1
|
Zuo Y, Hanly F, Li D, Chavez E, Aljuboori O, Contreras G, Herrera GA. Unveiling renal pathology's potential: exploring a rare subtype of amyloid - apolipoprotein CII amyloidosis in the youngest patient: a case report and literature review. Ultrastruct Pathol 2024; 48:297-303. [PMID: 38769836 DOI: 10.1080/01913123.2024.2353397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
In this clinical case report, we present a rare subtype of amyloidosis, apolipoprotein CII (apo CII), which was diagnosed through a renal biopsy and subsequently confirmed by identifying the p.K41T mutation via germline DNA sequencing. Upon reviewing the literature, five patients exhibiting identical mutation were identified via renal biopsy, while an additional patient was diagnosed through biopsies of the fat pad and bone marrow. Notably, our patient is the youngest recorded case. We pioneered the application of immunofluorescence and immunogold electron microscopy techniques for apo CII evaluation. Our report provides a detailed description of this case, supplemented by an extensive review encompassing apo CII, documented instances of apo CII amyloidosis with renal or systemic involvement, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Yiqin Zuo
- Department of Pathology & Laboratory Medicine, University of Miami Hospital, Miami, FL, USA
| | - Fiona Hanly
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duo Li
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Efren Chavez
- Katz Division of Nephrology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Omar Aljuboori
- Department of Pathology & Laboratory Medicine, University of Miami Hospital, Miami, FL, USA
| | - Gabriel Contreras
- Katz Division of Nephrology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
2
|
Grigolato F, Arosio P. The role of surfaces on amyloid formation. Biophys Chem 2021; 270:106533. [PMID: 33529995 DOI: 10.1016/j.bpc.2020.106533] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Interfaces can strongly accelerate or inhibit protein aggregation, destabilizing proteins that are stable in solution or, conversely, stabilizing proteins that are aggregation-prone. Although this behaviour is well-known, our understanding of the molecular mechanisms underlying surface-induced protein aggregation is still largely incomplete. A major challenge is represented by the high number of physico-chemical parameters involved, which are highly specific to the considered combination of protein, surface properties, and solution conditions. The key aspect determining the role of interfaces is the relative propensity of the protein to aggregate at the surface with respect to bulk. In this review, we discuss the multiple molecular determinants that regulate this balance. We summarize current experimental techniques aimed at characterizing protein aggregation at interfaces, and highlight the need to complement experimental analysis with theoretical modelling. In particular, we illustrate how chemical kinetic analysis can be combined with experimental methods to provide insights into the molecular mechanisms underlying surface-induced protein aggregation, under both stagnant and agitation conditions. We summarize recent progress in the study of important amyloids systems, focusing on selected relevant interfaces.
Collapse
Affiliation(s)
- Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
3
|
L. Almeida Z, M. M. Brito R. Structure and Aggregation Mechanisms in Amyloids. Molecules 2020; 25:molecules25051195. [PMID: 32155822 PMCID: PMC7179426 DOI: 10.3390/molecules25051195] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of the approximately 50 amyloid diseases described to date. The identification and characterization of the molecular species critical for amyloid formation and disease development have been the focus of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational therapeutic approaches against these debilitating and increasingly frequent misfolding diseases requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade. Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides from a kinetic and thermodynamic point of view, the structure of the molecular species involved in the amyloidogenic process, and the origin of their cytotoxicity.
Collapse
|
4
|
Morel B, Conejero-Lara F. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140264. [PMID: 31437584 DOI: 10.1016/j.bbapap.2019.140264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer's or Parkinson's diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study. Important breakthroughs have been achieved using experimental data from different proteins, used as models, as well as systems related to diseases. Here, we summarize the structural properties of amyloid oligomeric and fibrillar aggregates and review the recent advances on how biophysical techniques can be combined with quantitative kinetic analysis and theoretical models to study the detailed mechanism of oligomer formation and nucleation of fibrils. These insights into the mechanism of early oligomerization and amyloid nucleation are of relevant interest in drug discovery and in the design of preventive strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Howlett GJ, Ryan TM, Griffin MD. Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:502-507. [DOI: 10.1016/j.bbapap.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
|
6
|
Siposova K, Sedlak E, Kozar T, Nemergut M, Musatov A. Dual effect of non-ionic detergent Triton X-100 on insulin amyloid formation. Colloids Surf B Biointerfaces 2018; 173:709-718. [PMID: 30384267 DOI: 10.1016/j.colsurfb.2018.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Atomic force microscopy, Thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy, differential scanning calorimetry, and molecular modeling techniques have been employed to investigate the amyloid aggregation of insulin in the presence of non-ionic detergent, Triton X-100 (TX-100). In contrast to recently described inhibition of lysozyme amyloid formation by non-ionic detergents (Siposova, 2017), the amyloid aggregation of insulin in the presence of sub-micellar TX-100 concentration exhibits two dissimilar phases. The first, inhibition phase, is observed at the protein to detergent molar ratio of 1:0.1 to 1:1. During this phase, the insulin amyloid fibril formation is inhibited by TX-100 up to ∼60%. The second, "morphological" phase, is observed at increasing detergent concentration, corresponding to protein:detergent molar ratio of ∼1:1 - 1:10. Under these conditions a significant increase of the steady-state ThT fluorescence intensities and a dramatically changed morphology of the insulin fibrils were observed. Increasing of the detergent concentration above the CMC led to complete inhibition of amyloidogenesis. Analysis of the experimental and molecular modeling results suggests an existence of up to six TX-100 binding sites within dimer of insulin with different binding energy. The physiological relevance of the results is discussed.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia.
