1
|
Pang J, Zhang L, Qi Q, Liu Z. Impact of a random TN5 mutation on endoglucanase secretion in ruminal cellulolytic Escherichia coli. Gene 2025; 933:148936. [PMID: 39260626 DOI: 10.1016/j.gene.2024.148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Most protein secretion systems are found in gram-negative bacteria, but the mechanism of endoglucanase (BcsZ) secretion in Escherichia coli (E. coli) remains unclear. METHODS In this study, we used JBZ-DH5α (which overexpresses BcsZ on the E. coli DH5α genome) as the initial strain. A mutant library was created by randomly inserting the TN5 transposon into the genome, and mutants with reduced transparent circles were identified on Congo red plates. The insertion sites of transposons in the genome were determined through whole-genome sequencing. RESULTS The results revealed that the genes rnc, lon, and suhB, which encode RNC-ribonuclease III (RNC), LON-protease (LON), and SuhB-inositol phosphatase (SuhB), respectively, were disrupted. BcsZ secretion decreased in E. coli DH5α when the lon, rnc, or suhB genes were deleted, but the overexpression of these genes restored their secretion levels. CONCLUSION These findings suggest that the lon, rnc, and suhB genes play a role in BcsZ secretion in E. coli, potentially enhancing our knowledge of BcsZ secretion and offering a strategy to increase protein secretion in E. coli as a cell factory.
Collapse
Affiliation(s)
- Jian Pang
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Long Zhang
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhanying Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China.
| |
Collapse
|
2
|
Trout M, Harcum SW, Groff RE. Sensitive real-time on-line estimator for oxygen transfer rates in fermenters. J Biotechnol 2022; 358:92-101. [PMID: 36116734 DOI: 10.1016/j.jbiotec.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Recombinant Escherichia coli grown in large-scale fermenters are used extensively to produce plasmids and biopharmaceuticals. One method commonly used to control culture growth is predefined glucose feeding, often an exponential feeding profile. Predefined feeding profiles cannot adjust automatically to metabolic state changes, such as the metabolic burden associated with recombinant protein expression or high-cell density associated stresses. As the culture oxygen consumption rates indicates a culture's metabolic state, there exist several methods to estimate the oxygen uptake rate (OUR). These common OUR methods have limited application since these approaches either disrupt the oxygen supply, rely on empirical relationships, or are unable to account for latency and filtering effects. In this study, an oxygen transfer rate (OTR) estimator was developed to aid OUR prediction. This non-disruptive OTR estimator uses the dissolved oxygen and the off-gas oxygen concentration, in parallel. This new OTR estimator captures small variations in OTR due to physical and chemical manipulations of the fermenter, such as in stir speed variation, glucose feeding rate change, and recombinant protein expression. Due its sensitivity, this non-disruptive real-time OTR estimator could be integrated with feed control algorithms to maintain the metabolic state of a culture to a desired setpoint.
Collapse
Affiliation(s)
- Marshall Trout
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC 29634, United States.
| | - Richard E Groff
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
3
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
4
|
Navarro S, Ventura S. Computational re-design of protein structures to improve solubility. Expert Opin Drug Discov 2019; 14:1077-1088. [DOI: 10.1080/17460441.2019.1637413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Restrepo-Pineda S, Bando-Campos CG, Valdez-Cruz NA, Trujillo-Roldán MA. Recombinant production of ESAT-6 antigen in thermoinducible Escherichia coli: the role of culture scale and temperature on metabolic response, expression of chaperones, and architecture of inclusion bodies. Cell Stress Chaperones 2019; 24:777-792. [PMID: 31165436 PMCID: PMC6629757 DOI: 10.1007/s12192-019-01006-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
The heat-inducible expression system has been widely used to produce recombinant proteins in Escherichia coli. However, the rise in temperature affects cell growth, activates the bacterial Heat-Shock Response (HSR), and promotes the formation of insoluble protein aggregates known as inclusion bodies (IBs). In this work, we evaluate the effect of the culture scale (shake flasks and bioreactors) and induction temperature (39 and 42 °C) on the kinetic behavior of thermoinducible recombinant E. coli ATCC 53606 producing rESAT-6 (6-kDa early-secretory antigenic target from Mycobacterium tuberculosis), compared with cultures grown at 30 °C (without induction). Also, the expression of the major E. coli chaperones (DnaK and GroEL) was analyzed. We found that almost twice maximum biomass and rESAT-6 production were obtained in bioreactors (~ 3.29 g/L of biomass and ~ 0.27 g/L of rESAT-6) than in shake flasks (~ 1.41 g/L of biomass and ~ 0.14 g/L of rESAT-6) when induction was carried out at 42 °C, but similar amounts of rESAT-6 were obtained from cultures induced at 39 °C (~ 0.14 g/L). In all thermo-induced conditions, rESAT-6 was trapped in IBs. Furthermore, DnaK was preferably expressed in the soluble fraction, while GroEL was present in IBs. Importantly, IBs formed at 39 °C, in both shake flasks and bioreactors, were more susceptible to degradation by proteinase-K, indicating a lower amyloid content compared to IBs formed at 42 °C. Our work presents evidence that the culture scale and the induction temperature modify the E. coli metabolic response, expression of chaperones, and structure of the IBs during rESAT-6 protein production in a thermoinducible system.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510 Ciudad de México, Mexico
| | - Carlos G. Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, 04510 Ciudad de México, CP Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, 04510 Ciudad de México, CP Mexico
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510 Ciudad de México, Mexico
| |
Collapse
|
6
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Slomka C, Späth GP, Lemke P, Skoupi M, Niemeyer CM, Syldatk C, Rudat J. Toward a cell-free hydantoinase process: screening for expression optimization and one-step purification as well as immobilization of hydantoinase and carbamoylase. AMB Express 2017; 7:122. [PMID: 28605882 PMCID: PMC5466576 DOI: 10.1186/s13568-017-0420-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
