, pigment transportation, and pathogenesis of M. circinelloides. The findings also implicate the myosin family as a potential target for future therapy to treat mucormycosis.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam,*Correspondence: Trung Anh Trieu,
| | - Phuong Anh Nguyen
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Mai Ngoc Le
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Huy Nhat Chu
- Environmental Bioremediation Laboratory, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
9
|
Osten J, Mohebbi M, Uta P, Matinmehr F, Wang T, Kraft T, Amrute-Nayak M, Scholz T. Myosin essential light chain 1sa decelerates actin and thin filament gliding on β-myosin molecules. J Gen Physiol 2022; 154:213440. [PMID: 36053243 PMCID: PMC9441736 DOI: 10.1085/jgp.202213149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
The β-myosin heavy chain expressed in ventricular myocardium and the myosin heavy chain (MyHC) in slow-twitch skeletal Musculus soleus (M. soleus) type-I fibers are both encoded by MYH7. Thus, these myosin molecules are deemed equivalent. However, some reports suggested variations in the light chain composition between M. soleus and ventricular myosin, which could influence functional parameters, such as maximum velocity of shortening. To test for functional differences of the actin gliding velocity on immobilized myosin molecules, we made use of in vitro motility assays. We found that ventricular myosin moved actin filaments with ∼0.9 µm/s significantly faster than M. soleus myosin (0.3 µm/s). Filaments prepared from isolated actin are not the native interaction partner of myosin and are believed to slow down movement. Yet, using native thin filaments purified from M. soleus or ventricular tissue, the gliding velocity of M. soleus and ventricular myosin remained significantly different. When comparing the light chain composition of ventricular and M. soleus β-myosin, a difference became evident. M. soleus myosin contains not only the "ventricular" essential light chain (ELC) MLC1sb/v, but also an additional longer and more positively charged MLC1sa. Moreover, we revealed that on a single muscle fiber level, a higher relative content of MLC1sa was associated with significantly slower actin gliding. We conclude that the ELC MLC1sa decelerates gliding velocity presumably by a decreased dissociation rate from actin associated with a higher actin affinity compared to MLC1sb/v. Such ELC/actin interactions might also be relevant in vivo as differences between M. soleus and ventricular myosin persisted when native thin filaments were used.
Collapse
Affiliation(s)
- Jennifer Osten
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Maral Mohebbi
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Petra Uta
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Faramarz Matinmehr
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Tianbang Wang
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Molecular and Cellular Physiology, Hannover Medical School, Hannover, Germany,Correspondence to Tim Scholz:
| |
Collapse
|
10
|
Wang T, Spahiu E, Osten J, Behrens F, Grünhagen F, Scholz T, Kraft T, Nayak A, Amrute-Nayak M. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform. J Biol Chem 2022; 298:102070. [PMID: 35623390 PMCID: PMC9243179 DOI: 10.1016/j.jbc.2022.102070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (β-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular β-cardiac myosin (βM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate βM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in βM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for βM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between βM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jennifer Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Florentine Behrens
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Fabius Grünhagen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB, Janssen PML, Regnier M, Biesiadecki BJ, Pinto JR, Parvatiyar MS. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. eLife 2022; 11:74919. [PMID: 35502901 PMCID: PMC9122498 DOI: 10.7554/elife.74919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on β-myosin heavy chain (β-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface - known for protein-protein interactions - but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1's structure and dynamics - known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that β-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between β-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Matthew C Childers
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Amanda L Wacker
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| | - Michelle Rodriquez Garcia
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Rakesh Singh
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Bryan A Whitson
- Department of Surgery, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - P Bryant Chase
- Department of Biological Science, The Florida State UniversityTallahasseeUnited States
| | - Paul ML Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Michael Regnier
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| |
Collapse
|
12
|
Kawai M, Jin JP. Mechanisms of Frank-Starling law of the heart and stretch activation in striated muscles may have a common molecular origin. J Muscle Res Cell Motil 2021; 42:355-366. [PMID: 33575955 PMCID: PMC10905364 DOI: 10.1007/s10974-020-09595-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/24/2020] [Indexed: 01/24/2023]
Abstract
Vertebrate cardiac muscle generates progressively larger systolic force when the end diastolic chamber volume is increased, a property called the "Frank-Starling Law", or "length dependent activation (LDA)". In this mechanism a larger force develops when the sarcomere length (SL) increased, and the overlap between thick and thin filament decreases, indicating increased production of force per unit length of the overlap. To account for this phenomenon at the molecular level, we examined several hypotheses: as the muscle length is increased, (1) lattice spacing decreases, (2) Ca2+ sensitivity increases, (3) titin mediated rearrangement of myosin heads to facilitate actomyosin interaction, (4) increased SL activates cross-bridges (CBs) in the super relaxed state, (5) increased series stiffness at longer SL promotes larger elementary force/CB to account for LDA, and (6) stretch activation (SA) observed in insect muscles and LDA in vertebrate muscles may have similar mechanisms. SA is also known as delayed tension or oscillatory work, and universally observed among insect flight muscles, as well as in vertebrate skeletal and cardiac muscles. The sarcomere stiffness observed in relaxed muscles may significantly contributes to the mechanisms of LDA. In vertebrate striated muscles, the sarcomere stiffness is mainly caused by titin, a single filamentary protein spanning from Z-line to M-line and tightly associated with the myosin thick filament. In insect flight muscles, kettin connects Z-line and the thick filament to stabilize the sarcomere structure. In vertebrate cardiac muscles, titin plays a similar role, and may account for LDA and may constitute a molecular mechanism of Frank-Starling response.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, 1-324 BSB, 51 Newton Rd, Iowa City, IA, 52242, USA.