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, TIP - P.J. Safarik University, Jesenna 5, 041 54, Kosice, Slovakia
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, TIP - P.J. Safarik University, Jesenna 5, 041 54, Kosice, Slovakia; Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia
| | - Michal Nemergut
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54, Kosice, Slovakia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| |
Collapse
|
7
|
Zlatic CO, Mao Y, Todorova N, Mok YF, Howlett GJ, Yarovsky I, Gooley PR, Griffin MDW. Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils. FEBS J 2018; 285:2799-2812. [PMID: 29791776 DOI: 10.1111/febs.14517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-β structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-β structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-β fibrils in an off-set antiparallel structure with four apoC-II units per rise of the β-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Yu Mao
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Vic., Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Vic., Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
8
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
9
|
Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A. Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation. Sci Rep 2016; 6:38184. [PMID: 27901075 PMCID: PMC5128859 DOI: 10.1038/srep38184] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022] Open
Abstract
Membrane-disrupting antimicrobial peptides provide broad-spectrum defence against localized bacterial invasion in a range of hosts including humans. The most generally held consensus is that targeting to pathogens is based on interactions with the head groups of membrane lipids. Here we show that the action of LL-37, a human antimicrobial peptide switches the mode of action based on the structure of the alkyl chains, and not the head groups of the membrane forming lipids. We demonstrate that LL-37 exhibits two distinct interaction pathways: pore formation in bilayers of unsaturated phospholipids and membrane modulation with saturated phospholipids. Uniquely, the membrane modulation yields helical-rich fibrous peptide-lipid superstructures. Our results point at alternative design strategies for peptide antimicrobials.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Marta Enciso
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Christopher G Adda
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Matthew A Perugini
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University, Australia
| |
Collapse
|
10
|
Siposova K, Kozar T, Musatov A. Interaction of nonionic detergents with the specific sites of lysozyme amyloidogenic region - inhibition of amyloid fibrillization. Colloids Surf B Biointerfaces 2016; 150:445-455. [PMID: 27842932 DOI: 10.1016/j.colsurfb.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
Abstract
Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-β-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22μM and 26μM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Tibor Kozar
- Center for multimodal imaging, Institute of Physics, Faculty of Science, P.J. Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
11
|
Liu J, Dehle FC, Liu Y, Bahraminejad E, Ecroyd H, Thorn DC, Carver JA. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1335-1343. [PMID: 26807595 DOI: 10.1021/acs.jafc.5b04977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When not incorporated into the casein micelle, κ-casein, a major milk protein, rapidly forms amyloid fibrils at physiological pH and temperature. In this study, the effects of milk components (calcium, lactose, lipids, and heparan sulfate) and crowding agents on reduced and carboxymethylated (RCM) κ-casein fibril formation was investigated using far-UV circular dichroism spectroscopy, thioflavin T binding assays, and transmission electron microscopy. Longer-chain phosphatidylcholine lipids, which form the lining of milk ducts and milk fat globules, enhanced RCM κ-casein fibril formation irrespective of whether the lipids were in a monomeric or micellar state, whereas shorter-chain phospholipids and triglycerides had little effect. Heparan sulfate, a component of the milk fat globule membrane and catalyst of amyloid deposition in extracellular tissue, had little effect on the kinetics of RCM κ-casein fibril formation. Major nutritional components such as calcium and lactose also had no significant effect. Macromolecular crowding enhances protein-protein interactions, but in contrast to other fibril-forming species, the extent of RCM κ-casein fibril formation was reduced by the presence of a variety of crowding agents. These data are consistent with a mechanism of κ-casein fibril formation in which the rate-determining step is dissociation from the oligomer to give the highly amyloidogenic monomer. We conclude that the interaction of κ-casein with membrane-associated phospholipids along its secretory pathway may contribute to the development of amyloid deposits in mammary tissue. However, the formation of spherical oligomers such as casein micelles is favored over amyloid fibrils in the crowded environment of milk, within which the occurrence of amyloid fibrils is low.
Collapse
Affiliation(s)
- Jihua Liu
- Pharmacy College, Jilin University , Changchun, Jilin Province 130021, China
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Francis C Dehle
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Yanqin Liu
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Elmira Bahraminejad
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health & Medical Research Institute, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
12
|
Ryan TM, Griffin MDW, McGillivray DJ, Knott RB, Wood K, Masters CL, Kirby N, Curtain CC. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine. Biophys J 2016; 110:85-94. [PMID: 26745412 PMCID: PMC4805880 DOI: 10.1016/j.bpj.2015.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/21/2023] Open
Abstract
The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer's disease, and Parkinson's disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases.
Collapse
Affiliation(s)
- Timothy M Ryan
- Australian Synchrotron, Clayton, Victoria, Australia; The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia; The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Duncan J McGillivray
- School of Chemical Science, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Robert B Knott
- Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel Kirby
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Cyril C Curtain
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Palladino P, Aura AM, Spoto G. Surface plasmon resonance for the label-free detection of Alzheimer's β-amyloid peptide aggregation. Anal Bioanal Chem 2015; 408:849-54. [PMID: 26558762 DOI: 10.1007/s00216-015-9172-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/25/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Amyloid peptide oligomers and fibrils are studied as targets for therapy and diagnosis of Alzheimer's disease. They are usually detected by amyloid incubation, but such method is necessarily associated with Aβ1-42 depletion and dye binding or conjugation, which have a complex influence on fibril growth, provide information about fibril elongation over long time periods only, and might lead to false-positive results in amyloid inhibition assay. Surface plasmon resonance (SPR) is used to study with no labelling and in real time the aggregation of Aβ1-42 amyloid on specific antibodies. SPR data show, for the first time by using SPR, a multi-phase association behavior for Aβ1-42 oligomers accounting for a sigmoidal growth of amyloid as a function of time, with two antibody-dependent aggregation patterns. The new method represents an advantageous alternative to traditional procedures for investigating amyloid self-assembly and inhibition from early-stage oligomer association, on the time scale of seconds to minutes, to long-term polymerization, on the time scale of hours to days.