The hydantoinase process is applied for the industrial synthesis of optically pure amino acids via whole cell biocatalysis, providing a simple and well-established method to obtain the catalyst. Nevertheless, whole cell approaches also bear disadvantages like intracellular degradation reactions, transport limitations as well as low substrate solubility. In this work the hydantoinase and carbamoylase from Arthrobacter crystallopoietes DSM 20117 were investigated with respect to their applicability in a cell-free hydantoinase process. Both enzymes were heterologously expressed in Escherichia coli BL21DE3. Cultivation and induction of the hydantoinase under oxygen deficiency resulted in markedly higher specific activities and a further increase in expression was achieved by codon-optimization. Further expression conditions of the hydantoinase were tested using the microbioreactor system BioLector®, which showed a positive effect upon the addition of 3% ethanol to the cultivation medium. Additionally, the hydantoinase and carbamoylase were successfully purified by immobilized metal ion affinity using Ni Sepharose beads as well as by functionalized magnetic beads, while the latter method was clearly more effective with respect to recovery and purification factor. Immobilization of both enzymes via functionalized magnetic beads directly from the crude cell extract was successful and resulted in specific activities that turned out to be much higher than those of the purified free enzymes.
Collapse
|
8
|
Thermostable exoshells fold and stabilize recombinant proteins. Nat Commun 2017; 8:1442. [PMID: 29129910 PMCID: PMC5682286 DOI: 10.1038/s41467-017-01585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/04/2022] Open
Abstract
The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis. Improving recombinant protein expression and stabilization remains a significant challenge. Here, the authors engineer Archaeoglobus fulgidus ferritin as a thermostable exoshell to provide steric accommodation and charge complementation for recombinant proteins, which can improve yields by 100 fold.
Collapse
|
9
|
Rational identification of aggregation hotspots based on secondary structure and amino acid hydrophobicity. Sci Rep 2017; 7:9558. [PMID: 28842596 PMCID: PMC5573320 DOI: 10.1038/s41598-017-09749-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility. To date, however, the identification of these hotspots has proven difficult. In this study, using a combination of approaches involving directed evolution and primary sequence analysis, we found two rules to help inductively identify hotspots: the α-helix rule, which focuses on the hydrophobicity of amino acids in the α-helix structure, and the hydropathy contradiction rule, which focuses on the difference in hydrophobicity relative to the corresponding amino acid in the consensus protein. By properly applying these two rules, we succeeded in improving the probability that expressed proteins would be soluble. Our methods should facilitate research on various insoluble proteins that were previously difficult to study due to their low solubility.
Collapse
|
10
|
Kuczyńska-Wiśnik D, Moruno-Algara M, Stojowska-Swędrzyńska K, Laskowska E. The effect of protein acetylation on the formation and processing of inclusion bodies and endogenous protein aggregates in Escherichia coli cells. Microb Cell Fact 2016; 15:189. [PMID: 27832787 PMCID: PMC5105262 DOI: 10.1186/s12934-016-0590-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Background Acetylation of lysine residues is a reversible post-translational modification conserved from bacteria to humans. Several recent studies have revealed hundreds of lysine-acetylated proteins in various bacteria; however, the physiological role of these modifications remains largely unknown. Since lysine acetylation changes the size and charge of proteins and thereby may affect their conformation, we assumed that lysine acetylation can stimulate aggregation of proteins, especially for overproduced recombinant proteins that form inclusion bodies. Results To verify this assumption, we used Escherichia coli strains that overproduce aggregation-prone VP1GFP protein. We found that in ΔackA-pta cells, which display diminished protein acetylation, inclusion bodies were formed with a delay and processed faster than in the wild-type cells. Moreover, in ΔackA-pta cells, inclusion bodies exhibited significantly increased specific GFP fluorescence. In CobB deacetylase-deficient cells, in which protein acetylation was enhanced, the formation of inclusion bodies was increased and their processing was significantly inhibited. Similar results were obtained with regard to endogenous protein aggregates formed during the late stationary phase in ΔackA-pta and ΔcobB cells. Conclusions Our studies revealed that protein acetylation affected the aggregation of endogenous E. coli proteins and the yield, solubility, and biological activity of a model recombinant protein. In general, decreased lysine acetylation inhibited the formation of protein aggregates, whereas increased lysine acetylation stabilized protein aggregates. These findings should be considered during the designing of efficient strategies for the production of recombinant proteins in E. coli cells. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0590-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - María Moruno-Algara
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
11
|
Torrealba D, Seras-Franzoso J, Mamat U, Wilke K, Villaverde A, Roher N, Garcia-Fruitós E. Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms. PLoS One 2016; 11:e0164073. [PMID: 27716780 PMCID: PMC5055299 DOI: 10.1371/journal.pone.0164073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
The control of infectious diseases is a major current challenge in intensive aquaculture. Most commercial vaccines are based on live attenuated or inactivated pathogens that are usually combined with adjuvants, oil emulsions being as the most widely used for vaccination in aquaculture. Although effective, the use of these oil emulsions is plagued with important side effects. Thus, the development of alternative safer and cost-effective immunostimulants and adjuvants is highly desirable. Here we have explored the capacity of inclusion bodies produced in bacteria to immunostimulate and protect fish against bacterial infections. Bacterial inclusion bodies are highly stable, non-toxic protein-based biomaterials produced through fully scalable and low-cost bio-production processes. The present study shows that the composition and structured organization of inclusion body components (protein, lipopolysaccharide, peptidoglycan, DNA and RNA) make these protein biomaterials excellent immunomodulators able to generically protect fish against otherwise lethal bacterial challenges. The results obtained in this work provide evidence that their inherent nature makes bacterial inclusion bodies exceptionally attractive as immunostimulants and this opens the door to the future exploration of this biomaterial as an alternative adjuvant for vaccination purposes in veterinary.