| | - Jian-Ping Jin
- Departmewnt of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
13
|
Goodman CA, Davey JR, Hagg A, Parker BL, Gregorevic P. Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics 2021; 20:100050. [PMID: 33516941 PMCID: PMC8042406 DOI: 10.1016/j.mcpro.2021.100050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2β, is downregulated in models of muscle growth and that overexpression ASB2β is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2β expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2β-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2β overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2β knockdown induces mild muscle hypertrophy. ASB2β-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2β also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2β and, therefore, potential ASB2β targets, Flag-tagged wild-type ASB2β, and a mutant ASB2β lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2β interactome. ASB2β was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2β target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, The University of Melbourne, St Albans, Victoria, Australia
| | - Jonathan R Davey
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Adam Hagg
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia.
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
14
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
15
|
Bloemink MJ, Hsu KH, Geeves MA, Bernstein SI. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. J Biol Chem 2020; 295:14522-14535. [PMID: 32817166 DOI: 10.1074/jbc.ra120.014684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Indexed: 02/01/2023] Open
Abstract
We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal β-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D ) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD ) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k +2 ) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3-encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.
Collapse
Affiliation(s)
- Marieke J Bloemink
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.,Biomolecular Research Group, School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
16
|
Sitbon YH, Kazmierczak K, Liang J, Yadav S, Veerasammy M, Kanashiro-Takeuchi RM, Szczesna-Cordary D. Ablation of the N terminus of cardiac essential light chain promotes the super-relaxed state of myosin and counteracts hypercontractility in hypertrophic cardiomyopathy mutant mice. FEBS J 2020; 287:3989-4004. [PMID: 32034976 DOI: 10.1111/febs.15243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
In this study, we focus on the molecular mechanisms associated with the A57G (Ala57-to-Gly57) mutation in myosin essential light chains (ELCs), found to cause hypertrophic cardiomyopathy (HCM) in humans and in mice. Specifically, we studied the effects of A57G on the super-relaxed (SRX) state of myosin that may contribute to the hypercontractile cross-bridge behavior and ultimately lead to pathological cardiac remodeling in transgenic Tg-A57G mice. The disease model was compared to Tg-WT mice, expressing the wild-type human ventricular ELC, and analyzed against Tg-Δ43 mice, expressing the N-terminally truncated ELC, whose hearts hypertrophy with time but do not show any abnormalities in cardiac morphology or function. Our data suggest a new role for the N terminus of cardiac ELC (N-ELC) in modulation of myosin cross-bridge function in the healthy as well as in HCM myocardium. The lack of N-ELC in Tg-Δ43 mice was found to significantly stabilize the SRX state of myosin and increase the number of myosin heads occupying a low-energy state. In agreement, Δ43 hearts showed significantly decreased ATP utilization and low actin-activated myosin ATPase compared with A57G and WT hearts. The hypercontractile activity of A57G-ELC cross-bridges was manifested by the inhibition of the SRX state, increased number of myosin heads available for interaction with actin, and higher ATPase activity. Fiber mechanics studies, echocardiography examination, and assessment of fibrosis confirmed the development of two distinct forms of cardiac remodeling in these two ELC mouse models, with pathological cardiac hypertrophy in Tg-A57G, and near physiologic cardiac growth in Tg-Δ43 animals.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | | | | | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
17
|
Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. J Muscle Res Cell Motil 2019; 40:99-110. [PMID: 31292801 PMCID: PMC6726838 DOI: 10.1007/s10974-019-09536-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023]
Abstract
Both insect flight muscle and cardiac muscle contract rhythmically, but the way in which repetitive contractions are controlled is different in the two types of muscle. We have compared the flight muscle of the water bug, Lethocerus, with cardiac muscle. Both have relatively high resting elasticity and are activated by an increase in sarcomere length or a quick stretch. The larger response of flight muscle is attributed to the highly ordered lattice of thick and thin filaments and to an isoform of troponin C that has no exchangeable Ca2+-binding site. The Ca2+ sensitivity of cardiac muscle and flight muscle can be manipulated so that cardiac muscle responds to Ca2+ like flight muscle, and flight muscle responds like cardiac muscle, showing the malleability of regulation. The interactions of the subunits in flight muscle troponin are described; a model of the complex, using the structure of cardiac troponin as a template, shows an overall similarity of cardiac and flight muscle troponin complexes. The dual regulation by thick and thin filaments in skeletal and cardiac muscle is thought to operate in flight muscle. The structure of inhibited myosin heads folded back on the thick filament in relaxed Lethocerus fibres has not been seen in other species and may be an adaptation to the rapid contractions of flight muscle. A scheme for regulation by thick and thin filaments during oscillatory contraction is described. Cardiac and flight muscle have much in common, but the differing mechanical requirements mean that regulation by both thick and thin filaments is adapted to the particular muscle.