Collapse
Affiliation(s)
- Pasquale Palladino
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Angela M Aura
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Viale delle Medaglie D'Oro 305, 00136, Rome, Italy. .,Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
14
|
Mok YF, Howlett GJ, Griffin MDW. Sedimentation Velocity Analysis of the Size Distribution of Amyloid Oligomers and Fibrils. Methods Enzymol 2015; 562:241-56. [PMID: 26412655 DOI: 10.1016/bs.mie.2015.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amyloid fibrils result from the self-assembly of proteins into large aggregates with fibrillar morphology and common structural features. These fibrils form the major component of amyloid plaques that are associated with a number of common and debilitating diseases, including Alzheimer's disease. While a range of unrelated proteins and peptides are known to form amyloid fibrils, a common feature is the formation of aggregates of various sizes, including mature fibrils of differing length and/or structural morphology, small oligomeric precursors, and other less well-understood forms such as amorphous aggregates. These various species can possess distinct biochemical, biophysical, and pathological properties. Sedimentation velocity analysis can characterize amyloid fibril formation in exceptional detail, providing a particularly useful method for resolving the complex heterogeneity present in amyloid systems. In this chapter, we describe analytical methods for accurate quantification of both total amyloid fibril formation and the formation of distinct amyloid structures based on differential sedimentation properties. We also detail modern analytical ultracentrifugation methods to determine the size distribution of amyloid aggregates. We illustrate examples of the use of these techniques to provide biophysical and structural information on amyloid systems that would otherwise be difficult to obtain.
Collapse
Affiliation(s)
- Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Mizuguchi C, Ogata F, Mikawa S, Tsuji K, Baba T, Shigenaga A, Shimanouchi T, Okuhira K, Otaka A, Saito H. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. J Biol Chem 2015; 290:20947-20959. [PMID: 26175149 DOI: 10.1074/jbc.m115.664227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/01/2023] Open
Abstract
The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Fuka Ogata
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Shiho Mikawa
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Teruhiko Baba
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Keiichiro Okuhira
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Saito
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
16
|
Zlatic CO, Mao Y, Ryan TM, Mok YF, Roberts BR, Howlett GJ, Griffin MDW. Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry 2015; 54:3831-8. [DOI: 10.1021/acs.biochem.5b00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Courtney O. Zlatic
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Mao
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy M. Ryan
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Mao Y, Teoh CL, Yang S, Zlatic CO, Rosenes ZK, Gooley PR, Howlett GJ, Griffin MDW. Charge and charge-pair mutations alter the rate of assembly and structural properties of apolipoprotein C-II amyloid fibrils. Biochemistry 2015; 54:1421-8. [PMID: 25609257 DOI: 10.1021/bi5014535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding, aggregation, and accumulation of proteins as amyloid fibrils is a defining characteristic of several debilitating diseases. Human apolipoprotein C-II (apoC-II) amyloid fibrils are representative of the fibrils formed by a number of plasma apolipoproteins implicated in amyloid-related disease. Previous structural analyses identified a buried charge pair between residues K30 and D69 within apoC-II amyloid fibrils. We have investigated the effects of amino acid substitutions of these residues on apoC-II fibril formation. Two point mutations of apoC-II, D69K and K30D, as well as a reversed ion-pair mutant containing both mutations (KDDK) were generated. Fibril formation by the double mutant, apoC-II KDDK, and apoC-II D69K was enhanced compared to that of wild-type (WT) apoC-II, while apoC-II K30D lacked the ability to form fibrils under standard conditions. Structural analyses showed that WT apoC-II, apoC-II D69K, and apoC-II KDDK fibrils have similar secondary structures and morphologies. Size distribution analyses revealed that apoC-II D69K fibrils have a broader range of fibril sizes while apoC-II KDDK fibrils showed an increased frequency of closed fibrillar loops. ApoC-II D69K fibrils exhibited reduced thioflavin T binding capacity compared to that of fibrils formed by WT apoC-II and apoC-II KDDK. These results indicate that specific charge and charge-pair mutations within apoC-II significantly alter the ability to form fibrils and that position 69 within apoC-II plays a key role in the rate-limiting step of apoC-II fibril formation.
Collapse
Affiliation(s)
- Yu Mao
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The Role of Lipid in Misfolding and Amyloid Fibril Formation by Apolipoprotein C-II. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:157-74. [DOI: 10.1007/978-3-319-17344-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
de Messieres M, Huang RK, He Y, Lee JC. Amyloid triangles, squares, and loops of apolipoprotein C-III. Biochemistry 2014; 53:3261-3. [PMID: 24804986 PMCID: PMC4038341 DOI: 10.1021/bi500502d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
While a significant component of
atherosclerotic plaques has been
characterized as amyloid, the specific proteins remain to be fully
identified. Probable amyloidogenic proteins are apolipoproteins (Apos),
which are vital for the formation and function of lipoproteins. ApoCIII
is an abundant protein implicated in atherosclerosis, and we show
it forms a ribbonlike looped amyloid, strikingly similar to that previously
reported for ApoAI and ApoCII. Triangles and squares with a width
of ∼50 nm were also observed, which may be a novel form of
amyloid or related to previously reported amyloid rings.
Collapse
Affiliation(s)
- Michel de Messieres
- Laboratory of Molecular Biophysics and ‡Protein Expression Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, and §Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | |
Collapse
|
20
|
Gillam JE, MacPhee CE. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:373101. [PMID: 23941964 DOI: 10.1088/0953-8984/25/37/373101] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amyloid and amyloid-like fibrils are self-assembling protein nanostructures, of interest for their robust material properties and inherent biological compatibility as well as their putative role in a number of debilitating mammalian disorders. Understanding fibril formation is essential to the development of strategies to control, manipulate or prevent fibril growth. As such, this area of research has attracted significant attention over the last half century. This review describes a number of different models that have been formulated to describe the kinetics of fibril assembly. We describe the macroscopic implications of mechanisms in which secondary processes such as secondary nucleation, fragmentation or branching dominate the assembly pathway, compared to mechanisms dominated by the influence of primary nucleation. We further describe how experimental data can be analysed with respect to the predictions of kinetic models.