Collapse
Affiliation(s)
- Débora Torrealba
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Uwe Mamat
- Division of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Kathleen Wilke
- Division of Structural Biochemistry, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail: (NR); (EGF)
| | - Elena Garcia-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- * E-mail: (NR); (EGF)
| |
Collapse
|
12
|
Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A. Functional inclusion bodies produced in the yeast Pichia pastoris. Microb Cell Fact 2016; 15:166. [PMID: 27716225 PMCID: PMC5045588 DOI: 10.1186/s12934-016-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. RESULTS To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. CONCLUSIONS Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Verena Puxbaum
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
13
|
Rueda F, Céspedes MV, Conchillo-Solé O, Sánchez-Chardi A, Seras-Franzoso J, Cubarsi R, Gallardo A, Pesarrodona M, Ferrer-Miralles N, Daura X, Vázquez E, García-Fruitós E, Mangues R, Unzueta U, Villaverde A. Bottom-Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7816-22. [PMID: 26509451 DOI: 10.1002/adma.201503676] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Indexed: 05/05/2023]
Abstract
The impact of cell factory quality control on material properties is a neglected but critical issue in the fabrication of protein biomaterials, which are unique in merging structure and function. The molecular chaperoning of protein conformational status is revealed here as a potent molecular instructor of the macroscopic properties of self-assembling, cell-targeted protein nanoparticles, including biodistribution upon in vivo administration.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers. Appl Microbiol Biotechnol 2015; 100:559-69. [DOI: 10.1007/s00253-015-7107-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
|
15
|
Villaverde A, Corchero JL, Seras-Franzoso J, Garcia-Fruitós E. Functional protein aggregates: just the tip of the iceberg. Nanomedicine (Lond) 2015; 10:2881-91. [PMID: 26370294 DOI: 10.2217/nnm.15.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An increasing number of both prokaryotic and eukaryotic cell types are being adapted as platforms for recombinant protein production. The overproduction of proteins in such expression systems leads to the formation of insoluble protein-based aggregates. Although these protein clusters have been poorly studied in most of the eukaryotic systems, aggregates formed in E. coli, named inclusion bodies (IBs), have been deeply characterized in the last decades. Contrary to the general belief, an important fraction of the protein embedded in IB is functional, showing promise in biocatalysis, regenerative medicine and cell therapy. Thus, the exploration of all these functional protein clusters would largely expand their potential in both pharma and biotech industry.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- CIBBIM-Nanomedicine, Hospital Universitari Vall d'Hebron & Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08035, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| |
Collapse
|
16
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Xu Z, García-Fruitós E. General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 2015; 1258:1-24. [PMID: 25447856 DOI: 10.1007/978-1-4939-2205-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Cano-Garrido O, Rueda FL, Sànchez-García L, Ruiz-Ávila L, Bosser R, Villaverde A, García-Fruitós E. Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact 2014; 13:167. [PMID: 25471301 PMCID: PMC4308903 DOI: 10.1186/s12934-014-0167-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/15/2014] [Indexed: 12/12/2022] Open
Abstract
Background Escherichia coli has been a main host for the production of recombinant proteins of biomedical interest, but conformational stress responses impose severe bottlenecks that impair the production of soluble, proteolytically stable versions of many protein species. In this context, emerging Generally Recognized As Safe (GRAS) bacterial hosts provide alternatives as cell factories for recombinant protein production, in which limitations associated to the use of Gram-negative microorganisms might result minimized. Among them, Lactic Acid Bacteria and specially Lactococcus lactis are Gram-positive GRAS organisms in which recombinant protein solubility is generically higher and downstream facilitated, when compared to E. coli. However, deep analyses of recombinant protein quality in this system are still required to completely evaluate its performance and potential for improvement. Results We have explored here the conformational quality (through specific fluorescence emission) and solubility of an aggregation-prone GFP variant (VP1GFP) produced in L. lactis. In this context, our results show that parameters such as production time, culture conditions and growth temperature have a dramatic impact not only on protein yield, but also on protein solubility and conformational quality, that are particularly favored under fermentative metabolism. Conclusions Metabolic regime and cultivation temperature greatly influence solubility and conformational quality of an aggregation-prone protein in L. lactis. Specifically, the present study proves that anaerobic growth is the optimal condition for recombinant protein production purposes. Besides, growth temperature plays an important role regulating both protein solubility and conformational quality. Additionally, our results also prove the great versatility for the manipulation of this bacterial system regarding the improvement of functionality, yield and quality of recombinant proteins in this species. These findings not only confirm L. lactis as an excellent producer of recombinant proteins but also reveal room for significant improvement by the exploitation of external protein quality modulators.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Fabian L Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Laura Sànchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Luis Ruiz-Ávila