Collapse
|
18
|
Kim JH, Graber TG, Liu H, Asakura A, Thompson LV. Increasing myosin light chain 3f (MLC3f) protects against a decline in contractile velocity. PLoS One 2019; 14:e0214982. [PMID: 30964931 PMCID: PMC6456215 DOI: 10.1371/journal.pone.0214982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/26/2019] [Indexed: 12/02/2022] Open
Abstract
Disuse induces adaptations in skeletal muscle, which lead to muscle deterioration. Hindlimb-unloading (HU) is a well-established model to investigate cellular mechanisms responsible for disuse-induced skeletal muscle dysfunction. In myosin heavy chain (MHC) type IIB fibers HU induces a reduction in contraction speed (Vo) and a reduction in the relative myosin light chain 3f (MLC3f) protein content compared with myosin light chain 1f (MLC1f) protein. This study tested the hypothesis that increasing the relative MLC3f protein content via rAd-MLC3f vector delivery would attenuate the HU-induced decline in Vo in single MHC type IIB fibers. Fischer-344 rats were randomly assigned to one of three groups: control, HU for 7 days, and HU for 7 days plus rAd-MLC3f. The semimembranosus muscles were injected with rAd-MLC3f (3.75 x 1011–5 x 1011 ifu/ml) at four days after the initiation of HU. In single MHC type IIB fibers the relative MLC3f content decreased by 25% (12.00±0.60% to 9.06±0.66%) and Vo was reduced by 29% (3.22±0.14fl/s vs. 2.27±0.08fl/s) with HU compared to the control group. The rAd-MLC3f injection resulted in an increase in the relative MLC3f content (12.26±1.19%) and a concomitant increase in Vo (2.90±0.15fl/s) of MHC type IIB fibers. A positive relationship was observed between the percent of MLC3f content and Vo. Maximal isometric force and specific tension were reduced with HU by 49% (741.45±44.24μN to 379.09±23.77μN) and 33% (97.58±4.25kN/m2 to 65.05±2.71kN/m2), respectively compared to the control group. The rAd-MLC3f injection did not change the HU-induced decline in force or specific tension. Collectively, these results indicate that rAd-MLC3f injection rescues hindlimb unloading-induced decline in Vo in MHC type IIB single muscle fibers.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Education, Hanyang University, Seoul, South Korea
| | - Ted G. Graber
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Haiming Liu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Atsushi Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Amrute-Nayak M, Nayak A, Steffen W, Tsiavaliaris G, Scholz T, Brenner B. Transformation of the Nonprocessive Fast Skeletal Myosin II into a Processive Motor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804313. [PMID: 30657637 DOI: 10.1002/smll.201804313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Myosin family motors play diverse cellular roles. Precise insights into how the light chains contribute to the functional variabilities among myosin motors, however, remain unresolved. Here, it is demonstrated that the fast skeletal muscle myosin II isoform myosin heavy chain (MHC-IID) can be transformed into a processive motor, by simply replacing the native regulatory light chain MLC2f with the regulatory light chain variant MLC2v from the slow muscle myosin II. Single molecule kinetic analyses and optical trapping measurements of the hybrid motor reveal marked changes such as increased association rate of myosin toward adenosine triphosphate (ATP) and actin by more than twofold. The direct consequence of high adenosine diphosphate (ADP) affinity and increased actin rebinding is the altered overall actomyosin association time during the cross-bridge cycle. The data indicate that the MLC2v influences the duty ratio in the hybrid motor, suggestive of promoting interhead communication and enabling processive movement. This finding establishes that the regulatory light chain fine-tunes the motor's mechanical output that may have important implications under physiological conditions. Furthermore, the success of this approach paves the way to engineer motors from a known motor protein element to assemble highly specialized biohybrid machines for potential applications in nano-biomedicine and engineering.
Collapse
Affiliation(s)
- Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Georgios Tsiavaliaris
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| |
Collapse
|
20
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Logvinova DS, Levitsky DI. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. BIOCHEMISTRY (MOSCOW) 2018; 83:944-960. [DOI: 10.1134/s0006297918080060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Transient interaction between the N-terminal extension of the essential light chain-1 and motor domain of the myosin head during the ATPase cycle. Biochem Biophys Res Commun 2017; 495:163-167. [PMID: 29102634 DOI: 10.1016/j.bbrc.2017.10.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
The molecular mechanism of muscle contraction is based on the ATP-dependent cyclic interaction of myosin heads with actin filaments. Myosin head (myosin subfragment-1, S1) consists of two major domains, the motor domain responsible for ATP hydrolysis and actin binding, and the regulatory domain stabilized by light chains. Essential light chain-1 (LC1) is of particular interest since it comprises a unique N-terminal extension (NTE) which can bind to actin thus forming an additional actin-binding site on the myosin head and modulating its motor activity. However, it remains unknown what happens to the NTE of LC1 when the head binds ATP during ATPase cycle and dissociates from actin. We assume that in this state of the head, when it undergoes global ATP-induced conformational changes, the NTE of LC1 can interact with the motor domain. To test this hypothesis, we applied fluorescence resonance energy transfer (FRET) to measure the distances from various sites on the NTE of LC1 to S1 active site in the motor domain and changes in these distances upon formation of S1-ADP-BeFx complex (stable analog of S1∗-AТP state). For this, we produced recombinant LC1 cysteine mutants, which were first fluorescently labeled with 1,5-IAEDANS (donor) at different positions in their NTE and then introduced into S1; the ADP analog (TNP-ADP) bound to the S1 active site was used as an acceptor. The results show that formation of S1-ADP-BeFx complex significantly decreases the distances from Cys residues in the NTE of LC1 to TNP-ADP in the S1 active site; this effect was the most pronounced for Cys residues located near the LC1 N-terminus. These results support the concept of the ATP-induced transient interaction of the LC1 N-terminus with the S1 motor domain.