Collapse
Affiliation(s)
- J E Gillam
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK
| | | |
Collapse
|
21
|
Foderà V, Zaccone A, Lattuada M, Donald AM. Electrostatics controls the formation of amyloid superstructures in protein aggregation. PHYSICAL REVIEW LETTERS 2013; 111:108105. [PMID: 25166715 DOI: 10.1103/physrevlett.111.108105] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Indexed: 05/23/2023]
Abstract
The possibility for proteins to aggregate in different superstructures, i.e. large-scale polymorphism, has been widely observed, but an understanding of the physicochemical mechanisms behind it is still out of reach. Here we present a theoretical model for the description of a generic aggregate formed from an ensemble of charged proteins. The model predicts the formation of multifractal structures with the geometry of the growth determined by the electrostatic interactions between single proteins. The model predictions are successfully verified in comparison with experimental curves for aggregate growth allowing us to reveal the mechanism of formation of such complex structures. The model is general and is able to predict aggregate morphologies occurring both in vivo and in vitro. Our findings provide a framework where the physical interactions between single proteins, the aggregate morphology, and the growth kinetics are connected into a single model in agreement with the experimental data.
Collapse
Affiliation(s)
- Vito Foderà
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alessio Zaccone
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom and Theory of Condensed Matter, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Marco Lattuada
- ETH Institute for Chemical and Bioengineering, HCI F135, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| | - Athene M Donald
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
22
|
Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1615-23. [PMID: 23665069 DOI: 10.1016/j.bbapap.2013.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vetri V, Leone M, Morozova-Roche LA, Vestergaard B, Foderà V. Unlocked concanavalin A forms amyloid-like fibrils from coagulation of long-lived "crinkled" intermediates. PLoS One 2013; 8:e68912. [PMID: 23874809 PMCID: PMC3712988 DOI: 10.1371/journal.pone.0068912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023] Open
Abstract
Understanding the early events during amyloid aggregation processes is crucial to single out the involved molecular mechanisms and for designing ad hoc strategies to prevent and reverse amyloidogenic disorders. Here, we show that, in conditions in which the protein is positively charged and its conformational flexibility is enhanced, Concanavalin A leads to fibril formation via a non-conventional aggregation pathway. Using a combination of light scattering, circular dichroism, small angle X-ray scattering, intrinsic (Tryptophan) and extrinsic (ANS) fluorescence and confocal and 2-photon fluorescence microscopy we characterize the aggregation process as a function of the temperature. We highlight a multi-step pathway with the formation of an on-pathway long-lived intermediate and a subsequent coagulation of such “crinkled” precursors into amyloid-like fibrils. The process results in a temperature-dependent aggregation-coagulation pathway, with the late phase of coagulation determined by the interplay between hydrophobic and electrostatic forces. Our data provide evidence for the complex aggregation pathway for a protein with a highly flexible native conformation. We demonstrate the possibility to generate a long-lived intermediate whose proportion and occurrence are easily tunable by experimental parameters (i.e. temperature). As a consequence, in the case of aggregation processes developing through well-defined energy barriers, our results can open the way to new strategies to induce more stable in vitro on-pathway intermediate species through a minute change in the initial conformational flexibility of the protein. This will allow isolating and experimentally studying such transient species, often indicated as relevant in neurodegenerative diseases, both in terms of structural and cytotoxic properties.
Collapse
Affiliation(s)
- Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
- * E-mail: (VV); (VF)
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | | | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vito Foderà
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (VV); (VF)
| |
Collapse
|
24
|
Burke KA, Yates EA, Legleiter J. Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 2013; 4:17. [PMID: 23459674 PMCID: PMC3585431 DOI: 10.3389/fneur.2013.00017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes.
Collapse
Affiliation(s)
- Kathleen A Burke
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown, WV, USA
| | | | | |
Collapse
|
25
|
Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ, Griffin MDW. Avoiding the oligomeric state: αB‐crystallin inhibits fragmentation and induces dissociation of apolipoprotein C‐II amyloid fibrils. FASEB J 2012; 27:1214-22. [DOI: 10.1096/fj.12-220657] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katrina J. Binger
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- Commonwealth Scientific and Industrial Research Organisation Molecular Health TechnologiesParkvilleVictoriaAustralia
| | - Heath Ecroyd
- School of Biological SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNew South WalesAustralia
| | - Shuo Yang
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - John A. Carver
- School of Chemistry and PhysicsThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
26
|
Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. J Struct Biol 2012; 180:101-9. [PMID: 22813934 DOI: 10.1016/j.jsb.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/23/2022]
Abstract
Histone H1 is involved in chromatin structure and gene regulation. H1 also performs functions outside cell nuclei, which may depend on its properties as a lipid-binding protein. The H1 CTD behaves as an intrinsically disordered protein (IDP) with coupled binding and folding. Here, we used neutral detergents and anionic SDS to study the contribution of hydrophobic interactions to the folding of the CTD. In the presence of neutral detergents, the CTD folded with proportions of secondary structure motifs similar to those observed in the DNA complexes. These results identify a folding pathway for the CTD based on hydrophobic interactions, and independent of charge compensation. The CTD is phosphorylated to different extents by cyclin-dependent kinases. The general effect of phosphorylation in the presence of detergents was a decrease in the α-helix content and an increase in that of the β-structure. The greatest effect was observed in the fully phosphorylated CTD (three phosphate groups) in the presence of anionic SDS (7:1, detergent/CTD molar ratio); in these conditions, the CTD became an all-β protein, with 83% β-structure and no α-helix. The CTD in all-β conformation readily formed ribbon-like fibers. The entire H1 also formed fibers when fully phosphorylated in the CTD. Fibers were of the amyloid type, as judged by strong birefringence in the presence of Congo red and thioflavin fluorescence enhancement. Amyloid fiber formation was only observed in SDS, suggesting that it requires the joint effects of partial charge neutralization and hydrophobic interactions, together with the all-β potential provided by full phosphorylation.