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Ramon Bosser
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J, García-Fruitós E, Villaverde A. Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl Microbiol Biotechnol 2014; 98:9229-38. [PMID: 25129611 DOI: 10.1007/s00253-014-6008-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022]
Abstract
Escherichia coli is the workhorse for gene cloning and production of soluble recombinant proteins in both biotechnological and biomedical industries. The bacterium is also a good producer of several classes of protein-based self-assembling materials such as inclusion bodies (IBs). Apart from being a relatively pure source of protein for in vitro refolding, IBs are under exploration as functional, protein-releasing materials in regenerative medicine and protein replacement therapies. Endotoxin removal is a critical step for downstream applications of therapeutic proteins. The same holds true for IBs as they are often highly contaminated with cell-wall components of the host cells. Here, we have investigated the production of IBs in a recently developed endotoxin-free E. coli strain. The characterization of IBs revealed this mutant as a very useful cell factory for the production of functional endotoxin-free IBs that are suitable for the use at biological interfaces without inducing endotoxic responses in human immune cells.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
20
|
Hsu SY, Lin YS, Li SJ, Lee WC. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli. J Biosci Bioeng 2014; 118:242-8. [PMID: 24656305 DOI: 10.1016/j.jbiosc.2014.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
A co-expression system was established in Escherichia coli for enhancing the cellular expression of heat shock transcription factor, sigma 32 (σ(32)). A Shine-Dalgarno sequence and the rpoH gene of E. coli, which encodes σ(32), were cloned into a bacterial plasmid containing a gene fusion encoding a doubly tagged N-acetyl-d-neuraminic acid aldolase (GST-Neu5Ac aldolase-5R). After the IPTG induction, a substantially higher level of sigma 32 was observed up to 3 h in the co-expression cells, but an enhancement in the solubility of target protein was manifest only in the first hour. Nevertheless, the co-expression of sigma 32 led to higher level of Neu5Ac aldolase enzymatic activity in both the soluble and insoluble (inclusion body) fractions. The Neu5Ac aldolase activity of the supernatant from the lysate of cells co-expressing GST-Neu5Ac aldolase-5R and recombinant σ(32) was 3.4-fold higher at 3 h postinduction than that in cells overexpressing GST-Neu5Ac aldolase-5R in the absence of recombinantly expressed σ(32). The results of acrylamide quenching indicated that the conformational quality of the fusion protein was improved by the co-expression of recombinant σ(32). Thus, the increased level of intracellular σ(32) might have created favorable conditions for the proper folding of recombinant proteins through the cooperative effects of chaperones/heat shock proteins expressed by the E. coli host, which resulted in smaller inclusion bodies, improved conformational quality and a higher specific activity of the overexpressed GST-Neu5Ac aldolase-5R protein.
Collapse
Affiliation(s)
- Shao-Yen Hsu
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Yu-Sheng Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Shu-Jyuan Li
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan.
| |
Collapse
|
21
|
Saccardo P, Rodríguez-Carmona E, Villaverde A, Ferrer-Miralles N. Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus-like particles produced inEscherichia coli. Biotechnol Prog 2014; 30:744-8. [DOI: 10.1002/btpr.1879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/20/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Paolo Saccardo
- Inst. de Biotecnologia i de Biomedicina and Dept. de Genètica i de Microbiologia; Universitat Autònoma de Barcelona and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Bellaterra Barcelona 08193 Spain
| | - Escarlata Rodríguez-Carmona
- Inst. de Biotecnologia i de Biomedicina and Dept. de Genètica i de Microbiologia; Universitat Autònoma de Barcelona and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Bellaterra Barcelona 08193 Spain
| | - Antonio Villaverde
- Inst. de Biotecnologia i de Biomedicina and Dept. de Genètica i de Microbiologia; Universitat Autònoma de Barcelona and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Bellaterra Barcelona 08193 Spain
| | - Neus Ferrer-Miralles
- Inst. de Biotecnologia i de Biomedicina and Dept. de Genètica i de Microbiologia; Universitat Autònoma de Barcelona and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Bellaterra Barcelona 08193 Spain
| |
Collapse
|
22
|
Seras-Franzoso J, Peebo K, García-Fruitós E, Vázquez E, Rinas U, Villaverde A. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomater 2014; 10:1354-9. [PMID: 24361427 DOI: 10.1016/j.actbio.2013.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types.
Collapse
|
23
|
Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW. Dynamic transcriptional response of Escherichia coli to inclusion body formation. Biotechnol Bioeng 2014; 111:980-99. [PMID: 24338599 DOI: 10.1002/bit.25169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 01/27/2023]
Abstract
Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses.