Collapse
|
23
|
Logvinova DS, Nikolaeva OP, Levitsky DI. Intermolecular Interactions of Myosin Subfragment 1 Induced by the N-Terminal Extension of Essential Light Chain 1. BIOCHEMISTRY (MOSCOW) 2017; 82:213-223. [PMID: 28320305 DOI: 10.1134/s0006297917020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We applied dynamic light scattering (DLS) to compare aggregation properties of two isoforms of myosin subfragment 1 (S1) containing different "essential" (or "alkali") light chains, A1 or A2, which differ by the presence of an N-terminal extension in A1. Upon mild heating (up to 40°C), which was not accompanied by thermal denaturation of the protein, we observed a significant growth in the hydrodynamic radius of the particles for S1(A1), from ~18 to ~600-700 nm, whereas the radius of S1(A2) remained unchanged and equal to ~18 nm. Similar difference between S1(A1) and S1(A2) was observed in the presence of ADP. In contrast, no differences were observed by DLS between these two S1 isoforms in their complexes S1-ADP-BeFx and S1-ADP-AlF4- which mimic the S1 ATPase intermediate states S1*-ATP and S1**-ADP-Pi. We propose that during the ATPase cycle the A1 N-terminal extension can interact with the motor domain of the same S1 molecule, and this can explain why S1(A1) and S1(A2) in S1-ADP-BeFx and S1-ADP-AlF4- complexes do not differ in their aggregation properties. In the absence of nucleotides (or in the presence of ADP), the A1 N-terminal extension can interact with actin, thus forming an additional actin-binding site on the myosin head. However, in the absence of actin, this extension seems to be unable to undergo intramolecular interaction, but it probably can interact with the motor domain of another S1 molecule. These intermolecular interactions of the A1 N-terminus can explain unusual aggregation properties of S1(A1).
Collapse
Affiliation(s)
- D S Logvinova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
24
|
17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function. Basic Res Cardiol 2016; 112:1. [DOI: 10.1007/s00395-016-0590-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
25
|
Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. SCIENCE ADVANCES 2016; 2:e1600058. [PMID: 27704041 PMCID: PMC5045269 DOI: 10.1126/sciadv.1600058] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
We describe a cryo-electron microscopy three-dimensional image reconstruction of relaxed myosin II-containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin's long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.
Collapse
Affiliation(s)
- Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Robert J. Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
- Corresponding author.
| |
Collapse
|
26
|
Wang Y, Ajtai K, Kazmierczak K, Szczesna-Cordary D, Burghardt TP. N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size. Biochemistry 2015; 55:186-98. [PMID: 26671638 DOI: 10.1021/acs.biochem.5b00817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ∼19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method.
Collapse
Affiliation(s)
| | | | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida 33136, United States
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida 33136, United States
| | | |
Collapse
|
27
|
Guhathakurta P, Prochniewicz E, Thomas DD. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain. Proc Natl Acad Sci U S A 2015; 112:4660-5. [PMID: 25825773 PMCID: PMC4403186 DOI: 10.1073/pnas.1420101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Li M, Ogilvie H, Ochala J, Artemenko K, Iwamoto H, Yagi N, Bergquist J, Larsson L. Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell 2015; 14:228-35. [PMID: 25645586 PMCID: PMC4364835 DOI: 10.1111/acel.12307] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2014] [Indexed: 12/03/2022] Open
Abstract
Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P < 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.
Collapse
Affiliation(s)
- Meishan Li
- Department of Physiology and Pharmacology; Karolinska Institutet; SE-171 77 Stockholm Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Hannah Ogilvie
- Department of Physiology and Pharmacology; Karolinska Institutet; SE-171 77 Stockholm Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences; Faculty of Life Sciences and Medicine; King's College London; London SE1 1UL UK
| | - Konstantin Artemenko
- Analytical Chemistry; Department of Chemistry - Biomedical Centre and SciLifeLab; Uppsala University; 75124 Uppsala Sweden
| | - Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute; SPring-8; Hyogo 679-5198 Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute; SPring-8; Hyogo 679-5198 Japan
| | - Jonas Bergquist
- Analytical Chemistry; Department of Chemistry - Biomedical Centre and SciLifeLab; Uppsala University; 75124 Uppsala Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology; Karolinska Institutet; SE-171 77 Stockholm Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology; Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
29
|
Iwamoto H, Trombitás K, Yagi N, Suggs JA, Bernstein SI. X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns. Front Physiol 2014; 5:416. [PMID: 25400584 PMCID: PMC4212879 DOI: 10.3389/fphys.2014.00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc (10) -Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Károly Trombitás
- Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University Pullman, WA, USA
| | - Naoto Yagi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| |
Collapse
|
30
|
Lossie J, Köhncke C, Mahmoodzadeh S, Steffen W, Canepari M, Maffei M, Taube M, Larchevêque O, Baumert P, Haase H, Bottinelli R, Regitz-Zagrosek V, Morano I. Molecular mechanism regulating myosin and cardiac functions by ELC. Biochem Biophys Res Commun 2014; 450:464-9. [PMID: 24911555 DOI: 10.1016/j.bbrc.2014.05.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Abstract
The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. Therefore, we generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67 pN/nm and 2.3 μm/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25 pN/nm and 1.7 μm/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5 μm/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0 mmHg) were significantly higher than hearts from TgM(E56G) (66.2 mmHg) or C57/BL6 (59.3±3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1>hVLC-1(E56G)≈mVLC-1. They also suggest a molecular pathomechanism of hypertrophic cardiomyopathy caused by hVLC-1 mutations.