Collapse
|
27
|
Griffin MD, Yeung L, Hung A, Todorova N, Mok YF, Karas JA, Gooley PR, Yarovsky I, Howlett GJ. A Cyclic Peptide Inhibitor of ApoC-II Peptide Fibril Formation: Mechanistic Insight from NMR and Molecular Dynamics Analysis. J Mol Biol 2012; 416:642-55. [DOI: 10.1016/j.jmb.2011.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/29/2011] [Accepted: 12/29/2011] [Indexed: 11/29/2022]
|
28
|
Yang S, Griffin MDW, Binger KJ, Schuck P, Howlett GJ. An equilibrium model for linear and closed-loop amyloid fibril formation. J Mol Biol 2012; 421:364-77. [PMID: 22370559 DOI: 10.1016/j.jmb.2012.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/08/2012] [Accepted: 02/18/2012] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils and their soluble oligomeric intermediates are implicated in several age-related diseases including Alzheimer's and Parkinson's diseases. The distribution of oligomers and fibrils is related to toxicity and is dependent on the pathways for fibril assembly, generally considered to occur via a slow nucleation step that precedes fibril elongation. Human apolipoprotein (apo) C-II forms amyloid fibrils via a reversible self-assembly process accompanied by closed-loop formation and fibril breaking and joining. Our fluorescence quenching and sedimentation velocity experiments with Alexa488-labeled apoC-II indicated a time-dependent subunit interchange for both linear and closed-loop fibrils, while dilution experiments using mature fibrils indicated a shift to smaller size distributions consistent with a reversible assembly pathway. To account for this behavior, we developed an equilibrium self-association model that describes the final size distributions of apoC-II fibrils formed at different starting concentrations. The model proposes a reversible isomerization of apoC-II monomer to form an active conformer that self-assembles into fibrils via an isodesmic self-association pathway coupled to fibril length-dependent closed-loop formation. The model adequately described fibril size distributions and the proportion of closed loops as a function of total apoC-II concentration over the concentration range 0.1-0.5 mg/ml. Extension of the model to include the rates of isomerization, self-association and fibril breaking and joining provided satisfactory global fits to kinetic data on fibril formation and changes in average fibril size at different apoC-II starting concentrations. The model provides a simple thermodynamic description of the processes governing the size distribution of apoC-II fibrils at equilibrium and the formation of discrete oligomeric intermediates.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
29
|
Ryan TM, Griffin MDW, Bailey MF, Schuck P, Howlett GJ. NBD-labeled phospholipid accelerates apolipoprotein C-II amyloid fibril formation but is not incorporated into mature fibrils. Biochemistry 2011; 50:9579-86. [PMID: 21985034 DOI: 10.1021/bi201192r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by submicellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately 2-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril-forming concentrations of apoC-II indicated NBD-lyso-12-PC binds rapidly, on the millisecond time scale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-lyso-12-PC binds to both apoC-II monomers and tetramers at approximately five sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-lyso-12-PC were devoid of lipid, indicating a purely catalytic role for submicellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules in controlling protein folding and fibril assembly pathways.
Collapse
Affiliation(s)
- Timothy M Ryan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
30
|
Wang SSS, Hung YT, Wen WS, Lin KC, Chen GY. Exploring the inhibitory activity of short-chain phospholipids against amyloid fibrillogenesis of hen egg-white lysozyme. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:301-13. [DOI: 10.1016/j.bbalip.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/22/2011] [Accepted: 02/04/2011] [Indexed: 01/27/2023]
|
31
|
Teoh CL, Bekard IB, Asimakis P, Griffin MDW, Ryan TM, Dunstan DE, Howlett GJ. Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation. Biochemistry 2011; 50:4046-57. [PMID: 21476595 DOI: 10.1021/bi2002482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Teoh CL, Griffin MDW, Howlett GJ. Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2011; 2:116-27. [PMID: 21400045 DOI: 10.1007/s13238-011-1013-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/29/2011] [Indexed: 10/18/2022] Open
Abstract
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
33
|
Sani MA, Gehman JD, Separovic F. Lipid matrix plays a role in Abeta fibril kinetics and morphology. FEBS Lett 2011; 585:749-54. [DOI: 10.1016/j.febslet.2011.02.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
34
|
Teoh CL, Pham CLL, Todorova N, Hung A, Lincoln CN, Lees E, Lam YH, Binger KJ, Thomson NH, Radford SE, Smith TA, Müller SA, Engel A, Griffin MDW, Yarovsky I, Gooley PR, Howlett GJ. A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. J Mol Biol 2011; 405:1246-66. [PMID: 21146539 DOI: 10.1016/j.jmb.2010.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
The self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets. Examination of apoC-II fibrils using transmission electron microscopy, scanning transmission electron microscopy, and atomic force microscopy indicated that the fibrils are flat ribbons composed of one apoC-II molecule per 4.7-Å rise of the cross-β-structure. Cross-linking results using single-cysteine substitution mutants are consistent with a parallel in-register structural model for apoC-II fibrils. Fluorescence resonance energy transfer analysis of apoC-II fibrils labeled with specific fluorophores provided distance constraints for selected donor-acceptor pairs located within the fibrils. These findings were used to develop a simple 'letter-G-like' β-strand-loop-β-strand model for apoC-II fibrils. Fully solvated all-atom molecular dynamics (MD) simulations showed that the model contained a stable cross-β-core with a flexible connecting loop devoid of persistent secondary structure. The time course of the MD simulations revealed that charge clusters in the fibril rearrange to minimize the effects of same-charge interactions inherent in parallel in-register models. Our structural model for apoC-II fibrils suggests that apoC-II monomers fold and self-assemble to form a stable cross-β-scaffold containing relatively unstructured connecting loops.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inhibition of peptide aggregation by lipids: Insights from coarse-grained molecular simulations. J Mol Graph Model 2011; 29:597-607. [DOI: 10.1016/j.jmgm.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
|
36
|
Hsieh YH, Chou CY. Structural and functional characterization of human apolipoprotein E 72-166 peptides in both aqueous and lipid environments. J Biomed Sci 2011; 18:4. [PMID: 21219628 PMCID: PMC3022805 DOI: 10.1186/1423-0127-18-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/10/2011] [Indexed: 12/03/2022] Open
Abstract
Backgrounds There are three apolipoprotein E (apoE) isoforms involved in human lipid homeostasis. In the present study, truncated apoE2-, apoE3- and apoE4-(72-166) peptides that are tailored to lack domain interactions are expressed and elucidated the structural and functional consequences. Methods & Results Circular dichroism analyses indicated that their secondary structure is still well organized. Analytical ultracentrifugation analyses demonstrated that apoE-(72-166) produces more complicated species in PBS. All three isoforms were significantly dissociated in the presence of dihexanoylphosphatidylcholine. Dimyristoylphosphatidylcholine turbidity clearance assay showed that apoE4-(72-166) maintains the highest lipid-binding capacity. Finally, only apoE4-(72-166) still maintained significant LDL receptor binding ability. Conclusions Overall, apoE4-(72-166) peptides displayed a higher lipid-binding and comparable receptor-binding ability as to full-length apoE. These findings provide the explanation of diverged functionality of truncated apoE isoforms.