Collapse
Affiliation(s)
- Faraz Baig
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, South Carolina, 29634
| | | | | | | | | | | |
Collapse
|
24
|
Guyot S, Pottier L, Hartmann A, Ragon M, Hauck Tiburski J, Molin P, Ferret E, Gervais P. Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming. Microbiologyopen 2013; 3:52-63. [PMID: 24357618 PMCID: PMC3937729 DOI: 10.1002/mbo3.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/27/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
This study aimed to demonstrate that adequate slow heating rate allows two strains of Escherichia coli rapid acclimation to higher temperature than upper growth and survival limits known to be strain-dependent. A laboratory (K12-TG1) and an environmental (DPD3084) strain of E. coli were subjected to rapid (few seconds) or slow warming (1°C 12 h(-1)) in order to (re)evaluate upper survival and growth limits. The slow warming was applied from the ancestral temperature 37°C to total cell death 46-54°C: about 30 generations were propagated. Upper survival and growth limits for rapid warming (46°C) were lower than for slow warming (46-54°C). The thermal limit of survival for slow warming was higher for DPD3084 (50-54°C). Further experiments conducted on DPD3084, showed that mechanisms involved in this type of thermotolerance were abolished by a following cooling step to 37°C, which allowed to imply reversible mechanisms as acclimation ones. Acquisition of acclimation mechanisms was related to physical properties of the plasma membrane but was not inhibited by unavoidable appearance of aggregated proteins. In conclusion, E.coli could be rapidly acclimated within few generations over thermal limits described in the literature. Such a study led us to propose that rapid acclimation may give supplementary time to the species to acquire a stable adaptation through a random mutation.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques, Equipe Procédés Microbiologiques et Biotechnologiques, AgroSup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Salazar MA, Fernando LP, Baig F, Harcum SW. The effects of protein solubility on the RNA Integrity Number (RIN) for recombinant Escherichia coli. Biochem Eng J 2013; 79:129-135. [PMID: 24151430 PMCID: PMC3799817 DOI: 10.1016/j.bej.2013.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High quality, intact messenger RNA (mRNA) is required for DNA microarray and reverse transcriptase polymerase chain reaction analysis and is generally obtained from total RNA isolations. The most widely recognized measure of RNA integrity is the RNA Integrity Number (RIN) obtained from the Agilent Bioanalyzer, as it provides sizing, quantification, and quality control measures. This work describes comparisons of the RIN values obtained for recombinant E. coli. Uninduced recombinant E. coli cultures were examined, as well as induced cultures that produced either a soluble or insoluble recombinant protein. The uninduced cultures and the induced cultures producing soluble protein had higher RIN values than the induced cultures producing insoluble protein. These lower RIN values for E. coli producing the insoluble protein indicate that cellular degradation of the ribosomal RNA species is the likely cause of the lower RIN values. As the use of DNA microarrays and other gene expression tools increase in usage in the industrial recombinant protein production community, these results suggest the need for further studies to determine acceptable RIN ranges for gene expression analysis and effects of various culture conditions on RIN values for recombinant E. coli.
Collapse
Affiliation(s)
| | | | - Faraz Baig
- Department of Bioengineering, Clemson University
| | | |
Collapse
|
26
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery. J Control Release 2013; 171:63-72. [DOI: 10.1016/j.jconrel.2013.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/24/2022]
|
28
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond) 2013; 8:1587-99. [PMID: 23394133 DOI: 10.2217/nnm.12.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial inclusion bodies (IBs) are protein-based, amyloidal nanomaterials that mechanically stimulate mammalian cell proliferation upon surface decoration. However, their biological performance as potentially functional scaffolds in mammalian cell culture still needs to be explored. MATERIALS & METHODS Using fluorescent proteins, we demonstrate significant membrane penetration of surface-attached IBs and a corresponding intracellular bioavailability of the protein material. RESULTS When IBs are formed by protein drugs, such as the intracellular acting human chaperone Hsp70 or the extracellular/intracellular acting human FGF-2, IB components intervene on top-growing cells, namely by rescuing them from chemically induced apoptosis or by stimulating cell division under serum starvation, respectively. Protein release from IBs seems to mechanistically mimic the sustained secretion of protein hormones from amyloid-like secretory granules in higher organisms. CONCLUSION We propose bacterial IBs as biomimetic nanostructured scaffolds (bioscaffolds) suitable for tissue engineering that, while acting as adhesive materials, partially disintegrate for the slow release of their biologically active building blocks. The bottom-up delivery of protein drugs mediated by bioscaffolds offers a highly promising platform for emerging applications in regenerative medicine.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and Department de Genètica i de MicroBiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. BIORESOURCE TECHNOLOGY 2012; 123:135-143. [PMID: 22940310 DOI: 10.1016/j.biortech.2012.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
In this study, effects of temperature, inducer concentration, time of induction and co-expression of molecular chaperones (GroEL-GroES and DnaKJE), on cell growth and solubilization of model protein, xylanases, were investigated. The yield of soluble xylanases increased with decreasing cultivation temperature and inducer level. In addition, co-expression of DnaKJE chaperone resulted in increased soluble xylanases though the time of induction of chaperone and target protein had a bearing on this yield. A combination of chaperone co-expression and partial induction resulted in ∼40% (in DnaKJE) and 33% (in GroEL-GroES) of total xylanase yield in soluble fraction. However, the conditions for maximum yield of soluble r-XynB and maximum % soluble expression of r-XynB were different. Higher expression of soluble xylanases in a scalable semi-synthetic medium showed potential of the process for soluble enzyme production.