Collapse
Affiliation(s)
- Janine Lossie
- University Medicine Berlin Charité, Experimental and Clinical Research Center (ECRC), Germany
| | - Clemens Köhncke
- University Medicine Berlin Charité, Experimental and Clinical Research Center (ECRC), Germany
| | - Shokoufeh Mahmoodzadeh
- University Medicine Berlin Charité, Institute of Gender in Medicine, Germany; Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Walter Steffen
- Medizinische Hochschule Hannover, Institut fuer Molekular- und Zellphysiologie, Germany
| | - Monica Canepari
- Department of Molecular Medicine and Sport Medicine Research Center, University of Pavia, Italy
| | - Manuela Maffei
- Department of Molecular Medicine and Sport Medicine Research Center, University of Pavia, Italy
| | - Martin Taube
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Philipp Baumert
- Johann Wolfgang Goethe-Universitaet, Institut für Sportwissenschaften, Frankfurt/Main, Germany
| | - Hannelore Haase
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Roberto Bottinelli
- Department of Molecular Medicine and Sport Medicine Research Center, University of Pavia, Italy; Fondazione Salvatore Maugeri, Scientific Institute of Pavia, Pavia, Italy
| | | | - Ingo Morano
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; University Medicine Berlin Charité, Germany.
| |
Collapse
|
31
|
Distinct interactions between actin and essential myosin light chain isoforms. Biochem Biophys Res Commun 2014; 449:284-8. [PMID: 24857983 DOI: 10.1016/j.bbrc.2014.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022]
Abstract
Binding of the utmost N-terminus of essential myosin light chains (ELC) to actin slows down myosin motor function. In this study, we investigated the binding constants of two different human cardiac ELC isoforms with actin. We employed circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy to determine structural properties and protein-protein interaction of recombinant human atrial and ventricular ELC (hALC-1 and hVLC-1, respectively) with α-actin as well as α-actin with alanin-mutated ELC binding site (α-actin(ala3)) as control. CD spectroscopy showed similar secondary structure of both hALC-1 and hVLC-1 with high degree of α-helicity. SPR spectroscopy revealed that the affinity of hALC-1 to α-actin (KD=575 nM) was significantly (p<0.01) lower compared with the affinity of hVLC-1 to α-actin (KD=186 nM). The reduced affinity of hALC-1 to α-actin was mainly due to a significantly (p<0.01) lower association rate (kon: 1,018 M(-1)s(-1)) compared with kon of the hVLC-1/α-actin complex interaction (2,908 M(-1)s(-1)). Hence, differential expression of ELC isoforms could modulate muscle contractile activity via distinct α-actin interactions.
Collapse
|
32
|
Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Biophys J 2014; 105:1624-34. [PMID: 24094403 DOI: 10.1016/j.bpj.2013.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.
Collapse
|
33
|
Wang Q, Newhard CS, Ramanath S, Sheppard D, Swank DM. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight. ACTA ACUST UNITED AC 2013; 217:290-8. [PMID: 24115062 DOI: 10.1242/jeb.091769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
34
|
Taft MH, Behrmann E, Munske-Weidemann LC, Thiel C, Raunser S, Manstein DJ. Functional characterization of human myosin-18A and its interaction with F-actin and GOLPH3. J Biol Chem 2013; 288:30029-30041. [PMID: 23990465 DOI: 10.1074/jbc.m113.497180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Manuel H Taft
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and.
| | - Elmar Behrmann
- the Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Lena-Christin Munske-Weidemann
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| | - Claudia Thiel
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| | - Stefan Raunser
- the Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Dietmar J Manstein
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| |
Collapse
|
35
|
Prochniewicz E, Guhathakurta P, Thomas DD. The structural dynamics of actin during active interaction with myosin depends on the isoform of the essential light chain. Biochemistry 2013; 52:1622-30. [PMID: 23339370 DOI: 10.1021/bi3014467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have used time-resolved phosphorescence anisotropy to investigate the effects of essential light chain (ELC) isoforms (A1 and A2) on the interaction of skeletal muscle myosin with actin, to relate structural dynamics to previously reported functional effects. Actin was labeled with a phosphorescent probe at C374, and the myosin head (S1) was separated into isoenzymes S1A1 and S1A2 by ion-exchange chromatography. As previously reported, S1A1 exhibited substantially lower ATPase activity at saturating actin concentrations but substantially higher apparent actin affinity, resulting in a higher catalytic efficiency. In the absence of ATP, each isoenzyme increased actin's final anisotropy cooperatively and to a similar extent, indicating a similar restriction of the amplitude of intrafilament rotational motions in the strong-binding (S) state of actomyosin. In contrast, in the presence of a saturating level of ATP, S1A1 increased actin anisotropy much more than S1A2 and with greater cooperativity, indicating that S1A1 was more effective in restricting actin dynamics during the active interaction of actin and myosin. We conclude that during the active interaction of actin and ATP with myosin, S1A1 is more effective at stabilizing the S state (probably the force-generating state) of actomyosin, while S1A2 tends to stabilize the weak-binding (non-force-generating) W state. When a mixture of isoenzymes is present, S1A1 is dominant in its effects on actin dynamics. We conclude that ELC of skeletal muscle myosin modulates strong-to-weak structural transitions during the actomyosin ATPase cycle in an isoform-dependent manner, with significant implications for the contractile function of actomyosin.