Collapse
Affiliation(s)
- Yi-Hui Hsieh
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | |
Collapse
|
37
|
High-affinity amphipathic modulators of amyloid fibril nucleation and elongation. J Mol Biol 2010; 406:416-29. [PMID: 21185302 DOI: 10.1016/j.jmb.2010.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/21/2022]
Abstract
The misfolding and aggregation of proteins to form amyloid fibrils are associated with a number of debilitating, age-related diseases. Many of the proteins that form amyloid in vivo are lipid-binding proteins, accounting for the significant impact of lipids on the rate of formation and morphology of amyloid fibrils. To systematically investigate the effect of lipid-like compounds, we screened a range of amphipathic lipids and detergents for their effect on amyloid fibril formation by human apolipoprotein (apo) C-II. The initial screen, conducted using a set of amphiphiles at half critical micelle concentration, identified several activators and inhibitors that were selected for further analysis. Sedimentation analysis and circular dichroism studies of apoC-II at low, non-fibril-forming concentrations (0.05 mg/ml) revealed that all of the inhibitors induced the formation of apoC-II dimers enriched in α-helical content while the activators promoted the formation of stable apoC-II tetramers with increased β-structure. Kinetic analysis identified modulators of apoC-II fibril formation that were effective at concentrations as low as 10 μM, corresponding to a modulator-to-apoC-II ratio of approximately 1:10. Delayed addition of the test compounds after fibril formation had commenced allowed the effects of selected amphiphiles on fibril elongation to be determined separately from their effects on fibril nucleation. The results indicated that specific amphiphiles induce structural changes in apoC-II that cause separate and independent effects on fibril nucleation and elongation. Low-molecular-weight amphipathic lipids and detergents may serve as useful, stage-specific modulators of protein self-assembly and fibril formation in disease-prevention strategies.
Collapse
|
38
|
Foderà V, Donald AM. Tracking the heterogeneous distribution of amyloid spherulites and their population balance with free fibrils. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:273-282. [PMID: 21052765 DOI: 10.1140/epje/i2010-10665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
The analysis of amyloidogenic systems reveals the appearance of distinct states of aggregation for amyloid fibrils. For different proteins and under specific experimental conditions, amyloid spherulites are recognized as a significant component occurring in several protein model systems used for in vitro fibrillation studies. In this work we have developed an approach to characterize solutions containing a mixture of amyloid spherulites and individual fibrils. Using bovine insulin as the model system, sedimentation kinetics for the amyloid aggregates were followed using a combination of UV-Vis spectroscopy and cross-polarized optical microscopy. Spherulites were identified as the species undergoing sedimentation. A simple mathematical approach allows the description of the kinetics in terms of decay time/rate distribution. Moreover, based on the sedimentation kinetics, a rough estimate of the balance between amyloid spherulites and individual fibrils can be provided. Fitting the experimental data with the proposed physico-chemical approach shows self-consistent results in reasonable agreement with quantitative imaging analysis previously reported. Our results provide new physical insights into the analysis of amyloidogenic systems, providing a method to characterize the heterogeneous distribution of amyloid spherulites and simultaneously distinguish spherulites and free fibril populations. Importantly, the method can be generally applied to the characterization of polydisperse solutions containing optically traceable spherical particles in the micrometric range.
Collapse
Affiliation(s)
- V Foderà
- Sector of Biological and Soft Systems, Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK.
| | | |
Collapse
|
39
|
Chou CY, Hsieh YH, Chang GG. Applications of analytical ultracentrifugation to protein size-and-shape distribution and structure-and-function analyses. Methods 2010; 54:76-82. [PMID: 21087667 PMCID: PMC7128498 DOI: 10.1016/j.ymeth.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/27/2022] Open
Abstract
The rebirth of modern analytical ultracentrifugation (AUC) began in 1990s. Since then many advanced AUC detectors have been developed that provide a vast range of versatile choices when characterizing the physical and chemical features of macromolecules. In addition, there have been remarkable advances in software that allow the analysis of AUC data using more sophisticated models, including quaternary structures, conformational changes, and biomolecular interactions. Here we report the application of AUC to protein size-and-shape distribution analysis and structure-and-function analysis in the presence of ligands or lipids. Using band-sedimentation velocity, quaternary structural changes and an enzyme’s catalytic activity can be observed simultaneously. This provides direct insights into the correlation between quaternary structure and catalytic activity of the enzyme. On the other hand, also in this study, we have applied size-and-shape distribution analysis to a lipid-binding protein in either an aqueous or lipid environment. The sedimentation velocity data for the protein with or without lipid were evaluated using the c(s,fr) two-dimensional distribution model, which provides a precise and quantitative means of analyzing the protein’s conformational changes.