Collapse
Affiliation(s)
- Kamna Jhamb
- CSIR - Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | |
Collapse
|
31
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
32
|
Liovic M, Ozir M, Zavec AB, Peternel S, Komel R, Zupancic T. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells. Microb Cell Fact 2012; 11:67. [PMID: 22624805 PMCID: PMC3434093 DOI: 10.1186/1475-2859-11-67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/14/2012] [Indexed: 11/12/2022] Open
Abstract
Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells.
Collapse
Affiliation(s)
- Mirjana Liovic
- Medical Center for Molecular Biology, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
33
|
Vázquez E, Corchero JL, Burgueño JF, Seras-Franzoso J, Kosoy A, Bosser R, Mendoza R, Martínez-Láinez JM, Rinas U, Fernández E, Ruiz-Avila L, García-Fruitós E, Villaverde A. Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1742-1747. [PMID: 22410789 DOI: 10.1002/adma.201104330] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/25/2011] [Indexed: 05/31/2023]
Abstract
Inclusion bodies (50-500 nm in diameter) produced in recombinant bacteria can be engineered to contain functional proteins with therapeutic potential. Upon exposure, these protein particles are efficiently internalized by mammalian cells and promote recovery from diverse stresses. Being fully biocompatible, inclusion bodies are a novel platform, as tailored nanopills, for sustained drug release in advanced cell therapies.
Collapse
Affiliation(s)
- Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhao Y, He W, Liu WF, Liu CC, Feng LK, Sun L, Yan YB, Hang HY. Two distinct states of Escherichia coli cells that overexpress recombinant heterogeneous β-galactosidase. J Biol Chem 2012; 287:9259-68. [PMID: 22303013 DOI: 10.1074/jbc.m111.327668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which inclusion bodies form is still not well understood, partly because the dynamic processes of the inclusion body formation and its solubilization have hardly been investigated at an individual cell level, and so the important detailed information has not been acquired for the mechanism. In this study, we investigated the in vivo folding and aggregation of Aspergillus phoenicis β-D-galactosidase fused to a red fluorescence protein in individual Escherichia coli cells. The folding status and expression level of the recombinant β-D-galactosidase at an individual cell level was analyzed by flow cytometry in combination with transmission electron microscopy and Western blotting. We found that individual E. coli cells fell into two distinct states, one containing only inclusion bodies accompanied with low galactosidase activity and the other containing the recombinant soluble galactosidase accompanied with high galactosidase activity. The majority of the E. coli cells in the later state possessed no inclusion bodies. The two states of the cells were shifted to a cell state with high enzyme activity by culturing the cells in isopropyl 1-thio-β-D-galactopyranoside-free medium after an initial protein expression induction in isopropyl 1-thio-β-D-galactopyranoside-containing medium. This shift of the cell population status took place without the level change of the β-D-galactosidase protein in individual cells, indicating that the factor(s) besides the crowdedness of the recombinant protein play a major role in the cell state transition. These results shed new light on the mechanism of inclusion body formation and will facilitate the development of new strategies in improving recombinant protein quality.
Collapse
Affiliation(s)
- Yun Zhao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
36
|
Seras-Franzoso J, Díez-Gil C, Vazquez E, García-Fruitós E, Cubarsi R, Ratera I, Veciana J, Villaverde A. Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine (Lond) 2011; 7:79-93. [PMID: 22142409 DOI: 10.2217/nnm.11.83] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs), mechanically stable, submicron protein particles of 50-500 nm dramatically favor mammalian cell spread when used for substrate surface decoration. The mechanisms supporting fast colonization of IB-modified surfaces have not yet been identified. RESULTS This study provides evidence of mechanotransduction-mediated stimulation of mammalian cell proliferation on IB-decorated surfaces, as observed by the enhanced phosphorylation of the signal-regulated protein kinase and by the dramatic emission of filopodia in the presence of IBs. Interestingly, the results also show that IBs are highly bioadhesive materials, and that mammalian cell expansion on IBs is synergistically supported by both enhanced adhesion and mechanical stimulation of cell division. DISCUSSION The extent in which these events influence cell growth depends on the particular cell line response but it is also determined by the genetic background of the IB-producing bacteria, thus opening exciting possibilities for the fine tailoring of protein nanoparticle features that are relevant in tissue engineering.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institute for Biotechnology & Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Platas G, Rodríguez-Carmona E, García-Fruitós E, Cano-Garrido O, Villaverde A. Co-production of GroELS discriminates between intrinsic and thermally-induced recombinant protein aggregation during substrate quality control. Microb Cell Fact 2011; 10:79. [PMID: 21992454 PMCID: PMC3207889 DOI: 10.1186/1475-2859-10-79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background The effects and effectiveness of the chaperone pair GroELS on the yield and quality of recombinant polypeptides produced in Escherichia coli are matter of controversy, as the reported activities of this complex are not always consistent and eventually indicate undesired side effects. The divergence in the reported data could be due, at least partially, to different experimental conditions in independent research approaches. Results We have then selected two structurally different model proteins (namely GFP and E. coli β-galactosidase) and two derived aggregation-prone fusions to explore, in a systematic way, the eventual effects of GroELS co-production on yield, solubility and conformational quality. Host cells were cultured at two alternative temperatures below the threshold at which thermal stress is expected to be triggered, to minimize the involvement of independent stress factors. Conclusions From the analysis of protein yield, solubility and biological activity of the four model proteins produced alone or along the chaperones, we conclude that GroELS impacts on yield and quality of aggregation-prone proteins with intrinsic determinants but not on thermally induced protein aggregation. No effective modifications of protein solubility have been observed, but significant stabilization of small (encapsulable) substrates and moderate chaperone-induced degradation of larger (excluded) polypeptides. These findings indicate that the activities of this chaperone pair in the context of actively producing recombinant bacteria discriminate between intrinsic and thermally-induced protein aggregation, and that the side effects of GroELS overproduction might be determined by substrate size.