Collapse
Affiliation(s)
- Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
36
|
Characterizations of myosin essential light chain's N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations. J Muscle Res Cell Motil 2013; 34:93-105. [PMID: 23397074 DOI: 10.1007/s10974-013-9337-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Cross-bridge kinetics were studied at 20 °C in cardiac muscle strips from transgenic (Tg) mice expressing N-terminal 43 amino acid truncation mutation (Δ43) of myosin essential light chain (ELC), and the results were compared to those from Tg-wild type (WT) mice. Sinusoidal length changes were applied to activated skinned papillary muscle strips to induce tension transients, from which two exponential processes were deduced to characterize the cross-bridge kinetics. Their two rate constants were studied as functions of ATP, phosphate (Pi), ADP, and Ca(2+) concentrations to characterize elementary steps of the cross-bridge cycle consisting of six states. Our results demonstrate for the first time that the cross-bridge kinetics of Δ43 are accelerated owing to an acceleration of the rate constant k 2 of the cross-bridge detachment step, and that the number of strongly attached cross-bridges are decreased because of a reduction of the equilibrium constant K 4 of the force generation step. The isometric tension and stiffness of Δ43 are diminished compared to WT, but the force per cross-bridge is not changed. Stiffness measurement during rigor induction demonstrates a reduction in the stiffness in Δ43, indicating that the N-terminal extension of ELC forms an extra linkage between the myosin cross-bridge and actin. The tension-pCa study demonstrates that there is no Ca(2+) sensitivity change with Δ43, but the cooperativity is diminished. These results demonstrate the importance of the N-terminal extension of ELC in maintaining the myosin motor function during force generation and optimal cardiac performance.
Collapse
|
37
|
The long C-terminal extension of insect flight muscle-specific troponin-I isoform is not required for stretch activation. Biochem Biophys Res Commun 2013; 431:47-51. [PMID: 23291173 DOI: 10.1016/j.bbrc.2012.12.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/25/2012] [Indexed: 11/21/2022]
Abstract
Stretch-induced enhancement of active force (stretch activation, SA) is observed in striated muscles in general, and most conspicuously in insect flight muscle (IFM). It remains unclear whether a common mechanism underlies the SA of all muscle types, or the SA of IFM relies on its highly specialized features. Recent studies suggest that IFM-specific isoforms of thin filament regulatory proteins (troponin and tropomyosin) are implicated in SA. Among others, IFM-specific troponin-I (troponin-H or TnH), with an unusually long Pro-Ala-rich extension at the C-terminus, has been speculated to transmit the mechanical signal of stretch to the troponin complex. To verify this hypothesis, it was removed by a specific endoproteinase in bumblebee IFM, expecting that it would eliminate SA while leaving intact the capacity for Ca(2+)-activated isometric force. Electrophoretic data showed that the extension was almost completely (97%) removed from IFM fibers after treatment. Unexpectedly, SA force was still conspicuous, and its rate of rise was not affected. Therefore, the results preclude the possibility that the extension is a main part of the mechanism of SA. This leaves open the possibility that SAs of IFM and vertebrate striated muscles, which lack the extension, operate under common basic mechanisms.
Collapse
|
38
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
39
|
Pfuhl M, Gautel M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil 2012; 33:83-94. [PMID: 22527637 DOI: 10.1007/s10974-012-9291-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
The thick filament protein myosin-binding protein-C shows a highly modular architecture, with the C-terminal region responsible for tethering to the myosin and titin backbone of the thick filament. The N-terminal region shows the most significant differences between cardiac and skeletal muscle isogenes: an entire Ig-domain (C0) is added, together with highly regulated phosphorylation sites between Ig domains C1 and C2. These structural and functional differences at the N-terminus reflect important functions in cardiac muscle regulation in health and disease. Alternative interactions of this part of MyBP-C with the head-tail (S1-S2) junction of myosin or to actin filaments have been proposed, but with conflicting experimental evidence. The regulation of myosin or actin interaction by phosphorylation of the cardiac MyBP-C N-terminus may play an additional role in length-dependent contraction regulation. We discuss here the evidence for these proposed interactions, considering the required properties of MyBP-C, the way in which they may be regulated in muscle contraction and the way they might be related to heart disease. We also attempt to shed some light on experimental pitfalls and future strategies.