Collapse
Affiliation(s)
- Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
40
|
Mok YF, Ryan TM, Yang S, Hatters DM, Howlett GJ, Griffin MDW. Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescence detection. Methods 2010; 54:67-75. [PMID: 21055469 DOI: 10.1016/j.ymeth.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/21/2010] [Accepted: 10/28/2010] [Indexed: 11/25/2022] Open
Abstract
The assembly of proteins into large fibrillar aggregates, known as amyloid fibrils, is associated with a number of common and debilitating diseases. In some cases, proteins deposit extracellularly, while in others the aggregation is intracellular. A common feature of these diseases is the presence of aggregates of different sizes, including mature fibrils, small oligomeric precursors, and other less well understood structural forms such as amorphous aggregates. These various species possess distinct biochemical, biophysical, and pathological properties. Here, we detail a number of techniques that can be employed to examine amyloid fibrils and oligomers using a fluorescence-detection system (FDS) coupled with the analytical ultracentrifuge. Sedimentation velocity analysis using fluorescence detection is a particularly useful method for resolving the complex heterogeneity present in amyloid systems and can be used to characterize aggregation in exceptional detail. Furthermore, the fluorescence detection module provides a number of particularly attractive features for the analysis of aggregating proteins. It expands the practical range of concentrations of aggregating proteins under study, which is useful for greater insight into the aggregation process. It also enables the assessment of aggregation behavior in complex biological solutions, such as cell lysates, and the assessment of processes that regulate in-cell or extracellular aggregation kinetics. Four methods of fluorescent detection that are compatible with the current generation of FDS instrumentation are described: (1) Detection of soluble amyloid fibrils using a covalently bound fluorophore. (2) Detection of amyloid fibrils using an extrinsic dye that emits fluorescence when bound to fibrils. (3) Detection of fluorescently-labeled lipids and their interaction with oligomeric amyloid intermediates. (4) Detection of green fluorescence protein (GFP) constructs and their interactions within mammalian cell lysates.
Collapse
Affiliation(s)
- Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Wang BF, Tian PY, Feng K, Wu FR, Lu YG, Yang Y. Role of insulin resistance in the pathogenesis of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2010; 18:3175-3180. [DOI: 10.11569/wcjd.v18.i30.3175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of insulin resistance (IR) in the pathogenesis of nonalcoholic fatty liver disease in rats.
METHODS: Spraque-Dawley rats were randomly divided into normal control group and model group. The model group was fed a high-fat cholesterol-rich diet for 8 wk to induce nonalcoholic fatty liver disease and insulin resistance. The model group was further divided randomly into two equal subgroups: model control subgroup and therapeutic subgroup. Physiological saline and rosiglitazone maleate were given to the model control subgroup and therapeutic subgroup for 4 wk, respectively. Hepatic histological changes were then observed. Fasting plasma glucose, fasting insulin, plasma ApoC II and ApoC III were determined to calculate insulin resistance index. The activity of lipoprotein lipase and hepatic lipase was measured, and the expression of ApoB-100 mRNA was detected.
RESULTS: Compared with the normal control group, the body mass, fasting plasma glucose, fasting insulin and insulin resistance index were significantly higher in the model control subgroup and therapeutic subgroup (fasting plasma glucose: 6.46 mmol/L ± 0.75 mmol/L, 6.61 mmol/L ± 0.45 mmol/L vs 5.48 mmol/L ± 0.47 mmol/L; fasting insulin: 78.82 mU/L ± 11.13 mU/L, 78.48 mU/L ± 12.94 mU/L vs 40.90 mU/L ± 7.76 mU/L; insulin resistance index: 22.48 ± 2.81, 22.98 ± 3.47 vs 9.85 ± 1.15; all P < 0.05). Histological analysis revealed that the rats of the model control subgroup and therapeutic subgroup met the diagnostic criteria for fatty liver. Compared with the model control subgroup, hepatic histological changes were milder in the therapeutic subgroup. Treatment with rosiglitazone maleate significantly lowered the fasting plasma glucose (6.01 mmol/L ± 0.56 mmol/L vs 6.43 mmol/L ± 0.47 mmol/L), fasting insulin (68.11 mU/L ± 10.52 mU/L vs 82.48 mU/L ± 15.20 mU/L), insulin resistance index (18.49 ± 2.44 vs 23.39 ± 3.16) and plasma ApoC III level, but increased plasma ApoC II level and the activity of lipoprotein lipase.
CONCLUSION: Improvement of insulin resistance in fatty liver rats can improve the activity of lipoprotein lipase and hepatic lipase by altering plasma ApoC II and ApoC III levels, promote the degradation of peripheral very low-density lipoprotein and triglycerides, up-regulate hepatic expression of ApoB-100 mRNA, facilitate the synthesis of very low-density lipoprotein in the liver and the transport of endogenous triglycerides, and lessen fatty infiltration of the liver.