Collapse
Affiliation(s)
- Gemma Platas
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Alfasi S, Sevastsyanovich Y, Zaffaroni L, Griffiths L, Hall R, Cole J. Use of GFP fusions for the isolation of Escherichia coli strains for improved production of different target recombinant proteins. J Biotechnol 2011; 156:11-21. [DOI: 10.1016/j.jbiotec.2011.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 06/03/2011] [Accepted: 08/08/2011] [Indexed: 11/28/2022]
|
39
|
Vazquez E, Corchero JL, Villaverde A. Post-production protein stability: trouble beyond the cell factory. Microb Cell Fact 2011; 10:60. [PMID: 21806813 PMCID: PMC3162505 DOI: 10.1186/1475-2859-10-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022] Open
Abstract
Being protein function a conformation-dependent issue, avoiding aggregation during production is a major challenge in biotechnological processes, what is often successfully addressed by convenient upstream, midstream or downstream approaches. Even when obtained in soluble forms, proteins tend to aggregate, especially if stored and manipulated at high concentrations, as is the case of protein drugs for human therapy. Post-production protein aggregation is then a major concern in the pharmaceutical industry, as protein stability, pharmacokinetics, bioavailability, immunogenicity and side effects are largely dependent on the extent of aggregates formation. Apart from acting at the formulation level, the recombinant nature of protein drugs allows intervening at upstream stages through protein engineering, to produce analogue protein versions with higher stability and enhanced therapeutic values.
Collapse
Affiliation(s)
- Esther Vazquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
40
|
Abstract
To avoid destruction of the implanted biological material it may be separated from host immunological system by enclosure within a permiselective membrane. Two-directional diffusion through the membrane of nutrients, metabolic products, as well as bioactive products of encapsulated cells is required to ensure their survival and functional activities. The system of cells encapsulated within the membrane releasing the biologically active substance may be applied either locally to give an opportunity of therapeutic agent activity in the specified place and/or at some convenient site (tissue) for a prolonged period of time.The novel system of bacteria bio-encapsulation using modified membranes, and its assessment by flow cytometry is described and discussed. The encapsulated in membrane bacteria, functioning and releasing their products were evaluated in the systems in vitro and in vivo. The bacteria cells products impact on Eukariotic cells was evaluated. The cytometric evaluation demonstrates the membrane ability to avoid the release of bacteria enclosed within the membrane wall. In experiments with treatment of the bacteria with antibiotic to release products from damaged bacteria it was possible to distinguish stages of the applied antibiotic impact on encapsulated bacteria cells. In E. coli following stages were distinguished: induction of membrane permeability to PI, activation of proteases targeting GFP (protein) and subsequent nucleic acids degradation. In the another experiment the evidence was presented of the cytotoxic activity of live Bacillus subtilis encapsulated within the membrane system. The Bacilus products mediated by secreted listeriolysin O (LLO) on the chosen eukaryotic cells was evaluated. Similar systems releasing bacterial products locally and continuously may selectively affect different types of cells and may have possible application in the anticancer treatment at localized sites.
Collapse
|
41
|
García-Fruitós E, Sabate R, de Groot NS, Villaverde A, Ventura S. Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 2011; 278:2419-27. [PMID: 21569209 DOI: 10.1111/j.1742-4658.2011.08165.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Martínez-Alonso M, Villaverde A, Ferrer-Miralles N. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production. Bioeng Bugs 2011; 1:148-50. [PMID: 21326941 DOI: 10.4161/bbug.1.2.11048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/29/2009] [Indexed: 11/19/2022] Open
Abstract
Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield.
Collapse
Affiliation(s)
- Mónica Martínez-Alonso
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | | | | |
Collapse
|
43
|
Tegel H, Ottosson J, Hober S. Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J 2011; 278:729-39. [PMID: 21205203 DOI: 10.1111/j.1742-4658.2010.07991.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biotechnology, the use of Escherichia coli for recombinant protein production has a long tradition, although the optimal production conditions for certain proteins are still not evident. The most favorable conditions for protein production vary with the gene product. Temperature and induction conditions represent parameters that affect total protein production, as well as the amount of soluble protein. Furthermore, the choice of promoter and bacterial strain will have large effects on the production of the target protein. In the present study, the effects of three different promoters (T7, trc and lacUV5) on E. coli production of target proteins with different characteristics are presented. The total amount of target protein as well as the amount of soluble protein were analyzed, demonstrating the benefits of using a strong promoter such as T7. To understand the underlying causes, transcription levels have been correlated with the total amount of target protein and protein solubility in vitro has been correlated with the amount of soluble protein that is produced. In addition, the effects of two different E. coli strains, BL21(DE3) and Rosetta(DE3), on the expression pattern were analyzed. It is concluded that the regulation of protein production is a combination of the transcription and translation efficiencies. Other important parameters include the nucleotide-sequence itself and the solubility of the target protein.