Collapse
Affiliation(s)
- Mark Pfuhl
- Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK.
| | | |
Collapse
|
40
|
Kim JH, Torgerud WS, Mosser KHH, Hirai H, Watanabe S, Asakura A, Thompson LV. Myosin light chain 3f attenuates age-induced decline in contractile velocity in MHC type II single muscle fibers. Aging Cell 2012; 11:203-12. [PMID: 22103752 DOI: 10.1111/j.1474-9726.2011.00774.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass and impaired contractility (e.g., decline in force, velocity, and power). Although the slowing of contraction speed in aging muscle is well described, the underlying molecular mechanisms responsible for the decrement in speed are unknown. Myosin heavy chain (MHC) isoforms are the primary molecules determining contractile velocity; however, the contraction speed of single fibers within a given MHC isoform type is variable. Recent evidence proposes that the decline in shortening velocity (Vo) with aging is associated with a decrease in the relative content of essential myosin light chain 3f (MLC(3f) ) isoform. In the current study, we first evaluated the relative content of MLC(3f) isoform and Vo in adult and old rats. We then used recombinant adenovirus (rAd) gene transfer technology to increase MLC(3f) protein content in the MHC type II semimembranosus muscle (SM). We hypothesized that (i) aging would decrease the relative MLC(3f) content and Vo in type II fibers, and (ii) increasing the MLC(3f) content would restore the age-induced decline in Vo. We found that there was an age-related decrement in relative MLC(3f) content and Vo in MHC type II fibers. Increasing MLC(3f) content, as indicated by greater % MLC(3f) and MLC(3f) /MLC(2f) ratio, provided significant protection against age-induced decline in Vo without influencing fiber diameter, force generation, MHC isoform distribution, or causing cellular damage. To the best of our knowledge, these are the first data to demonstrate positive effects of MLC(3f) against slowing of contractile function in aged skeletal muscle.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Behrmann E, Tao G, Stokes DL, Egelman EH, Raunser S, Penczek PA. Real-space processing of helical filaments in SPARX. J Struct Biol 2012; 177:302-13. [PMID: 22248449 DOI: 10.1016/j.jsb.2011.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022]
Abstract
We present a major revision of the iterative helical real-space refinement (IHRSR) procedure and its implementation in the SPARX single particle image processing environment. We built on over a decade of experience with IHRSR helical structure determination and we took advantage of the flexible SPARX infrastructure to arrive at an implementation that offers ease of use, flexibility in designing helical structure determination strategy, and high computational efficiency. We introduced the 3D projection matching code which now is able to work with non-cubic volumes, the geometry better suited for long helical filaments, we enhanced procedures for establishing helical symmetry parameters, and we parallelized the code using distributed memory paradigm. Additional features include a graphical user interface that facilitates entering and editing of parameters controlling the structure determination strategy of the program. In addition, we present a novel approach to detect and evaluate structural heterogeneity due to conformer mixtures that takes advantage of helical structure redundancy.
Collapse
Affiliation(s)
- Elmar Behrmann
- Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Muthu P, Wang L, Yuan CC, Kazmierczak K, Huang W, Hernandez OM, Kawai M, Irving TC, Szczesna-Cordary D. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J 2011; 25:4394-405. [PMID: 21885653 DOI: 10.1096/fj.11-191973] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Markov DI, Zubov EO, Nikolaeva OP, Kurganov BI, Levitsky DI. Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains. Int J Mol Sci 2010; 11:4194-226. [PMID: 21151434 PMCID: PMC3000078 DOI: 10.3390/ijms11114194] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/08/2010] [Accepted: 10/22/2010] [Indexed: 11/16/2022] Open
Abstract
We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS) to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl). Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain.
Collapse
Affiliation(s)
- Denis I. Markov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prosp. 33, 119071, Moscow, Russia; E-Mails: (D.I.M.); (E.O.Z.); (B.I.K.)
| | - Eugene O. Zubov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prosp. 33, 119071, Moscow, Russia; E-Mails: (D.I.M.); (E.O.Z.); (B.I.K.)
| | - Olga P. Nikolaeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia; E-Mail: (O.P.N.)
| | - Boris I. Kurganov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prosp. 33, 119071, Moscow, Russia; E-Mails: (D.I.M.); (E.O.Z.); (B.I.K.)
| | - Dmitrii I. Levitsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prosp. 33, 119071, Moscow, Russia; E-Mails: (D.I.M.); (E.O.Z.); (B.I.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia; E-Mail: (O.P.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Fax: +7-495-954-2732
| |
Collapse
|
44
|
Effects of Myosin "essential" light chain A1 on the aggregation properties of the Myosin head. Acta Naturae 2010; 2:77-82. [PMID: 22649644 PMCID: PMC3347552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We compared the thermal aggregation properties of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different "essential" (or "alkali") light chains, A1 or A2. Temperature dependencies for the aggregation of these two S1 isoforms, as measured by the increase in turbidity, were compared with the temperature dependencies of their thermal denaturation obtained from differential scanning calorimetry (DSC) experiments. At relatively high ionic strength (in the presence of 100 mM KCl) close to its physiological values in muscle fibers, we have found no appreciable difference between the two S1 isoforms in their thermally induced aggregation. Under these conditions, the aggregation of both S1 isoforms was independent of the protein concentration and resulted from their irreversible denaturation, which led to the cohesion of denatured S1 molecules. In contrast, a significant difference between these S1 isoforms was revealed in their aggregation measured at low ionic strength. Under these conditions, the aggregation of S1 containing a light chain A1 (but not A2) was strongly dependent on protein concentration, the increase of which (from 0.125 to 2.0 mg/ml) shifted the aggregation curve by ~10 degrees towards the lower temperatures. It has been concluded that the aggregation properties of this S1 isoform at low ionic strength is basically determined by intermolecular interactions of the N-terminal extension of the A1 light chain (which is absent in the A2 light chain) with other S1 molecules. These interactions seem to be independent of the S1 thermal denaturation, and they may take place even at low temperature.