Collapse
|
42
|
Teoh CL, Yagi H, Griffin MDW, Goto Y, Howlett GJ. Visualization of polymorphism in apolipoprotein C-II amyloid fibrils. J Biochem 2010; 149:67-74. [PMID: 20889492 DOI: 10.1093/jb/mvq117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The misfolding and self-assembly of proteins into amyloid fibrils, which occur in several debilitating and age-related diseases, are affected by common components of amyloid deposits, notably lipids and lipid complexes. Previously, the effects of phospholipids on amyloid fibril formation by apolipoprotein (apo) C-II have been examined, where low concentrations of micellar phospholipids and lipid bilayers induce a new, straight rod-like morphology for apoC-II fibrils. This fibril appearance is distinct from the twisted-ribbon morphology observed when apoC-II fibrils are formed in the absence of lipids. We used total internal reflection fluorescence microscopy (TIRFM) to visualize the described polymorphism of apoC-II amyloid fibrils. The spontaneous assembly of apoC-II into either twisted-ribbon fibrils in the absence of lipids or into fibrils of straight rod-like morphology when lipids are present was captured by TIRFM. The latter was found to be better suited for visualization using TIRFM. The difference between seeding of apoC-II straight fibrils on microscopic quartz slide and in test tube suggested a role for the effects of incubation surface on fibril formation. Seed-dependent growth of apoC-II straight fibrils was probed further by using a dual-labelling construct, giving insights into the straight fibril growth pattern.
Collapse
Affiliation(s)
- Chai L Teoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
43
|
Bhak G, Lee S, Park JW, Cho S, Paik SR. Amyloid hydrogel derived from curly protein fibrils of α-synuclein. Biomaterials 2010; 31:5986-95. [DOI: 10.1016/j.biomaterials.2010.03.080] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/29/2010] [Indexed: 11/26/2022]
|
44
|
Code C, Mahalka AK, Bry K, Kinnunen PK. Activation of phospholipase A2 by 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1593-600. [DOI: 10.1016/j.bbamem.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/26/2022]
|
45
|
Ryan TM, Teoh CL, Griffin MDW, Bailey MF, Schuck P, Howlett GJ. Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils. J Mol Biol 2010; 399:731-40. [PMID: 20433849 PMCID: PMC2887044 DOI: 10.1016/j.jmb.2010.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
Abstract
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 x 10(-13) to 1.2 x 10(-6) microM(-3) without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.
Collapse
Affiliation(s)
- Timothy M. Ryan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Chai L. Teoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Michael F. Bailey
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland, 20892 U.S.A
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
46
|
Todorova N, Hung A, Yarovsky I. Lipid Concentration Effects on the Amyloidogenic apoC-II60−70 Peptide: A Computational Study. J Phys Chem B 2010; 114:7974-82. [DOI: 10.1021/jp102142x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nevena Todorova
- Applied Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Andrew Hung
- Applied Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Irene Yarovsky
- Applied Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
47
|
Todorova N, Yarovsky I. Molecular modelling of peptide folding, misfolding and aggregation phenomena. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.procs.2010.04.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Wang SSS, Liu KN, Han TC. Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants. Biochim Biophys Acta Mol Basis Dis 2010; 1802:519-30. [PMID: 20176106 DOI: 10.1016/j.bbadis.2010.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/30/2010] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
Abstract
Amyloid fibrils have been associated with at least 25 different degenerative diseases. The 51-residue polypeptide hormone insulin, which is associated with type II diabetes, has been shown to self-assemble to form amyloid fibrils in vitro. With bovine insulin as a model, the research presented here explores the effects of two amphiphilic surfactants (1,2-dihexanoyl-sn-glycero-3-phosphocholine (di-C7-PC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (di-C7-PC)) on the in vitro fibrillation process of bovine insulin at pH 2.0 and 55 degrees C. We demonstrated that insulin fibrillation may be inhibited by both surfactants in a dose-dependent fashion. The best inhibition of fibril formation is observed when insulin is incubated with 4mM di-C7-PC. Moreover, the addition of either surfactant at the concentrations studied attenuated insulin fibril-induced cytotoxicity in both PC12 and SH-SY5Y cell lines. The results from this work may contribute to the understanding of the molecular factors affecting amyloid fibrillation and the molecular mechanism(s) of the interactions between the membrane and amyloid proteins.
Collapse
Affiliation(s)
- Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | | | | |
Collapse
|
49
|
Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proc Natl Acad Sci U S A 2010; 107:1977-82. [PMID: 20133843 DOI: 10.1073/pnas.0910136107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein component of HDL, where it plays an important role in cholesterol transport. The deposition of apoA-I derived amyloid is associated with various hereditary systemic amyloidoses and atherosclerosis; however, very little is known about the mechanism of apoA-I amyloid formation. Methionine residues in apoA-I are oxidized via several mechanisms in vivo to form methionine sulfoxide (MetO), and significant levels of methionine oxidized apoA-I (MetO-apoA-I) are present in normal human serum. We investigated the effect of methionine oxidation on the structure, stability, and aggregation of full-length, lipid-free apoA-I. Circular dichrosim spectroscopy showed that oxidation of all three methionine residues in apoA-I caused partial unfolding of the protein and decreased its thermal stability, reducing the melting temperature (T(m)) from 58.7 degrees C for native apoA-I to 48.2 degrees C for MetO-apoA-I. Analytical ultracentrifugation revealed that methionine oxidation inhibited the native self association of apoA-I to form dimers and tetramers. Incubation of MetO-apoA-I for extended periods resulted in aggregation of the protein, and these aggregates bound Thioflavin T and Congo Red. Inspection of the aggregates by electron microscopy revealed fibrillar structures with a ribbon-like morphology, widths of approximately 11 nm, and lengths of up to several microns. X-ray fibre diffraction studies of the fibrils revealed a diffraction pattern with orthogonal peaks at spacings of 4.64 A and 9.92 A, indicating a cross-beta amyloid structure. This systematic study of fibril formation by full-length apoA-I represents the first demonstration that methionine oxidation can induce amyloid fibril formation.
Collapse
|
50
|
Todorova N, Hung A, Maaser SM, Griffin MDW, Karas J, Howlett GJ, Yarovsky I. Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II60–70 peptide. Phys Chem Chem Phys 2010; 12:14762-74. [DOI: 10.1039/c0cp00299b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|