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
44
|
García-Fruitós E. Inclusion bodies: a new concept. Microb Cell Fact 2010; 9:80. [PMID: 21040537 PMCID: PMC2987918 DOI: 10.1186/1475-2859-9-80] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023] Open
Abstract
In the last decades, the understanding of inclusion body biology and consequently, of their properties and potential biotechnological applications have dramatically changed. Therefore, the development of new purification protocols aimed to preserve those properties is becoming a pushing demand.
Collapse
Affiliation(s)
- Elena García-Fruitós
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
45
|
Vázquez E, Cubarsi R, Unzueta U, Roldán M, Domingo-Espín J, Ferrer-Miralles N, Villaverde A. Internalization and kinetics of nuclear migration of protein-only, arginine-rich nanoparticles. Biomaterials 2010; 31:9333-9. [PMID: 20869766 DOI: 10.1016/j.biomaterials.2010.08.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/24/2010] [Indexed: 12/13/2022]
Abstract
Understanding the intracellular trafficking of nanoparticles internalized by mammalian cells is a critical issue in nanomedicine, intimately linked to therapeutic applications but also to toxicity concerns. While the uptake mechanisms of carbon nanotubes and polymeric particles have been investigated fairly extensively, there are few studies on the migration and fate of protein-only nanoparticles other than natural viruses. Interestingly, protein nanoparticles are emerging as tools in personalized medicines because of their biocompatibility and functional tuneability, and are particularly promising for gene therapy and also conventional drug delivery. Here, we have investigated the uptake and kinetics of intracellular migration of protein nanoparticles built up by a chimerical multifunctional protein, and functionalized by a pleiotropic, membrane-active (R9) terminal peptide. Interestingly, protein nanoparticles are first localized in endosomes, but an early endosomal escape allows them to reach and accumulate in the nucleus (but not in the cytoplasm), with a migration speed of 0.0044 ± 0.0003 μm/s, ten-fold higher than that expected for passive diffusion. Interestingly, the plasmatic, instead of the nuclear membrane is the main cellular barrier in the nuclear way of R9-assisted protein-only nanoparticles.
Collapse
Affiliation(s)
- Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Rodríguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, García-Fruitós E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact 2010; 9:71. [PMID: 20849629 PMCID: PMC2949796 DOI: 10.1186/1475-2859-9-71] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Results Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10-1 cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. Conclusions The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.
Collapse
Affiliation(s)
- Escarlata Rodríguez-Carmona
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 2010; 9:64. [PMID: 20813055 PMCID: PMC2944165 DOI: 10.1186/1475-2859-9-64] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022] Open
Abstract
Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.
Collapse
|
48
|
Cheng CH, Lee WC. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb Cell Fact 2010; 9:63. [PMID: 20799977 PMCID: PMC2940792 DOI: 10.1186/1475-2859-9-63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Overexpression of recombinant proteins usually triggers the induction of heat shock proteins that regulate aggregation and solubility of the overexpressed protein. The two-dimensional gel electrophoresis (2-DE)-mass spectrometry approach was used to profile the proteome of Escherichia coli overexpressing N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), both fused to glutathione S-transferase (GST) and polyionic peptide (5D or 5R). Results Overexpression of fusion proteins by IPTG induction caused significant differential expression of numerous cellular proteins; most of these proteins were down-regulated, including enzymes connected to the pentose phosphate pathway and the enzyme LuxS that could lead to an inhibition of tRNA synthesis. Interestingly, when plasmid-harboring cells were cultured in LB medium, gluconeogenesis occurred mainly through MaeB, while in the host strain, gluconeogenesis occurred by a different pathway (by Mdh and PckA). Significant up-regulation of the chaperones ClpB, HslU and GroEL and high-level expression of two protective small heat shock proteins (IbpA and IbpB) were found in cells overexpressing GST-GlcNAc 2-epimerase-5D but not in GST-Neu5Ac aldolase-5R-expressing E. coli. Although most of the recombinant protein was present in insoluble aggregates, the soluble fraction of GST-GlcNAc 2-epimerase-5D was higher than that of GST-Neu5Ac aldolase-5R. Also, in cells overexpressing recombinant GST-GlcNAc 2-epimerase-5D, the expression of σ32 was maintained at a higher level following induction. Conclusions Differential expression of metabolically functional proteins, especially those in the gluconeogenesis pathway, was found between host and recombinant cells. Also, the expression patterns of chaperones/heat shock proteins differed among the plasmid-harboring bacteria in response to overproduction of recombinant proteins. In conclusion, the solubility of overexpressed recombinant proteins could be enhanced by maintaining the expression of σ32, a bacterial heat shock transcription factor, at higher levels during overproduction.
Collapse
Affiliation(s)
- Chung-Hsien Cheng
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | | |
Collapse
|
49
|
Sabate R, de Groot NS, Ventura S. Protein folding and aggregation in bacteria. Cell Mol Life Sci 2010; 67:2695-715. [PMID: 20358253 PMCID: PMC11115605 DOI: 10.1007/s00018-010-0344-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/19/2010] [Accepted: 03/05/2010] [Indexed: 01/31/2023]
Abstract
Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and beta-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.
Collapse
Affiliation(s)
- Raimon Sabate
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Natalia S. de Groot
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
50
|
The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials 2010; 31:5805-12. [DOI: 10.1016/j.biomaterials.2010.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/04/2010] [Indexed: 12/21/2022]
|