Collapse
|
45
|
Burghardt TP, Neff KL, Wieben ED, Ajtai K. Myosin individualized: single nucleotide polymorphisms in energy transduction. BMC Genomics 2010; 11:172. [PMID: 20226094 PMCID: PMC2848645 DOI: 10.1186/1471-2164-11-172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/15/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC). Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs) affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. RESULTS An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. CONCLUSIONS Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these domains are engineered by evolution to be too-robust to be disturbed by otherwise intrusive sequence changes. Two functional sub-domains are SNP-free or relatively SNP-deficient but contain many disease implicated mutants. These sub-domains are apparently highly sensitive to any missense substitution suggesting they have failed to evolve a robust sequence paradigm for performing their function.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Kevin L Neff
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Katalin Ajtai
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
46
|
Heintzelman MB, Enriquez ME. Myosin diversity in the diatom Phaeodactylum tricornutum. Cytoskeleton (Hoboken) 2010; 67:142-51. [PMID: 20217677 DOI: 10.1002/cm.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This report describes the domain architecture of ten myosins cloned from the pennate diatom Phaeodactylum tricornutum. Several of the P. tricornutum myosins show similarity to myosins from the centric diatom Thalassiosira pseudonana as well as to one myosin from the oomycete Phytophthora ramorum. The P. tricornutum myosins, ranging in size from 126 kDa to over 250 kDa, all possess the canonical head, neck and tail domains common to most myosins, though variations in each of these domains is evident. Among the features distinguishing several of the diatom myosin head domains are N-terminal SH3-like domains, variations in or near the P-loop and Loop 1 regions close to the nucleotide binding pocket, and extended converter domains. Variations in the length of the neck domain or lever arm, defined by the light chain-binding IQ motifs, are apparent with the different diatom myosins predicted to contain from one to nine IQ motifs. Protein domains found within the P. tricornutum myosin tails include regions of coiled-coil structure, ankyrin repeats, CBS domain pairs, a PB1 domain, a kinase domain and a FYVE-finger motif. As many of these features have never before been characterized in myosins of any type, it is likely that these new diatom myosins will expand the repertoire of known myosin behaviors.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Program in Cell Biology and Biochemistry, Department of Biology, Bucknell University, Lewisburg, PA 17837, USA.
| | | |
Collapse
|
47
|
Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle. J Struct Biol 2009; 168:240-9. [PMID: 19635572 DOI: 10.1016/j.jsb.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/23/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022]
Abstract
X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2(Delta2-46)) or disruption of the phosphorylation sites by substituting alanines (Dmlc2(S66A, S67A)) decreased the equatorial intensity ratio (I(20)/I(10)), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2(S66A, S67A)), but not N-terminal extension truncation (Dmlc2(Delta2-46)), decreased the 14.5nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2(S66A, S67A)) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2(Delta2-46; S66A, S67A)), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a "tether" to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.
Collapse
|
48
|
|
49
|
Kazmierczak K, Xu Y, Jones M, Guzman G, Hernandez OM, Kerrick WGL, Szczesna-Cordary D. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction. J Mol Biol 2009; 387:706-25. [PMID: 19361417 DOI: 10.1016/j.jmb.2009.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Delta43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Delta43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Delta43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Delta43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Delta43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Govada L, Carpenter L, da Fonseca PCA, Helliwell JR, Rizkallah P, Flashman E, Chayen NE, Redwood C, Squire JM. Crystal structure of the C1 domain of cardiac myosin binding protein-C: implications for hypertrophic cardiomyopathy. J Mol Biol 2008; 378:387-97. [PMID: 18374358 DOI: 10.1016/j.jmb.2008.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/17/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
C-protein is a major component of skeletal and cardiac muscle thick filaments. Mutations in the gene encoding cardiac C-protein [cardiac myosin binding protein-C (cMyBP-C)] are one of the principal causes of hypertrophic cardiomyopathy. cMyBP-C is a string of globular domains including eight immunoglobulin-like and three fibronectin-like domains termed C0-C10. It binds to myosin and titin, and probably to actin, and may have both a structural and a regulatory role in muscle function. To help to understand the pathology of the known mutations, we have solved the structure of the immunoglobulin-like C1 domain of MyBP-C by X-ray crystallography to a resolution of 1.55 A. Mutations associated with hypertrophic cardiomyopathy are clustered at one end towards the C-terminus, close to the important C1C2 linker, where they alter the structural integrity of this region and its interactions.
Collapse
Affiliation(s)
- Lata Govada
- Biomolecular Medicine Department, SORA Division, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|